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We present here a set of lecture notes on quantum systems with time-dependent bound-
aries. In particular, we analyze the dynamics of a non-relativistic particle in a bounded
domain of physical space, when the boundaries are moving or changing. In all cases,
unitarity is preserved and the change of boundaries does not introduce any decoherence
in the system.

Keywords: Quantum boundary conditions; time-dependent Hamiltonians; product for-
mulae.

Mathematics Subject Classification 2010: 81Q10, 46N50, 35J57

1. Introduction

We present here the notes of three lectures given by one of us at the International
Workshop on Mathematical Structures in Quantum Physics, held in February 2014
in Bangalore at the Center for High Energy Physics, Indian Institute of Science.
The course considers some aspects of quantum systems with time-dependent bound-
aries, a very active area both from the mathematical point of view, see for instance
the works of Yajima [1, 2], Dell’Antonio et al. [3] and Posilicano et al. [4, 5], and
from a physical perspective. Notable applications arise in different fields ranging
from atoms in cavities [6, 7] to ions and atoms in magnetic traps [8], to supercon-
ducting quantum interference devices (SQUID) [9], to the dynamical Casimir effect
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Exercise 4. Prove that the unitary (15) has always an eigenvalue equal to −1.
Find its corresponding eigenvector ξ and show that the first equation in (16) is
nothing but an orthogonality condition ⟨ξ|Ψ⟩ = 0. (In Lecture 3 we come back to
the geometrical meaning of this condition.)

2.1. Hard walls

Let us concentrate now on the textbook case of a particle confined in an infinitely
deep well, Fig. 1. The appropriate boundary conditions are Dirichlet’s: ψ(a) =
ψ(b) = 0. The dynamics of the particle is described by the Schrödinger equation

i!∂ψ(x, t)
∂t

= − !2

2m

∂2ψ(x, t)
∂x2

. (17)

A separation of variables, ψ(x, t) = u(x) exp(−iEt/!), reduces the problem to the
solution of the spatial part of the differential equation, that means to find eigen-
vectors and eigenvalues of the operator T :

− !2

2m
u′′(x) = E u(x). (18)

The general solution is

u(x) = c1 e+ikx + c2 e−ikx, (19)

with k =
√

2mE/! (in principle k can be imaginary, but see below), and c1 and c2

are arbitrary constants that can be fixed (up to a common phase) by imposing the
Dirichlet boundary conditions,

u(a) = c1 eika + c2 e−ika = 0, (20)

u(b) = c1 eikb + c2 e−ikb = 0, (21)

and normalization

⟨u|u⟩ = 1. (22)

Exercise 5. Prove that the normalized eigenfunctions of T , with the Dirichlet
boundary conditions, are

un(x) =
√

2
l

sin
(nπ

l
(x − a)

)
, (23)

where l = b − a, and that the eigenvalues, giving the permitted energy levels are

En =
!2

2m

n2π2

l2
, (24)

for n = 1, 2, . . . . See Fig. 4.
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Fig. 4. The eigenfunctions (solid lines) of the operator T in the box at different levels of energy
(dashed lines).

Remark 1. Equation (24) tells us two important things on the bound states of
the particle:

(1) the energies are quantized;
(2) the energy is always strictly positive.

The strictly positivity of the energy is a property of the Dirichlet boundary
conditions. Indeed, with the Neumann ones the energy of the ground state is 0,
and, more surprisingly, it is even negative with Robin’s boundary conditions!

Exercise 6. Prove that the ground state of T , with the Neumann boundary con-
ditions is

v0(x) =
√

1
l
, (25)

and has zero energy, E0 = 0. Then, look at the eigenvalue problem with Robin’s
boundary conditions (8).

2.2. Fractals in a box

The textbook exercise of the quantum particle in a box inevitably ends with the
evaluation of the eigenvalues (24) and the eigenfunctions (23). The result is so simple
and intelligible that we all felt a profound satisfaction when we derived it in our first
course of quantum mechanics. The simplicity of the spectrum is deceptive and leads
us to think that we fully understand the physical problem. In particular, we are
convinced that the dynamics, which is the solution to the Schrödinger equation (17),
must surely be as much simpler. In fact, this belief is false, as showed by Berry [13]:
the dynamics is instead very intricate.
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Let us assume at time t = 0 that ψ(x, 0) = v0(x), with v0 given by (25). This
is the simplest conceivable initial condition, corresponding to a flat probability in
the box [a, b], with l = b − a. We are interested in the time evolution of this initial
wave function. Its L2-expansion in terms of the eigenfunctions (23) of T reads

v0(x) =
∞∑

n=1

cnun(x), (26)

where cn = ⟨un|v0⟩.

Exercise 7. Show that

cn =
√

2
nπ

[1 − (−1)n], (27)

and, in particular, c2n = 0, for all n = 1, 2, . . . .

In the same way the quantum evolution, described by the action of the unitary
operator U(t) = e−iTt/!, can be written as an L2-convergent series

ψ(x, t) =
(
e−iTt/!v0

)
(x) =

+∞∑

n=1

cn e−iEnt/!un(x). (28)

We can now use the explicit expressions (23)–(24) and obtain

ψ(x, t) =
√

2
l

+∞∑

n=1

cn sin
(nπ

l
(x − a)

)
exp
(
− i!

2m

n2π2t

l2

)
. (29)

In terms of the dimensionless variables ξ = l−1(x − (a + b)/2) ∈ [−1/2, 1/2], and
τ = 2π t !/ml2 ∈ R, it reads

ϑ(ξ, τ) =
√

2
l

+∞∑

k=0

c2k+1 sin
[
2π
(
ξ +

1
2

)(
k +

1
2

)]
exp

[
−iπτ

(
k +

1
2

)2
]
. (30)

By writing the sine as the sum of exponentials and by making use of the expres-
sion (27), we finally get

ϑ(ξ, τ) =
+∞∑

n=−∞
dnei2πξ(n+ 1

2 )−iπτ(n+ 1
2 )

2

, ξ ∈
[
−1

2
,
1
2

]
, (31)

(notice that now the sum runs over all n ∈ Z).

Exercise 8. Derive Eq. (31) and show that

dn =
1
π
√

l

(−1)n

n + 1
2

, n ∈ Z. (32)

If we take a closer look at the expression (31) we notice that it is a Fourier
series with quadratic phases. This series is the boundary value of a Jacobi theta
function [18], which is defined in the lower complex half-plane of τ , and it has a
very rich structure investigated at length by mathematicians. For a full immersion
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in its deep arithmetic properties see the charming “Tata Lectures on Theta” by
Mumford [19]. A simple property is its quasi-periodicity in the rescaled time τ
(check it!):

ϑ(ξ, τ + 1) = e−iπ/4 ϑ(ξ, τ). (33)

Thus at integer times τ the wave function comes back (up to a phase) to its initial
flat form (25): these are the quantum revivals. More generally, at rational values of
τ the graph of |ϑ(ξ, τ)|2 is piecewise constant and there is a partial reconstruction
of the initial wave function [20], see Fig. 5. On the other hand, at irrational times,
the wave function is a fractal, with Hausdorff dimension DH = 3/2, as shown in

τ = 8/13 τ = 13/21

τ = 21/34 τ = 34/55

τ = 144/233

τ = 0 τ = 1/2

τ = φ

Fig. 5. Graphs of |ϑ(ξ, τ)|2 vs. ξ at different rational times τ along the Fibonacci sequence tending
to the golden mean, φ = (1 +

√
5)/2. See the emergence of a fractal structure.
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the last panel of Fig. 5. In fact, ϑ(ξ, τ) can be proved to be a fractal function in
space and time, and to form a beautifully intricate quantum carpet, with different
Hausdorff dimensions along different space-time directions [21].

3. Lecture 2: Moving Walls!

In this lecture we will try to answer the following question: What happens if the
walls of our box start moving? Which equation will describe the quantum dynamics
of the bouncing particle?

The classical version of this problem was introduced by Fermi [22] in 1949,
and then investigated by Ulam [23]. It is convenient to parametrize the confining
interval as

Il,d =
[
d − l

2
, d +

l

2

]
, (34)

so that l > 0 is the width of the box and d ∈ R its center. We will suppose that
l and d are regular functions of time, t #→ l(t) and t #→ d(t), with l(t) > l0 > 0
so that the interval never shrinks to a point. From now on we will often omit the
dependence on t.

As we did in the case of still walls, we analyze the dynamics described by the
Schrödinger equation

i! d
dt
ψ(t) =

p2

2m
ψ(t), (35)

where the domain of p2 is

Dl,d =
{
ψ ∈ H2(Il,d), ψ

(
d − l

2

)
= ψ

(
d +

l

2

)
= 0
}

, (36)

(Dirichlet’s boundary conditions). Notice that this domain depends on time, so that
at different times we work on different spaces. This means that the time derivative,

d
dt
ψ(t) = lim

ϵ→0

ψ(t + ϵ) − ψ(t)
ϵ

, (37)

involves the sum of vectors belonging to different Hilbert spaces, since in general
Dl(t),d(t) ̸= Dl(t+ϵ),d(t+ϵ). Therefore, we need to take more care in the formulation
of the problem and in the interpretation of Eq. (35).

The correct formulation of the problem can be accomplished by embedding the
space of square integrable functions on the interval, L2(Il,d), in the larger Hilbert
space L2(R) on the real line:

L2(R) = L2(Il,d) ⊕ L2(Ic
l,d), (38)

where Xc = R\X denotes the complement of the set X . Thus, every wave function
ψ ∈ L2(R) can be written as a sum ψ = χ+φ, where χ ∈ L2(Il,d) and φ ∈ L2(Ic

l,d).
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