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I 1.1 Smooth manifolds

I.

Differential Geometry

1 Smooth manifolds and smooth mappings

1.1 Smooth manifolds

Let M be a set and m a positive integer. Any couple (U , ξ), with

ξ : U ⊂M −→Rm

injective mapping, is called an m-chart on M (global, in the case U = M). Compositions

xi : U Rm R........................................................................................ ............
ξ

........................................................................................ ............
pri

for (i = 1, . . . ,m), denote the coordinate functions of ξ. For any point x ∈ U ,

ξ(x) =
(
x1(x), . . . , xm(x)

)
is the m-tuple of coordinates of x in ξ. The bijection induced by ξ onto its own image ξ(U) is still
denoted by ξ : U → ξ(U) and then the inverse bijection by ξ−1 : ξ(U)→ U .
Let (U , ξ) and (V, η) be two m-charts on M . They are said to be C∞–related to each other if
U ∩ V = ∅ or, when U ∩ V 6= ∅, if their transition functions

η ◦ ξ−1 : ξ(U ∩ V) −→ η(U ∩ V)

ξ ◦ η−1 : η(V ∩ U) −→ ξ(U ∩ V)

are C∞ (which implies that both ξ(U ∩ V) and η(V ∩ U) are open subsets of Rm). Notice that an
m-chart is C∞–related to itself if, and only if, its image is an open subset of Rm. In the sequel we
will denote a chart (U , ξ) simply by ξ if no ambiguity occurs.

A collection A of (m-)charts is said to be an (m-dimensional) atlas on M if
(A1) the domains of the charts belonging to A are a covering of M .
An (m-dimensional) atlas A is said to be C∞ differentiable if
(A2) for each ξ ∈ A, ξ is C∞–related to every chart of A.
An (m-dimensional) C∞ atlas A is said to be complete if
(A3) any (m-)chart C∞–related to every chart of A, belongs to A.

1.1.1 Proposition. Each (m-dimensional) C∞ atlas A on M is contained in just one complete
(m-dimensional) C∞ atlas C, given by

C = { ξ | ξ is an m-chart on M, C∞–related to every chart of A}.

Proof. Let us consider the above collection C of m-charts. From the second property of atlas, we
deduce that A ⊂ C. This also implies that C satisfies covering property (A1). Now, let (U1, ξ1) and
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I 1.1 Smooth manifolds

(U2, ξ2) be any two charts of C with U1 ∩ U2 6= ∅. In order to prove their C∞–relatedness, choose
a chart (η,V) ∈ A such that U1 ∩ U2 ∩ V 6= ∅ and consider the restrictions

(ξ2 ◦ ξ−1
1 )|ξ1(U1∩U2∩V) = (ξ2 ◦ η−1) ◦ (η ◦ ξ−1

1 )

(ξ1 ◦ ξ−1
2 )|ξ2(U1∩U2∩V) = (ξ1 ◦ η−1) ◦ (η ◦ ξ−1

2 )

Since the transition functions η ◦ξ−1
1 and ξ2 ◦η−1 are C∞, the above restrictions are C∞ and then,

owing to the arbitrarity of η, the original functions too. This shows that C satisfies C∞ property
(A2). Moreover, if ξ is an m-chart C∞-related to every chart of C, ξ is, in particular, C∞–related
to every chart of A ⊂ C and then ξ ∈ C. This shows that C satisfies completeness property (A3).
As to the uniqueness of C, let us consider any complete m-dimensional C∞ atlas C′ containing A.
A chart ξ ∈ C′ is C∞–related to every chart of A ⊂ C′ and then ξ ∈ C. As a consequence, each
chart η ∈ C is C∞–related to every chart of C′ ⊂ C and then, for completeness reasons, η ∈ C′.
This shows that C′ = C.

A complete m-dimensional C∞ atlas is also called an m-dimensional differential structure on M .
Distinct atlases whose charts are C∞–related to one other, all determine – owing to the above
proposition – the same differential structure on M .

1.1.2 Example. Let V be an m-dimensional (real) vector space. Any linear basis of V defines
a linear isomorphism of V onto Rm, which is an m-dimensional C∞ atlas; all of these atlases
determine the same differential structure on V . In the particular case V = Rm, such a differential
structure is determined by the distinguished global chart idRm , which corresponds to the canonical
basis (δi)i=1,...,m with δi := (δhi )h=1,...,m (Kronecker symbols).

A set M equipped with an m-dimensional differential structure C is called an m-dimensional smooth
manifold. All the charts of C are called admissible charts on M and their domains coordinate
domains on M . Given a point x ∈M , we shall say that (U , ξ) is a chart at x if x ∈ U .
Coordinate domains set up a basis of a topology on M . To show that, we need the following

1.1.3 Lemma. Let (U1, ξ1) and (U2, ξ2) be admissible charts; restrictions (U1 ∩ U2, ξi|U1∩U2),
i = 1, 2, are admissible charts, too.

Proof. Il is sufficient to assume U1 ∩ U2 6= ∅ and consider the case i = 1. Let us put U = U1 ∩ U2

and ξ = ξ1|U1∩U2 . We have to prove that (U , ξ) ∈ C. To this end consider any other chart (V, η) ∈ C
such that U ∩ V 6= ∅. Owing to the C∞–relatedness of ξ1, ξ2 and η, the sets

ξ(U ∩ V) = ξ1(U1 ∩ V) ∩ ξ1(U1 ∩ U2)
η(U ∩ V) = η(U1 ∩ V) ∩ η(U2 ∩ V)

are both open in Rm. and then the transition functions

η ◦ ξ−1 = η ◦ ξ−1
1 |ξ(U∩V)

ξ ◦ η−1 = ξ1 ◦ η−1|η(U∩V)

are both C∞-differentiable
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I 1.1 Smooth manifolds

1.1.4 Proposition. Let TM be the collection of all the subsets of M which are unions of coordi-
nates domains, together with the emptyset. TM is a topology on M .

Proof. Topology properties
∅ , M ∈ TM
{Wα} ⊂ TM =⇒

⋃
αWα ∈ TM

are trivially satisfied. As for the last property,
W1 , W2 ∈ TM =⇒W1 ∩W2 ∈ TM ,

it is a direct consequence of the above lemma.

Topology TM will be called the manifold topology of M . It is a locally Euclidean topology, since,
as we will prove, each coordinate domain is an open subset of M homeomorphic to an open subset
of Rm.

1.1.5 Lemma. Given an admissible chart (U , ξ), for any open subset W of M contained in the
domain U , the restriction ξ|W is still an admissible chart.

Proof. The proof follows the same pattern of the one of Lemma 1.1.3.

1.1.6 Proposition. Each admissible chart (U , ξ) defines a homeomorphism of its domain U onto
its image ξ(U).

Proof. For any open subset W ⊂ U , the restriction ξ|W belongs to C and then its image ξ(W ) is
an open subset of ξ(U). This proves that ξ is an open map. Let ξ−1(A) ⊂ U be the inverse image
of an open subset A ⊂ ξ(U) of Rm. The restriction ξ|ξ−1(A) is an admissible chart on M since for
any (V, η) ∈ C, the images

η
(
V ∩ ξ−1(A)

)
= η

(
V ∩ U ∩ ξ−1(A)

)
= η

(
ξ−1ξ(V ∩ U) ∩ ξ−1(A)

)
= η ◦ ξ−1

(
ξ(U ∩ V) ∩A

)
ξ
(
V) ∩ ξ−1(A)

)
= ξ
(
V ∩ U ∩ ξ−1(A)

)
= ξ(V ∩ U) ∩A

are open subsets of Rm. This proves that ξ is a continuous map too.

It is worthwhile to remark that the locally Euclidean character of a manifold topology implies that
a manifold M is locally connected (i.e., each point of M has a connected open neighbourhood).
As a consequence, any connected component of M is an open subset of M . Moreover a manifold
topology satisfies the first axiom of separation (i.e., any two points of M can be separated by two
– not necessarily disjoint – open neighbourhoods) and the first axiom of countability (i.e., each
point of M has a countable basis of open neighbourhoods).
In what follows, manifolds will be always meant to be Hausdorff and second-countable (1).

1.1.7 Exercise. Any open subset W of an m–dimensional manifold M is an m–dimensional
manifold. We will call W an open submanifold of M .

(1) We recall that a Hausdorff manifold M is locally compact, i.e., for each point x ∈M and each open
neighbourhood W of x, there exists an open neighbourhood V of x with compact clousure V̄ ⊂W
(Cf. F.Brickell and R.S.Clark, Differentiable Manifolds, p.42).
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I 1.2 Smooth mappings

1.2 Smooth mappings

Let M , N be smooth manifolds (with differential structures CM , CN and dimensions m and n,
respectively). Let

Φ : M −→ N

be a mapping of M in N and x ∈M . If (U , ξ) ∈ CM is a chart at x and (V, η) ∈ CN is a chart such
that Φ(U) ⊂ V, we define the coordinate expression of Φ around x by

Φηξ := η ◦ Φ ◦ ξ−1 : ξ(U) −→ η(V) : ξ(y) 7→ η
(
Φ(y)

)
.

The mapping Φ is said to be C∞–differentiable at x, if there exists a coordinate expression Φηξ
around x which is C∞ at ξ(x). The above definition is, in fact, an intrinsic property of Φ, as
follows from the following

1.2.1 Proposition. If Φηξ is C∞ at ξ(x), then any other coordinate expression Φη′ξ′ around x is
C∞ at ξ′(x).

Proof. Notice that Φη′ξ′ = η′ ◦ Φ ◦ ξ′−1 has a restriction to the open subset ξ′(U ′ ∩ U) ⊂ ξ′(U ′)
given by (η′ ◦ η−1) ◦ Φηξ ◦ (ξ ◦ ξ′−1), whose C∞–differentiability at ξ′(x) follows from the C∞–
differentiability of transition functions ξ ◦ ξ′−1 and η′ ◦ η−1.

Now we show the local character of C∞–differentiability.

1.2.2 Proposition.
(i) If Φ is C∞ at x, so is its restriction to any open subset W containing x.
(ii) If a restriction of Φ to an open subset is C∞ at x, so is Φ itself.

Proof. (i) Just notice that, if Φηξ is a coordinate expression of Φ around x, then

(Φ|W )ηξ|U∩W = Φηξ|ξ(U∩W )

is a coordinate expression of Φ|W around x, since ξ|U∩W is an admissible chart on W .
(ii) The claim immediately follows from the fact that, if W is an open subset os M , any admissible
chart on W is admissible on M too.

1.2.3 Exercises.
(i) If Φ is C∞ at x, it is continuous at x.
(ii) If Φ is C∞ at x and Ψ is C∞ at Φ(x), then Ψ ◦ Φ is C∞ at x.
(iii) Identity map idM is C∞ at any x ∈M .
(iv) A function f :A ⊂Rm →Rn (defined on an open subset A of Rm) is C∞ at x if, and only if, it
is C∞ at x in the Euclidean sense.

A mapping Φ : M → N is called a smooth mapping if it is C∞ at every point of M (i.e., if it
has C∞–coordinate expressions in suitably many charts to cover M and Φ(M)). Proposition 1.2.1
implies that all of the coordinate expressions of a smooth mapping Φ are C∞. Proposition 1.2.2
extends to smooth mappings, and states
(i) the smoothness of the restriction of a smooth mapping Φ to any open subset of M ;
(ii) the smoothness of a mapping Φ, if it admits smooth restrictions to suitably many open subsets
to cover M .
Proposition 1.2.3 extends to smooth mappings in an obvious way.

A bijective, smooth mapping Φ:M → N is called a diffeomorphism, if its inverse Φ−1:N → M is
a smooth mapping. Diffeomorphic manifolds are structurally identical owing to the following
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I 1.3 Bump functions

1.2.4 Proposition. Let Φ:M → N be a diffeomorphism. The map that takes each chart ξ with
domain U ⊂M to the chart η := ξ ◦ Φ−1 with domain Φ(U) ⊂ N , defines a bijection between the
differential structures CM and CN (which consequently have the same dimension).

Proof. (i) First notice that, in the given map, to each chart ξ ∈ CM there corresponds a chart
η ∈ CN . This is due to the fact that, for any chart (V ′, η′) ∈ CN such that V ′ ∩ Φ(U) 6= ∅, the
transition functions

η′ ◦ η−1|η(Φ(U)∩V′) = η′ ◦ Φ ◦ ξ−1|ξ(U∩Φ−1(V′))

η ◦ η′−1|η′(V′∩Φ(U)) = ξ ◦ Φ−1 ◦ η′−1|η′(V′∩Φ(U))

are C∞, being the coordinate expressions of Φ and Φ−1 in admissible charts on M and N .
(ii) Then notice that, in the given map, any chart η ∈ CN corresponds to a unique chart ξ = η ◦Φ
and, through the same reasoning as in (i), one can check that ξ ∈ CM .

Any bijection onto a manifold can be turned into a diffeomorphism as follows.

1.2.5 Proposition. Let Φ:M → N be a bijection of a smooth manifold M onto a set N . There
exists a unique differential structure on N such that Φ is a diffeomorphism.

Proof. The differential structure CN searched, is obtained from CM through the map given in
Proposition 1.2.4.

A nice example of diffeomorphism is given in the following

1.2.6 Proposition.
(i) Any admissible chart (U , ξ) on M defines a diffeomorphism between the open submanifolds
U ⊂M and ξ(U) ⊂Rm.

(ii) Conversely, any diffeomorphism ξ between the open submanifolds U ⊂ M and ξ(U) ⊂Rm
defines an admissible chart on M .

Proof. (i) It is enough to remark that the coordinate expressions of ξ and ξ−1 in charts ξ on U
and idξ(U) on ξ(U), are C∞ (for they both reduce to idξ(U)).
(ii) It is enough to remark that, for any admissible chart ξ′ whose domain U ′ encounters U , the
transition functions ξ′ ◦ ξ−1 and ξ ◦ ξ′−1, being composition of smooth mappings, are smooth
mappings.

1.3 Bump functions

Let M be a smooth manifold and C∞(M) the algebra of real-valued smooth functions on M . The
existence of a special kind of functions in C∞(M) is clamed (2) in the following statement: for
any point x ∈M and any open neighbourhood W of x, there exixts a function β ∈ C∞(M) which
takes the constant value 1 on an open neighbourhood of x and has its support (3) contained in W .
Te function β is called a bump function at x with support in W . The above statement implies{

β|V = 1, V ⊂W

β|M−W = 0.

(2) See B.O’Neill, Semi-Riemannian Geometry, p.6.
(3) suppβ := closure of {x ∈M |β(x) 6= 0}.
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I 2.1 Tangent spaces

Bump functions are used to ‘extend’ smooth mappings defined on an open neighbourhood of a
point, to a smooth mapping on M . For instance, let ϕ ∈ C∞(W ). Put

f(y) =

{
β(y)ϕ(y), if y ∈W

0, if y ∈M −W .

We have
f ∈ C∞(M)

(since f |W = β|Wϕ and f |M−suppβ = 0 are smooth restrictions of f to open subsets W and
M − suppβ, which cover M), and

f |V = ϕ|V .

2 Tangent spaces and tangent mappings

2.1 Tangent spaces

Let M be an m–dimensional smooth manifold and x ∈M . Any R-linear map

v:C∞(M) −→R

which obeys the Leibniz rule at x

v(fg) = v(f)g(x) + f(x)v(g) ∀f, g ∈ C∞(M)

is called a derivation of C∞(M) at x. The local character of a derivation v is pointed out in the
following proposition.

2.1.1 Proposition. Let h ∈ C∞(M). If h|U = 0 in some open neighbourhood U of x, then
v(h) = 0.

Proof. Let β be a bump function at x with support in U . We have h = (1−β)h both on U (where
h vanishes) and on M − U (where β vanishes). The Leibniz rule then implies

v(h) = v(1− β)h(x) + (1− β(x))v(h) = 0

since h(x) = 0 and β(x) = 1, and R-linearity implies the thesis.

It follows that a derivation v at x induces a derivation on any open neighbourhood W of x, by
putting, for each ϕ ∈ C∞(W ),

v(ϕ) := v(f)

with any f ∈ C∞(M) equal to ϕ around x.
Lastly we remark that

2.1.2 Corollary. If f is a constant function, then v(f) = 0.

Proof. If c ∈R denotes the constant value of f and 1 ∈ C∞(M) the unit function on M , from
f = c1 it follows that v(f) = v(c1) = cv(1). But v(1) = v(1 · 1) = v(1) + v(1) that is v(1) = 0,
whence the statement.

Let TxM be the set of all the derivations of C∞(M) at x. It is easy to prove the following
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I 2.1 Tangent spaces

2.1.3 Proposition. Let u, v ∈ TxM and a ∈R and define, for any f ∈ C∞(M),

(u+ v)f = u(f) + v(f)
(av)f = av(f)

With these operations, TxM is given a structure of real vector space.

The space TxM , endowed with the above structure, is called the tangent space of M at x (and any
v ∈ TxM , a tangent vector of M at x). As to the dimension of TxM , we will show that

dimTxM = m = dimM.

To this end, we consider an admissible chart ξ = (xi)i=1,...,m at x and define

∂

∂xi

∣∣∣∣
x

: C∞(M) −→R (i = 1, . . . ,m)

by putting, for each f ∈ C∞(M),

∂

∂xi

∣∣∣∣
x

(f) :=
∂f

∂xi

∣∣∣∣
x

:=
∂(f ◦ ξ−1)

∂xi

∣∣∣∣
ξ(x)

(partial derivative at x with respect to the i-th coordinate function xi). From R-linearity and
Leibniz rule of partial derivatives in Euclidean calculus, it follows that

∂

∂xi


x

∈ TxM.

The coordinate vectors
{

∂
∂xi

∣∣
x

}
associated with ξ, are a basis of TxM , owing to the following

2.1.4 Theorem. Any vector v ∈ TxM can be uniquely written as a linear combination

v = vi
∂

∂xi

∣∣∣∣
x

with components
vi := v(xi)

Proof. (i) We start with some preliminary calculations concerning C∞ real functions on Rm.
Let Br0 be the open ball with center in the origin 0 ∈Rm and radius r > 0. Let x̄ be a point of Br0 .
If x̄ 6= 0 (and obviously |x̄| < r), consider the open interval I = (−r/|x̄| , r/|x̄|) containing [0, 1]
and define in I the C∞ function γx̄(t) = tx̄. If x̄ = 0, the same definition yields the null function.
In both cases, the image of γx̄ is contained in Br0 and γx̄(0) = 0, γx̄(1) = x̄. The projections
γix̄ := pri ◦ γx̄ = tx̄i, (i = 1, . . . ,m) have constant derivatives

d

dt
γix̄ = x̄i.

Now consider a C∞ real function F :Br0 →R. Composition F ◦γx̄ = F (γ1
x̄, . . . , γ

m
x̄ ) is a well defined

C∞ function with derivative
d

dt
(F ◦ γx̄) =

(
∂F

∂xi
◦ γx̄

)
x̄i.
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I 2.1 Tangent spaces

From elementary integral calculus, then we have

F (x̄)− F (0) =
∫ 1

0

(
d

dt
F ◦ γx̄

)
dt =

(∫ 1

0

(
∂F

∂xi
◦ γx̄

)
dt

)
x̄i = Fi(x̄)pri(x̄)

where

Fi(x̄) :=
∫ 1

0

(
∂F

∂xi
◦ γx̄

)
dt

is a C∞ function on Br0 . So, on Br0 , we have

F = F (0) + Fipr
i.

(ii) A similar result will be now obtained around x ∈ M for any f ∈ C∞(M). Let (U , ξ) be an
admissible chart at x, with ξ(x) = 0 and ξ(U) = Br0

(4). Then let F := f ◦ ξ−1 be the coordinate
expression of f in ξ. From (i) it follows that

f |U = F ◦ ξ =
(
F (0) + Fipr

i
)
◦ ξ = F (0) + (Fi ◦ ξ)xi.

If we recall that F (0) = f(x) and we put fi := Fi ◦ ξ ∈ C∞(U), we have

f |U = f(x) + fix
i.

(iii) Now, for any v ∈ TxM and f ∈ C∞(M),

v(f) = v(f |U ) = v
(
f(x) + fix

i
)

= v
(
f(x)

)
+ v(fixi) = v(fixi) = v(fi)xi(x) + fi(x)v(xi)

= fi(x)v(xi)

since xi(x) = 0. In particular

∂

∂xi

∣∣∣∣
x

(f) = fj(x)
∂

∂xi

∣∣∣∣
x

(xj) = fj(x)δji = fi(x),

then

v(f) = v(xi)
∂

∂xi

∣∣∣∣
x

(f),

whence the stated decomposition of v.
(iv) Lastly we remark that the uniqueness of the above decomposition is due to the linear inde-
pendence of coordinate vectors, which is easily shown by

ai
∂

∂xi

∣∣∣∣
x

= 0 =⇒ ai
∂

∂xi

∣∣∣∣
x

(xj) = 0 =⇒ aj = 0

for all j = 1, . . . ,m.

By applying the decomposition law to coordinate vectors, we have

(4) Such a spherical chart can be obtained from any admissible chart at x through a translation and
a restriction.
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I 2.2 Tangent mappings

2.1.5 Corollary.
(i) The bases

{
∂
∂xi

∣∣
x

}
and

{
∂
∂yj

∣∣∣
x

}
associated with the admissible charts ξ = (xi) and η = (yj)

are related to each other by the chain rule

∂

∂yj

∣∣∣∣
x

=
∂xi

∂yj

∣∣∣∣
x

∂

∂xi

∣∣∣∣
x

(ii) Consequently, the controvariant transformation law of the components of a vector v is given
by

v(xi) =
∂xi

∂yj

∣∣∣∣
x

v(yj)

2.1.6 Note. We will denote by

ξ′x : TxM −→Rm : v = vi
∂

∂xi

∣∣∣∣
x

7→ v̄ = (vi)

the isomorphism defined by the coordinate basis
{

∂
∂xi

∣∣
x

}
at x.

2.1.7 Remark. Let W be an open submanifold of M and x ∈W .
(i) If, for any u ∈ TxW , we define v:C∞(M)→R by putting v(f) := u(f |W ), we have v ∈ TxM.
(ii) The consequent map u ∈ TxW 7→ v ∈ TxM is a (canonical) isomorphism. We shall usually
put TxW = TxM .

2.2 Tangent mappings

Let Φ:M → N be a smooth mapping and x ∈M . For any v ∈ TxM , define

TxΦ · v : C∞(N) −→R

by putting
(TxΦ · v)(f) = v(f ◦ Φ).

2.2.1 Lemma. TxΦ · v ∈ TΦ(x)N .

Proof. Let us check, for instance, that w := TxΦ · v obeys the Leibniz rule at y := Φ(x). To this
purpose, let f, g ∈ C∞(N). We have

w(fg) = v(fg ◦ Φ) = v(f ◦ Φ)g(Φ(x)) + f(Φ(x))v(g ◦ Φ) = w(f)g(y) + f(y)w(y)

The consequent mapping
TxΦ : TxM −→ TΦ(x)N

is called the tangent mapping of Φ at x.
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I 2.2 Tangent mappings

2.2.2 Proposition.
(i) TxΦ is a linear mapping.
(ii) TxidM = idTxM .
(iii) (Chain rule) Tx(Ψ ◦ Φ) = TΦ(x)Ψ ◦ TxΦ.

Proof. Let us prove, for instance, property (iii). Let Φ:M → N , Ψ:N → P be smooth mappings.
For each v ∈ TxM and each f ∈ C∞(P ), we have(

Tx(Ψ ◦ Φ) · v
)
f = v(f ◦Ψ ◦ Φ) = (TxΦ · v)(f ◦Ψ) = (TΦ(x)Ψ ◦ TxΦ · v)f

2.2.3 Corollary. If Φ:M → N is a diffeomorphism, then TxΦ is an isomorphism, whose inverse
is given by

(TxΦ)−1 = TΦ(x)Φ−1

Proof. The statement follows from the Proposition 2.2.2(ii),(iii), applied to idM = Φ−1 ◦ Φ and
idN = Φ ◦ Φ−1.

2.2.4 Coordinate expression.
Let Φ:M → N be a smooth mapping. Let ξ = (xi)i=1,...,m=dimM and η = (yα)α=1,...,n=dimN be
admissible charts at x and Φ(x), respectively, where Φ can be given a coordinate expression Φηξ.
For any

v = vi
∂

∂xi

∣∣∣∣
x

∈ TxM

put

w := TxΦ · v = wα
∂

∂yα

∣∣∣∣
Φ(x)

∈ TΦ(x)N.

By linearity, we have

w = vi
(
TxΦ · ∂

∂xi

∣∣∣∣
x

)
= vi

(
TxΦ · ∂

∂xi

∣∣∣∣
x

)
(yα)

∂

∂yα

∣∣∣∣
Φ(x)

= vi
∂(yα ◦ Φ)

∂xi

∣∣∣∣
x

∂

∂yα

∣∣∣∣
Φ(x)

,

and then

wα = vi
∂(yα ◦ Φ)

∂xi

∣∣∣∣
x

= vi
∂(yα ◦ Φ ◦ ξ−1)

∂xi

∣∣∣∣
ξ(x)

= vi
∂Φαηξ
∂xi

∣∣∣∣
ξ(x)

(with Φαηξ := prα ◦ Φηξ), or equivalently

w̄ = dξ(x)Φηξ · v̄

(with w̄ := (wα) and v̄ := (vi)). So we have the following commutative diagram

w̄ ∈Rnv̄ ∈Rm

w ∈ TΦ(x)Nv ∈ TxM

...................................................................................................................................................................................................... ............

dξ(x)Φηξ

......................................................................................................................................................... ............
TxΦ

.....................................................................................
...
.........
...

ξ′x

.....................................................................................
...
.........
...

η′Φ(x)

(where ξ′x and η′Φ(x) denote the isomorphisms defined by the coordinate bases). We will say that
dξ(x)Φηξ is the coordinate expression of TxΦ in ξ, η.
Notice that, for a smooth function f : A ⊂Rm →Rn, the Euclidean differential dxf is the coordinate
expression of the tangent map Txf in charts idA and idRn .
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I 2.2 Tangent mappings

2.2.5 Remarks.
(i) Let f ∈ C∞(M). For any x ∈ M , the composition of the tangent map Txf :TxM → Tf(x)R
with the natural isomorphism id′f(x) : Tf(x)R →R (defined by the chart idR on R) yields the
differential

dxf := id′f(x) ◦ Txf : TxM →R
which will usually replace Txf . Notice that dxf is a linear form on the vector space TxM , i.e., an
element of the dual space T ∗xM , whose action on any v ∈ TxM is dxf · v = id′f(x)(Txf · v), that is

dxf · v = v(f).

(ii) Now consider a smooth mapping F = (F 1, . . . , Fn) : M −→Rn. As above, for any x ∈ M ,
define the differential

dxF := id′F (x) ◦ TxF : TxM →Rn

(with idRn = (yα)α=1,...,n). For any v ∈ TxM ,

dxF · v = id′F (x)

(
TxF · v

)
=
(
TxF · v (yα)

)
=
(
v(yα ◦ F )

)
=
(
v(Fα)

)
=
(
dxF

α · v
)

=
(
dxF

1, . . . , dxF
n
)
· v

that is
dxF = (dxF 1, . . . , dxF

n).

Let M and N be smooth manifolds of dimensions m and n, respectively, and Φ:M → N a smooth
mapping. We define the rank of Φ at x ∈M as

rank Φ(x) := rank TxΦ = dim Im TxΦ.

According to the well known rank theorem for linear mappings, it is

dimTxM = dim kerTxΦ + dim Im TxΦ.

As a consequence,
rank Φ(x) ≤ m,n.

Also notice that, for any coordinate expression Φηξ,

rank Φ(x) = rank Φηξ(ξ(x)) = rank dξ(x)Φηξ

since TxΦ and Tξ(x)Φηξ are both related to dξ(x)Φηξ by isomorphisms (7).
The main result of rank theory is the existence of adapted charts, as stated in the following theorem.

2.2.6 Rank Theorem. Let rank Φ(x) = k. Then there exist admissible charts

ξ = (x1, . . . , xm) : U →Rm

η = (y1, . . . , yn) : V →Rn

at x and Φ(x), respectively, such that
(o) Φ(U) ⊂ V
(i) yi ◦ Φ|U = xi ∀i = 1, . . . , k.
If the rank of Φ is k in some neighbourhood of x (and k < n), we can further arrange that
(ii) yj ◦ Φ|U = const. ∀j = k + 1, . . . , n .
Conversely, the existence of charts as above (o)− (ii), implies that the rank of Φ is k in some open
neighbourhood of x.

Proof. Cf. M.Boothby An introduction to differentiable manifolds and Riemmanian geometry.

(7) See Coordinate expression 2.2.4.
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I 2.3 Smooth curves

2.3 Smooth curves

A smooth mapping c: I → M , of an open interval I ⊂R in a smooth manifold M , is said to be a
smooth curve, or motion, in M (and c(I) its orbit). Let d

dt

∣∣
t
∈ TtI = TtR be the coordinate vector

associated with chart idR on R. The time derivative of c at t ∈ I, defined by

ċ(t) := Ttc ·
d

dt

∣∣∣∣
t

∈ Tc(t)M ,

is said to be the tangent vector of c at the point c(t), or the velocity of c at time t.

2.3.1 Coordinate expression.
Let t ∈ I and let ξ be an admissible chart at c(t). By continuity, there exists an open interval
containing t and contained in I, whose c-image lies in the domain of ξ. There c has a coordinate
expression (xi ◦ c)i=1,...,m=dimM . As to ċ(t), it can be expressed as

ċ(t) =
(
ċ(t)(xi)

) ∂

∂xi

∣∣∣∣
c(t)

with components

ċ(t)(xi) =
(
Ttc ·

d

dt

∣∣∣∣
t

)
(xi) =

d

dt

∣∣∣∣
t

(xi ◦ c) =
dci)
du

∣∣∣∣
t

=: ċi(t),

So we have

ċ(t) = ċi(t)
∂

∂xi

∣∣∣∣
c(t)

.

2.3.2 Remarks.
(i) Notice that, for c : I →R, we have

ċ(t) =
dc

dt

∣∣∣∣
t

d

dt

∣∣∣∣
c(t)

i.e., the Euclidean derivative dc
dt |t is the natural component of the tangent vector ċ(t).

(ii) Similarly, for c : I →Rm, we have

ċ(t) =
d(xi ◦ c)

dt

∣∣∣∣
t

∂

∂xi

∣∣∣∣
c(t)

i.e., the Euclidean derivative dc
dt

∣∣
t

:=
(
d(xi◦c)
dt

∣∣∣
t

)
is the m-tuple of the natural components of the

tangent vector ċ(t).
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I 3.1 Submanifolds

2.3.3 Proposition. For any x ∈ M and v ∈ TxM , there exists a smooth curve c: I → M with
0 ∈ I, such that ċ(0) = v.

Proof. Let ξ = (xi) be an admissible chart at x, with domain U . Consider the rectilinear motion
in Rm

γ(t) = ξ(x) + tξ′x(v).

Since γ(0) = ξ(x), by continuity there exists an open interval I whose γ-image lies in ξ(U); so,
through restriction of γ to I, one obtains a smooth mapping γ|I : I → ξ(U). Now put

c := ξ−1 ◦ γ|I : I −→M.

The mapping c is a smooth curve in M with the required property. This follows from the coordinate
expression

ci = xi ◦ c = (pri ◦ ξ) ◦ (ξ−1 ◦ γ|I) = pri ◦ γ|I
and then

ci(t) = xi(x) + tv(xi)

which yields ċi(t) = v(xi). So we have

ċ(0) = ċi(0)
∂

∂xi

∣∣∣∣
c(0)

= v(xi)
∂

∂xi

∣∣∣∣
x

= v

2.3.4 Remark. As a consequence of Proposition 2.3.3, we have that, for any v ∈ TxM and
f ∈ C∞(M),

v(f) = ċ(0)(f) =
(
T0c ·

d

dt

∣∣∣∣
0

)
(f) =

d

dt

∣∣∣∣
0

(f ◦ c) =
d(f ◦ c)
dt

∣∣∣∣
0

i.e., v(f) is the directional derivative of f at x along any smooth curve c to which v is tangent.

2.3.5 Remark. Let k = Φ ◦ c : I → N whit Φ : M → N . Then, by applying to the chain rule of
tangent mappings, for any t ∈ I, we have

k̇(t) = Tc(t)Φ · ċ(t).

As a consequence of Propositions 2.3.3 then, notice that one can always reduce the calculus of a
tangent mapping w = TxΦ · v, to a time derivative w = k̇(0) (where k = Φ ◦ c and ċ(0) = v).

3 Immersions and submersions

3.1 Submanifolds

Let S, M be smooth manifolds of dimensions s, m respectively, with s ≤ m and

 : S −→M

a smooth mapping. If the tangent map of  at a point x ∈ S is injective,  is said to be an
immersion at x. In such a case, from dim kerTx = 0, it follows that rank (x) = s = max, and
then Rank Theorem 2.2.6 reads as follows.
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I 3.1 Submanifolds

3.1.1 Proposition. If  is an immersion at x, we can find admissible charts ξ : U →Rs, η : V →Rm
at x, (x) such that
(o) (U) ⊂ V
(i) η ◦ |U = (ξ , c) where c : U →Rm−s denotes a smooth mapping.
If  is an immersion in some open neighbourhood of x (and s < m), we can further arrange that
(ii) c = const.
Conversely, the existence of charts as above (o)− (ii), implies that  is an immersion in some open
neighbourhood of x.

Any differential structure on a subset S of M which makes the inclusion mapping  : S ↪→ M an
immersion (i.e., an immersion at each point of S) is called a submanifold structure on S, and S,
endowed with such a structure, an (immersed) submanifold of M .

3.1.2 Remarks.
(i) Any injective immersion ı : S → M gives rise to a submanifold of M , namely ı(S) with the
differential structure which makes the induced mapping ı̃ : S → ı(S) a diffeomorphism (8).
(ii) If S is a submanifold of M and M is a submanifold of N , then S is a submanifold of N . In
fact, is we denote by  : S ↪→ M and ′ : M ↪→ N the inclusion maps, then, at each point of S,
rank (′ ◦ ) = dimS.

First we will study the topology of a submanifold. As a preliminary, we recall the following well
known result on continuity.
Let Φ : P → M be a continuous mapping, and consider any subset S of M , such that Φ(P ) ⊂ S.
With respect to the subspace topology on S,the induced mapping Φ̃ : P → S is continuous. (9).

3.1.3 Proposition. The manifold topology of a submanifold is finer then its subspace topology.

Proof. Let S be a submanifold of M . Then S is endowed both with the manifold topology, that
we will denote by Sτ , and with the subspace topology, that we will denote by Sσ. The continuity
of the immersion  : Sτ ↪→ M implies the continuity of the induced mapping ̃ = idS : Sτ −→ Sσ,
and then the claim.

Now we study the behaviour of submanifolds with respect to smooth mappings.
If Φ : P →M is a smooth mapping, then its restriction Φ|S to any submanifold S is still a smooth
mapping (since Φ|S = Φ ◦ ). On the contrary, the induced mapping Φ̃ : P → S with values in a
submanifold S such that Φ(P ) ⊂ S will not generally be smooth – not even continuous, continuity
being guaranteed by the subspace topology of S but not generally by the finer manifold topology
of S (10). If, for each smooth mapping Φ : P →M with values in a given submanifold S of M , the
induced mapping Φ̃ : P → S is smooth, then we will call S a smoothness preserving submanifold.
For such a submanifold, the following remarkable property holds true.

3.1.4 Proposition. On any subset of a manifold, there exists at most one smoothness preserving
submanifold structure.

Proof. Let S1 := (S, C1) and S2 := (S, C2) be two smoothness preserving submanifold structures
on S and consider the immersions 1 : S1 ↪→M and 2 : S2 ↪→M , respectively. On the one hand,

(8) See Proposition 1.2.5.
(9) If V = W ∩S with W open subset of M , then Φ̃−1(V) = Φ̃−1(W ∩S) = Φ−1(W ) is an open subset

of P .
(10) For a counterexample, see F.Brickell and R.S.Clark, op. cit., p.76.
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we recall that 1 (resp. 2) is a smooth mapping with values in S2 (risp. S1) and then the induced
mapping ̃1 : S1 → S2 (resp. ̃2 : S2 → S1) is smooth as well. On the other hand, from the set
theoretical point of view we have ̃1 = idS = ̃2. We conclude that ̃1 is a diffeomorphism whose
inverse is ̃2 and then C1 = C2.

Let us now focus on the main type of smoothness preserving submanifold, defined as follows. An
immersion  : S → M such that the induced mapping ̃ : S → (S) is a homomorphism onto the
topological subspace (S) ⊂ M is called an embeddeing. A subset S of M , carrying a differential
structure which makes inclusion map  : S ↪→M an embedding is called an embedded (or regular)
submanifold.

3.1.5 Remarks.
(i) Any embedding ı : S → M gives rise to an embedded submanifold of M , namely (S) with
the differential structure given in Remark 3.1.2(i).
(ii) Remark 3.1.2(ii) trivially extends to embedded submanifolds.

The peculiarity of an embedded submanifold clearly lies in its manifold topology, as is comfirmed
by the following

3.1.6 Proposition. A submanifold S is embedded iff its manifold topology coincides with its
subspace topology.

3.1.7 Open submanifolds. Let W (with differential structure OW ) be an open submanifold
of M (11). For each x ∈ W , we can find an m–chart (U , ξ) with x ∈ U ⊂ W , which is admissible
on both W and M . This implies that  : W ↪→ M is an immersion (12). Moreover the manifold
topology of W coincides with its subspace topology. So W is an embedded submanifold and
dimW = dimM . Notice that the open submanifolds are the only submanifolds of M whose
dimension is dimM . In order to check this, let W be a submanifold such that dimW = dimM = m
and let  : W ↪→ M be its immersion into M . For each x ∈ W , we can find admissible m–charts
(U , ξ) on W and (V, η) on M with x ∈ U ⊂ V and η ◦ |U = ξ. From η(U) = η

(
(U)

)
= ξ(U)

or equivalently U = η−1
(
ξ(U)

)
, we draw that U is an open subset of M . So W , being union of

open subsets such as U , is an open subset of M . Also notice that, owing to the above equality of
dimensions, for each point x of an open submanifold W the tangent mapping Tx ∈ TxW → TxM
is an isomorphism, namely the canonical isomorphism (13), since, for any f ∈ C∞(M), (Tx ·u)f =
u(f ◦ ) = u(f |W ).

3.1.8 Compact submanifolds. Let C be a compact submanifold of M (i.e., compact in its
own manifold topology) and  : C ↪→ M its immersion into M . The image (C), as a topological
subspace of a manifold M (which is meant to be Hausdorff), is a Hausdorff space. The induced
mapping ̃ : C → (C) is then a continuous bijection of a compact space onto a Hausdorff space,
and therefore a homeomorphism (14). So C is an embedded submanifold.

As already announced, we have the following

(11) See Exercise 1.1.7
(12) See Proposition 3.1.1.
(13) See Remark 2.1.7.
(14) A continuous bijection h : X → Y of a compact space X onto a Hausdorff space Y , is an open

mapping. Indeed, given an open subset A of X, the closed subset X −A of the compact space X
is compact itself and so is its continuous image h(X −A) = h(X)− h(A) = Y − h(A); a compact
subset, such as Y − h(A), of a Hausdorff space Y is closed, and then h(A) is open.
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3.1.9 Proposition. An embedded submanifold is smoothness preserving.

Proof. Let Φ : N → M be a smooth mapping with values in an embedded submanifold S and
Φ̃ : N → S the induced mapping. We will prove that Φ̃ is smooth.
(i) As  : S ↪→ M is an immersion, for each y ∈ N we can find charts (U , ξ) and (V, η) at Φ̃(y)
and 

(
Φ̃(y)

)
adapted to , i.e., U ⊂ V and η ◦ |U = (ξ, c) (15).

(ii) As the manifold topology of S coincides with its subspace topology, Φ̃ is continuous (16).
Therefore, corresponding to the open neighbourhood U of Φ̃(y) = Φ(y), there is a chart (W,ρ) at
y such that Φ̃(W ) ⊂ U – and then Φ(W ) ⊂ V.
(iii) As a consequence, the coordinate expressions Φ̃ξρ and Φηρ are both well defined and, since
ξ = pr1 ◦ (η ◦ |U ), it is

Φ̃ξρ = ξ ◦ Φ̃ ◦ ρ−1 = pr1 ◦ η ◦  ◦ Φ̃ ◦ ρ−1 = pr1 ◦ η ◦ Φ ◦ ρ−1 = pr1 ◦ Φηρ

This means that Φ̃ξρ is C∞ owing to the assumed C∞-differentiability of Φηρ. So, for each y ∈ N ,
there exists a coordinate expression Φ̃ξρ of Φ̃ which is C∞, i.e., Φ̃ is smooth.

Owing to Propositions 3.1.4 and 3.1.9, we know that, on any subset of a manifold, there exists at
most one embedded submanifold structure.

3.2 Submersions

Let M , B be smooth manifolds of dimensions m, b respectively, with m ≥ b and let

π : M −→ B

be a smooth mapping. If the tangent map of π at a point x ∈ M is surjective, π is said to be a
submersion at x. In such a case, from rank π(x) = dim Im Txπ = dimTπ(x)B = b it follows that
the rank of π is maximal at x. The Rank Theorem 2.2.6 now reads as follows

3.2.1 Proposition. If π is a submersion at x, we can find admissible charts (U , ξ) and (V, η) at
x and π(x), respectively, such that
(o) π(U) ⊂ V
(i) η ◦ π|U = pr1 ◦ ξ (where pr1 :Rb×Rm−b →Rb is the projection onto the first factor).
Conversely, the existence of charts as above implies that π is a submersion in some open neigh-
bourhood of x.

3.2.2 Existence of a local section. Let π be a submersion at x0. For any open neighbourhood
U0 of x0, there exists a smooth mapping

σ : V0 −→ U0

defined on an open neighbourhood V0 of y0 := π(x0) and taking values in U0, such that σ(y0) = x0

and

π ◦ σ = idV0 .

(15) See Proposition 3.1.1.
(16) See footnote (9).
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Proof. Let (U , ξ) and (V, η) be adapted charts at x0 and π(x0), respectively. Notice that, up to
an intersection with U0, we can choose ξ with domain U ⊂ U0. Now consider the ‘local section’ of
the natural projection pr1

ρ : η(V) ⊂Rb −→Rb×Rm−b

defined by putting, for each y ∈ V,

ρ
(
η(y)

)
=
(
η(y), pr2 ◦ ξ(x0)

)
(where pr2 :Rb×Rm−b →Rm−b is the projection onto the second factor). As ρ is continuous and

ρ
(
η(y0)

)
=
(
η ◦ π(x0), pr2 ◦ ξ(x0)

)
=
(
pr1 ◦ ξ(x0), pr2 ◦ ξ(x0)

)
= ξ(x0),

corresponding to the open neighbourhood ξ(U) of ξ(x0), there is an open neighbourhood V0 ⊂ V
of y0, such that

ρ
(
η(V0)

)
⊂ ξ(U).

As a consequence, we can define a smooth mapping σ : V0 → U0 through the composition

σ := ξ−1 ◦ ρ ◦ η
∣∣
V0

We shall show that σ is the required local section of π. First

σ(y0) = ξ−1
(
ρ(η(y0))

)
= ξ−1(ξ(x0)) = x0

Then, for any y ∈ V0,

x := σ(y) = ξ−1
(
ρ(η(y))

)
= ξ−1

(
η(y), pr2 ◦ ξ(x0)

)
on the other hand

x = ξ−1
(
ξ(x)

)
= ξ−1

(
pr1 ◦ ξ(x), pr2 ◦ ξ(x)

)
= ξ−1

(
η ◦ π(x), pr2 ◦ ξ(x)

)
hence (

η ◦ π(x), pr2 ◦ ξ(x)
)

=
(
η(y), pr2 ◦ ξ(x0)

)
⇐⇒ η ◦ π(x) = η(y)

⇐⇒ π(x) = y

that is
x = σ(y) ∈ π−1(y) .

If π is a submersion (i.e., a submersion at every point), the above lemma yields the following

3.2.3 Theorem. A submersion is an open mapping.

Proof. Let π : M → B be a submersion and U0 an open subset of M . We will prove that π(U0) is
an open subset of B, by showing that each point y0 ∈ π(U0) (say y0 = π(x0), with x0 ∈ U0) admits
an open neighbourhood V0 ⊂ π(U0). To this end, it is enough to consider an open neighbourhood
V0 of y0 where a local section σ : V0 → U0 is defined. For each y ∈ V0, we have y = π(σ(y)) with
σ(y) ∈ U0 and then y ∈ π(U0).

As a consequence, any submersion turns into a surjective one as is proved in the following
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3.2.4 Corollary. A submersion induces a submersion onto its own image.

Proof. Let π : M → B be a submersion and π̃ : M → B̃ the induced mapping onto the image
B̃ := π(M). Owing to the above theorem, B̃ is an open submanifold of B and then π̃ is a smooth
mapping (17). Moreover, since π =  ◦ π̃, the chain rule gives Txπ = Tπ̃(x) ◦ Txπ̃ (at each x ∈M).
As a consequence, Tx being an isomorphism at each x ∈ M , rank π̃ = rank π = b = dim B̃.
Therefore π̃ is a submersion.

Let us now consider two smooth manifolds M , B of dimensions m, b respectively, with m > b. Let
us consider, for any point y0 ∈ B, its inverse image π−1(y0) through a smooth mapping π : M → B.
In the non-trivial case π−1(y0) 6= ∅, we have the following classical

3.2.5 Implicit Function Theorem. If π is a submersion in π−1(y0), then π−1(y0) is an embed-
ded submanifold of dimension m− b.
Proof. For each x0 ∈ π−1(y0), there exist adapted charts (satisfying properties (o), (i) stated in
Proposition 3.2.1) (U , ξ) and (V, η) at x0 and y0, respectively. It is

U ∩ π−1(y0) =
{
x ∈ U : π(x) = y0

}
but, if x ∈ U , we have

π(x) = y0 ⇐⇒ η
(
π(x)

)
= η(y0)

⇐⇒ pr1

(
ξ(x)

)
= η(y0) =: c

⇐⇒ ξ(x) ∈ {c}×Rm−b.
So the intersection

U ∩ π−1(y0) =
{
x ∈ U : ξ(x) ∈ {c}×Rm−b

}
= ξ−1

(
ξ(U) ∩

(
{c}×Rm−b

))
= Sm−bξ,c (U)

is an (m− b)-dimensional slice. Now, on the subset of U

Ũ := U ∩ π−1(y0),

define the injective map
ξ̃ := α ◦ ξ|Ũ : Ũ →Rm−b,

where α is the natural diffeomorphism of {c}×Rm−b onto Rm−b. The mapping ξ̃ is an (m−b)–chart
on π−1(y0), subordinate to adapted chart ξ on M . Notice that ξ̃, composition of homeomorphisms,
is a homeomorphism. The collection of all such charts on π−1(y0) is an (m− b)-dimensional atlas
A, whose C∞-differentiability can be checked as follows. If ξ̃′ = α◦ξ|Ũ ′ and ξ̃ = α◦ξ′|Ũ ′ are charts
of A with non-disjoint domains. either transition function, say

ξ′ ◦ ξ−1
∣∣
ξ(U∩U ′) = α ◦ (η′ ◦ η−1) ◦ α−1

∣∣
ξ(U∩U ′)

(composition of smooth mappings), is smooth. It follows that, π−1(y0), equipped with the differ-
ential structure determined by A, is an embedded submanifold of M , since the manifold topology
coincides with subspace topology and at each x ∈ π−1(y0), one can find a distinguished chart (U , ξ)
on M and the subordinate chart (Ũ , ξ̃) on π−1(y0), such that the inclusion map  : π−1(y0) ↪→M
satisfies the properties

(Ũ) ⊂ U , ξ ◦ |Ũ = (ξ̃, c) , c = const.

which make it an immersion (18).

(17) See 3.1.7 and Proposition 3.1.9.
(18) See Proposition 3.1.1.
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I 3.3 Local diffeomorphisms

3.2.6 Proposition. In the hypothesis of the Implicit Function Theorem, at each point x ∈
π−1(y0), the tangent space Tx

(
π−1(y0)

)
is canonically isomorphic to the vector subspace kerTxπ ⊂

TxM .

Proof. It is enough to consider (if j : π−1(y0) ↪→ M is the embedding of π−1(y0) into M) the
tangent map Tx : Txπ−1(y0)→ TxM . On the one hand, Tx is an injective, linear map and then
Tx
(
π−1(y0)

)
is isomorphic to Im Tx. On the other hand, from π ◦  = y0 = const., it follows that

Txπ ◦ Tx = 0

that is
Im Tx ⊂ kerTxπ.

Moreover
dim Im Tx = dimTx

(
π−1(y0)

)
= m− b

dim kerTxπ = dimTxM − rank π(x) = m− b
and then

Im Tx = kerTxπ.

Hence the statement.

3.2.7 Note. From the Implicit Function Theorem, we draw that the collection of the fibres of
a submersion π : M → B , i.e.,

{
π−1(y) , y ∈ B

}
, is a partition of M into (m − b)-dimensional,

embedded submanifolds. The above partition admits a refiniment given by the collection of the
leaves of π, i.e.,

{
L ⊂ M : L is a connected component of a fibre

}
. This is still a partition of M

into connected, (m− b)-dimensional, embedded submanifolds (19).
In general, a k-dimensional foliation F of M (with k < m) is a partition of M into smoothness
preserving, connected, k-dimensional submanifold of M , called leaves of F . If F is a k-dimensional
foliation of B, its lift by a submersion π : M → B, i.e.,

π∗F :=
{
L ⊂M : L is a connected component of the inverse image π−1(L′) of a leaf L′ ∈ F

}
is an (m− b) + k-dimensional foliation of M (20).

3.3 Local diffeomorphisms

Let M , N be smooth manifolds of dimensions m = n and

h : M −→ N

a smooth mapping. If the rank of h is maximal at x ∈M

rank h(x) = m = n,

then h is said to be a local diffeomorphism at x. In such a case h is both an immersion and a
submersion at x, i.e., Txh is bijective. The Rank Theorem 2.2.6 now reads as follows

(19) Note that any leaf is an open subset of a fibre and then a connected, (m−b)-dimensional, embedded
submanifold of M (see local connectedness in Sec.1.1, then 3.1.7 and Remark 3.1.2(ii)).

(20) As to the submanifold structure of a leaf and the lift of a foliation, see H.B.Lawson ‘Foliations’ Bull.
Am. Math. Soc., vol.80, n.3 (1974), p.370 and 373. As to the smoothness preserving character of
a leaf, see F.Brickell and R.S.Clark, op.cit., p.203.
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I 3.3 Local diffeomorphisms

3.3.1 Proposition. If h is a local diffeomorphism at x, we can find admissible charts (U , ξ) and
(V, η) at x and h(x), respectively, such that
(o) h(U) ⊂ V
(i) η ◦ h|U = ξ.
On the other hand, the existence of charts as above implies that h is a local diffeomorphism in
some open neighbourhood of x.

We can justify the name given to a local diffeomorphism (at a point), by reformulating the above
proposition so as to have the following classical

3.3.2 Inverse Function Theorem. A smooth mapping h : M → N is a local diffeomorphism
at x if, and only if, there exixts an open neighbourhood U of x in M such that h(U) is an open
subset of N and h maps U diffeomorphically onto h(U).

Proof. Let h be a local diffeomorphism at x. In this case, if (U , ξ) and (V, η) denote the adapted
charts satisfying the above properties (o) and (i), the image h(U) = η−1

(
ξ(U)

)
is an open subset

of V to which, owing to (o), η can be restricted so that we can assume V = h(U). From (i) we then
draw that the induced mapping h̃|U : U → h(U), is η−1 ◦ ξ, which is a diffeomorphism. Conversely,
let h be a smooth mapping satisying the requirement stated in the theorem. In this case, the
induced diffeomorphism h̃|U : U → h(U) makes diagram

Nh(U)

MU

............................................................................................................................................................................................................................ ........................
............



...................................................................................................................................................................................................................................... ........................
............ ı

.....................................................................................
...
.........
...

h̃|U

.....................................................................................
...
.........
...

h

commutative, which implies that Txh = Th(x) ◦ Txh̃|U ◦ (Txı)−1 is an isomorphism (21).

If a discrete topological subspace of a manifold is called embedded submanifold of zero dimension,
then the above theorem entails the extension of the Implicit Function Theorem to the case m = n,
as follows

3.3.3 Corollary. If h is a local diffeomorphism in h−1(y0), then h−1(y0) is an embedded sub-
manifold of zero dimension.

Proof. Owing to the Inverse Function Theorem, for each x ∈ h−1(y0) there exists an open
neighbourhood U of x such that h|U is injective. This implies that U ∩ h−1(y0) = {x}. Therefore
each singleton is an open subset in the subspace topology of h−1(y0), which is then discrete.

We will now focus on local diffeomorphisms (i.e., mappings which are local diffeomorphisms at
every point).

3.3.4 Corollary. A local diffeomorphism is a diffeomorphism if, and only if, it is bijective.

Proof. A diffeomorphism is, obviously, a bijective local diffeomorphism Conversely, if h : M → N
is a bijective local diffeomorphism, then, owing to the Inverse Function Theorem, it is a smooth
mapping with an inverse mapping h−1 : N → M which admits smooth restrictions

{
h−1|h(U)

}
to

suitably many open subsets {h(U)} to cover N (22).

(21) See 3.1.7(iii).
(22) See Sec.1.2.
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I 3.3 Local diffeomorphisms

3.3.5 Remark. Any injective local diffeomorphism h : M → N determines an open submanifold
h(M) ⊂ N diffeomorphic to M (for the induced mapping h̃ : M → h(M) is a bijective local
diffeomorphism).

Let h : M → N be a surjective smooth mapping such that, for each y ∈ N , there exixts a connected
open neighbourhood V of y that is evenly covered by h – i.e., each connected component of h−1(V)
is mapped diffeomorphically onto V by h (23). We will call h a covering mapping. From the inverse
function theorem, one immediately draws that a covering mapping is a particular type of surjective
local diffeomorphism. It proves to be noticeable in dynamics, owing to the following

3.3.6 Lift theorem. Let h : M → N be a covering mapping. If γ : I → N is a smooth curve,
then, for any x0 ∈ h−1

(
γ(t0)

)
, there exists a unique smooth curve c : I →M that is a lift of γ by

h, i.e., h ◦ c = γ,

I

M

N
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
..................
............

c

................................................................................................................................................................... ............

γ

.....................................................................................
...
.........
...

h

with x0 as initial point at t0, i.e., c(t0) = x0.

Proof. Decompose the open interval I into countably many subintervals {Ii} such that
(i) t0 ∈ I0;
(ii) only any two consecutive subintervals Ii, Ii+1 have non-empty intersection;
(iii) for any index i, sub-orbit γ(Ii) is contained in an evenly covered, connected, open subset
Vi ⊂ N .
Consider the smooth lift of γ|I0

c0 :=
(
h̃|U0

)−1

◦ γ|I0

with initial point x0. If t1 ∈ I0 ∩ I1, repeat the above uniquely determined construction replacing
x0 by x1 = c0(t1) ∈ h−1

(
γ(t1)

)
, so as to have a smooth lift c1 of γ|I1 with initial point x1. Then,

continue by induction on integers i’s. Now, any two consecutive lifts ci, ci+1 agree on Ii ∩ Ii+1, in
fact, notice that ci(Ii∩Ii+1) is a connected subset of h−1(Vi+1) containing xi+1 and then contained
in Ui+1. As a consequence, we can evaluate(

h̃|Ui+1

)
◦ ci|Ii∩Ii+1 = h ◦ ci|Ii∩Ii+1 = γ|Ii∩Ii+1 =

(
h̃|Ui+1

)
◦ ci+1|Ii∩Ii+1

whence
ci|Ii∩Ii+1 = ci+1|Ii∩Ii+1 .

Therefore c : I →M , defined by c|Ii = ci , is the unique lift we were searching for.

(23) Recall, e.g., the classical mapping

θ ∈R 7→
(
cos

2π
δ
θ, sin

2π
δ
θ

)
∈ S1 (δ > 0)

of R onto the unit circle S1 of Euclidean plane R2.
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I 4.1 Fibre bundles

4 Vector bundles

4.1 Fibre bundles

Let π : M → B be a submersion. As any submersion naturally turns into a surjective one (24), we
directly assume π to be surjective. We will also assume dimM > dimB, in order to have – through
the fibres of π – a partition of M into embedded submanifolds (25), whose collection bijectively
corresponds to B. In this case, M (fibred manifold) can be set-theoretically viewed as the union
of disjoint subsets (fibres) – each one endowed with a differential structure – whose collection B
(base or quotient manifold) carries a differential structure as well. From the differential structures
of the fibres and the base, one obtains the differential structure of M , containing charts which give
to any point its coordinates in the fibre where it lies, plus the coordinates of the fibre itself. With
this image in mind, π is said to be a (smooth) fibre bundle.
Let π : M → B and ρ : N → C be fibre bundles. A bundle morphism from π to ρ is a pair (f, g)
of smooth mappings which make the following diagram commutative

CB

NM

.............................................................................................................................................................................................................................................. ............

g

.............................................................................................................................................................................................................................................. ............
f

.....................................................................................
...
.........
...

π

.....................................................................................
...
.........
...

ρ

Clearly, commutativity property, ρ◦f = g ◦π, is completlely equivalent to the fibre correspondence
law, for any y ∈ B,

f
(
π−1(y)

)
⊂ ρ−1

(
g(y)

)
.

4.1.1 Proposition. A bundle morphism induces a smooth mapping between any two fibres which
correspond to each other.

Proof. Just notice that, for any y ∈ B, the restriction fy := f |π−1(y) is a smooth mapping, with
values in ρ−1

(
g(y)

)
(embedded submanifold of N). Consequently, owing to Proposition 3.1.9., we

have that the induced mapping f̃y : π−1(y)→ ρ−1
(
g(y)

)
is smooth.

A bundle isomorphism from π to ρ is a bundle morphism (f, g) set up by diffeomorphisms. From
the above proposition, one immediately draws that

4.1.2 Corollary. A bundle isomorphism induces a diffeomorphism between any two fibres which
correspond to each other.

Now let π : M → B, ρ : N → C be fibre bundles such that
(i) M is a submanifold of N
(ii) B is a submanifold of C
(iii) the pair of immersions is a bundle morphism from π to ρ.
In such a case, π is said to be a subbundle of ρ over B. The name is due to the following

(24) See Corollary 3.2.4.
(25) See Implicit Functions Thorem 3.2.5.
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I 4.1 Fibre bundles

4.1.3 Proposition. If π : M → B is a subbundle of ρ : N → C, then, for each y ∈ B, π−1(y) is
a submanifold of ρ−1(y).

Proof. First we notice that π−1(y) – as well as ρ−1(y) – is a submanifold of N and π−1(y) ⊂
ρ−1(y). Then, from commutative diagram

π−1(y) N

ρ−1(y)

.................................................................................................................................................................................... ........................
............ ı

.......................................................................................................................................... .........
...

ı̃

................................................................................................................................................
..
............



(where ı,  are immersions and ı̃ is smooth) we draw that

rank ı = rank ( ◦ ı̃) = rank ı̃,

that is, ı̃ is an immersion.

4.1.4 Remark. It is easy to check – through simple set-theoretical considerations on subspace
topologies – that, if M is embedded into N , so is π−1(y) into ρ−1(y).

Let π : M → B be a fibre bundle, V an open subset of B and π−1(V) the corresponding open subset
of M . The induced mapping π̃|π−1(V) is a subbundle of π over V, whose fibres are the same as π’s
over V. Let us now consider a product bundle pr1 : B × F → B, whose fibres are all canonically
diffeomorphic to a given type fibre F . For any open subset V ⊂ B, the above procedure yields a
product subbundle of pr1 over V, p̃r1|V×F : V × F → V. If there exixts a bundle isomorphism
(f, idV),

π−1(V) V × F

V V

............................................................................................................................................................................................ ............
f

.....................................................................................
...
.........
...

π̃|π−1(V)

.....................................................................................
...
.........
...

p̃r1|V×F

.............................................................................................................................................................................................................................................. ............

idV

then all the fibres of π over V are diffeomorphic – through f – to the type fibre F . In such a case,
f is called a local trivialization of π. Most of the fibre bundles we will be dealing with, are locally
trivial (i.e., each of them admits a local trivialization around each point of its base).
We shall now introduce a particular type of bundle morphism. Let N be a smooth manifold,
π : M → B a fibre bundle and (f, g) a bundle morphism from idN to π. The diagram

N

M

B
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

..................
............

f

..................................................................................................................................................................................................................... ............

g

.....................................................................................
...
.........
...

π

is then commutative, π ◦ f = g, and then, for any x ∈ N ,

f(x) ∈ π−1
(
g(x)

)
(i.e. f(x) belongs to the fibre of π over g(x)). In such a case, f is said to be a section of π along g.
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I 4.2 Tangent bundle

Remarkable examples of sections are the following.
(i) Let I ⊂R be an open interval and γ : I → B a smooth curve in B. A section of π along γ is
then a smooth curve c : I →M , which projects onto γ by π, i.e.,

I

M

B
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

..................
............

c

..................................................................................................................................................................................................................... ............

γ

.....................................................................................
...
.........
...

π

π
(
c(t)
)

= γ(t) ∀t ∈ I .

In this case, c is called a lift of γ by π.
(ii) Let j : S ↪→ B be the immersion of a submanifold S into B. A section of π along j is then a
smooth mapping σ : S →M , such that

S

M

B
..................

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

..................
.....................
............

σ

............................................................................................................................................................................................................. ........................
............

j

.....................................................................................
...
.........
...

π

σ(x) ∈ π−1(x) ∀x ∈ S

In this case, σ is called a section of π over S ⊂ B. If S is an open submanifold of B, then σ is a
local section of π (26).

Lastly we introduce the following, structurally enriched type of fibre bundle. Let π : M → B be a
fibre bundle such that, for each y ∈ B,
(i) π−1(y) is a real vector space;
(ii) the embedded submanifold structure of π−1(y) coincides with the differential structure deter-
mined by the vector space structure.
We will call (M,π,B) a vector bundle. A vector bundle morphism (between two vector bundles)
is a bundle morphism that induces a linear mapping between any two fibres which correspond to
each other. A vector bundle isomorphism is a vector bundle morphism set up by diffeomorphisms
(it induces a linear isomorphism between any two fibres which correspond to each other). A vector
(resp., affine) subbundle of a vector bundle π, is a subbundle of π whose fibres are vector (resp.,
affine) subspaces of the corresponding fibres of π. A vector bundle is locally trivial if, around each
point of its base, it admits a local trivialization (onto a product vector bundle) defined by a vector
bundle isomorphism.

4.2 Tangent bundle

Let M be an m-dimensional smooth manifold. Recall that, owing to Proposition 2.1.3 and Theorem
2.1.4, for any x ∈ M , the tangent space TxM , is an m-dimensional vector space and, if ξ =
(xi)i=1,...,m is an admissible chart at x, then the coordinate vectors

(
∂
∂xi

∣∣
x

)
form a basis of TxM .

The corresponding isomorphism ξ′x : TxM →Rm is given, for each v ∈ TxM , by

ξ′x(v) =
(
v(xi)

)
i=1,...,m

.

(26) See 3.2.2.
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Now let TM be the union of all the tangent spaces of M and

τM : TM →M

its natural projection onto M , defined by

τ−1
M (x) := TxM,

for any x ∈ M . Any admissible chart (U , ξ) on M , determines a 2m-dimensional natural chart
(U1, ξ1) on TM defined on

U1 := τ−1
M (U)

and given by

ξ1 : U1 −→ ξ(U)×Rm : v = vi
∂

∂xi

∣∣∣∣
x

7→ ξ1(v) =
(
ξ(x), ξ′x(v)

)
.

Natural charts set up a 2m-dimensional atlas on TM , whose C∞-differentiability is shown in the
following

4.2.1 Lemma. The atlas of natural charts on TM is C∞.

Proof. Let ξ = (x1, . . . , xm) : U →Rm and η = (x1′ , . . . , xm
′
) : V →Rm be admissible charts on

M , with U ∩ V 6= ∅. If (U1, ξ1) and (V1, η1) are the corresponding natural charts on TM , each
transition function, say

η1 ◦ (ξ1)−1 : ξ(U ∩ V)×Rm −→ η(U ∩ V)×Rm : (x̄, v̄) = (xi, vi) 7→ (xj
′
, vj
′
)

has smooth projections, given (for any j′ = 1, . . . ,m) by

xj
′

= prj
′
◦ η1 ◦

(
ξ1
)−1(x̄, v̄) = prj

′
◦ η ◦ τM

(
vi

∂

∂xi

∣∣∣∣
ξ−1(x̄)

)
= xj

′(
ξ−1(x̄)

)
and

vj
′

= prm+j′ ◦ η1 ◦
(
ξ1
)−1(x̄, v̄) = prj

′
◦ η′

(
vi

∂

∂xi

∣∣∣∣
ξ−1(x̄)

)

=

(
vi

∂

∂xi

∣∣∣∣
ξ−1(x̄)

)
(xj
′
) ,

i.e.,

vj
′

= vi
∂xj

′

∂xi

∣∣∣∣∣
ξ−1(x̄)

(contravariant transformation law of the components of a vector).

The atlas of natural charts then determines a natural differential structure on TM .

4.2.2 Proposition. If M be a Hausdorff and second-countable, differential manifold, then TM
is Hausdorff and second-countable too.

Proof. First notice that
(i) any two points of TM can be separated by two disjoint coordinate domains;
(ii) TM admit a countable atlas of natural charts.
The thesis then easily follows.

We will call τM , or TM endowed with its natural differential structure, the tangent bundle of M .
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I 4.2 Tangent bundle

4.2.3 Theorem. τM : TM →M is a locally trivial vector bundle, with type fibre Rm.

Proof. For each x ∈M , let (U , ξ) be an admissible chart on M at x and (U1, ξ1) the corresponding
natural chart on TM .
(i) On the one hand, from the very definition of ξ1, it follows that τM is a submersion and then
a fibre bundle.
(ii) On the other hand, the embedded submanifold structure of fibre τ−1

M (x), is the one containing
the global chart ξ′x subordinate to ξ1. Also the differential structure determined by the vector
structure of τ−1

M (x) is the one containing the global chart ξ′x defined by the coordinate vectors. So
τM is a vector bundle.
(iii) Lastly, check that (τ̃M |U1 , ξ1) : U1 → U×Rm is a local trivialization of τM at x.

4.2.4 Example. If M =Rm and ξ = idRm , then ξ1 = (τ, ξ′) is a canonical, global trivialization
of TRm .

Let Φ : M → N be a smooth mapping. We will collect all the tangent maps of Φ at the different
points of M , into one vector bundle morphism. Define

TΦ : TM −→ TN

by putting, for each x ∈M (27),

TΦ|TxM = TxΦ : TxM −→ TΦ(x)N.

We call TΦ the tangent map of Φ.

4.2.5 Proposition. (TΦ,Φ) is a vector bundle morphism from τM to τN .

Proof. From the very definition of TΦ, it follows that the diagram

NM

TNTM

.................................................................................................................................................................................. ............

Φ

....................................................................................................................................................................................... ............TΦ
............................................................
...
.........
...

τM

............................................................
...
.........
...
τN

is commutative and the induced mapping TxΦ, between any two fibres which correspond to each
other, is linear. So we only have to prove that TΦ is a smooth mapping. To this end, for any
x ∈ M , let (U , ξ) and (V, η) be admissible charts at x and Φ(x), with Φ(U) ⊂ V. In the natural
charts (U1, ξ1) and (V1, η1), the coordinate expression of TΦ

η1 ◦ TΦ ◦ (ξ1)−1 : ξ(U)×Rm −→ η(V)×Rn : (x̄, v̄) = (xi, vi) 7→ (yα, ωα)

is well defined and has smooth projections, given (for any α = 1, . . . , n) by

η(V)×Rnξ(U)×Rm

V1U1

Rn

η(V)

............................................................................................................................................................................. ............

(TΦ)η1ξ1

......................................................................................................................................................................................................................................... ............
TΦ|U1

........................................................................
...
.........
...

ξ1

........................................................................
...
.........
...
η1

.......................................................... ............
pr2

...................................
...
.........
...pr1

(27) See Sec.2.3.
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yα = prα ◦ pr1 ◦ η1 ◦ TΦ ◦
(
ξ1
)−1(x̄, v̄) = prα ◦ η ◦ τN ◦ TΦ

(
vi

∂

∂xi

∣∣∣∣
ξ−1(x̄)

)

= yα ◦ Φ ◦ τM

(
vi

∂

∂xi

∣∣∣∣
ξ−1(x̄)

)
= yα

(
Φ(ξ−1(x̄))

)
,

and

ωα = prα ◦ pr2 ◦ η1 ◦ TΦ ◦
(
ξ1
)−1(x̄, v̄) = prα ◦ η′Φ(x)

(
Tξ−1(x̄)Φ · vi

∂

∂xi

∣∣∣∣
ξ−1(x̄)

)

=

(
Tξ−1(x̄)Φ · vi

∂

∂xi

∣∣∣∣
ξ−1(x̄)

)
(yα)

= vi
∂(yα ◦ Φ)

∂xi

∣∣∣∣
ξ−1(x̄)

The smoothness of all the above functions implies the smoothness of TΦ.

Notice that, if Φ is a diffeomorphism, then TΦ is a diffeomorphism too (for it admits of a smooth
inverse mapping) and therefore (TΦ,Φ) is a vector bundle isomorphism.

Let X be a differentiable section of tangent bundle τM over M , i.e., a smooth mapping

X : M −→ TM : x 7→ Xx ,

such that
τM ◦X = idM .

The section X is called a vector field on M .

4.2.6 Coordinate expression.
Let (U , ξ) be an admissible chart on M , and (U1, ξ1) the corresponding natural chart on TM . The
coordinate expression of the vector field X

ξ1 ◦X ◦ ξ−1 : ξ(U) −→ ξ(U)×Rm

has projections given (for any i = 1, . . . ,m) by

pri ◦ ξ1 ◦X ◦ ξ−1(x̄) = pri ◦ ξ ◦ τM
(
Xξ−1(x̄)

)
= pri ◦ ξ ◦ ξ−1(x̄)

= pri(x̄)

(1)

and
prm+i ◦ ξ1 ◦X ◦ ξ−1(x̄) = pri ◦ ξ′ξ−1(x̄) ◦X ◦ ξ

−1(x̄)

= Xi ◦ ξ−1(x̄)
(2)

where
Xi : U −→R : x 7→ Xi(x) := Xi

x = Xx(xi)

are the components of X in ξ. The first block (1) of projections reduces to
(
pri|ξ(U)

)
, which are

smooth. The second block (2) of projections reduces to (Xi◦ξ−1), which are the coordinate expres-
sions of components (Xi). Therefore, the smoothness of X implies the smothness of components
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I 4.2 Tangent bundle

(Xi) – in any admissible chart. Conversely, the smoothness of components (Xi) – in suitably many
admissible charts – ensures the smoothness of X.

We will denote the set of all the vector fields on M by χ(M). For any X,Y ∈ χ(M) and f ∈
C∞(M), the sum X+Y and the multiplication fX (pointwise defined) are both in χ(M) and give
χ(M) the structure of a C∞(M)-module. Let W be an open submanifold of M . Owing to the
canonical isomorphism TxW = TxM (for each x ∈ W ), a vector field on W can be viewed as a
local vector field on M , i.e., a local section of τM , and vice versa. For instance, if U is the domain
of an admissible chart ξ = (xi)i=1,...,m on M , on the one hand, by putting

∂

∂xi
: x ∈ U −→ ∂

∂xi

∣∣∣∣
x

∈ TU

we have ∂
∂xi ∈ χ(U), and on the other hand, from any X ∈ χ(M), we obtain X|U ∈ χ(U), related

to the previous coordinate vector fields by the local decomposition law

X|U = Xi ∂

∂xi
.

The directional derivative of a function f ∈ C∞(M) along each value of a vector field X ∈ χ(M),
defines the Lie derivative of f along X, given by (28)

Xf : x ∈M → Xxf ∈R.

On the domain U of any admissible chart, we have

(Xf)|U = X|Uf |U =
(
Xi ∂

∂xi

)
f |U = Xi ∂f

∂xi
∈ C∞(U)

and then Xf ∈ C∞(M). A local example of Lie derivative is

X|U xi = Xi.

The Lie bracket of X,Y ∈ χ(M), is the vector field

[X,Y ] : x ∈M 7→ [X,Y ]x ∈ TxM ⊂ TM

defined, for any f ∈ C∞(M), by

[X,Y ]xf := Xx(Y f)− Yx(Xf).

The Lie derivative along [X,Y ] is the commutator of Lie derivatives

[X,Y ]f = X(Y f)− Y (Xf).

On the domain U of any admissible chart, we have

[X,Y ]i = [X,Y ]|Ux
i = X|U (Y|Ux

i)− Y|U (X|Ux
i) = X|U (Y i)− Y|U (Xi)

= Xj ∂Y
i

∂xj
− Y j ∂X

i

∂xj
∈ C∞(U)

(28) If W ia an open subset of M , then the Lie derivative along X ∈ χ(M) can obviously act on C∞(W )
by putting, for any g ∈ C∞(W ) , Xg := (X|W )g.
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I 4.2 Tangent bundle

and then
[X,Y ] ∈ χ(M) .

One can check that Lie bracket

[ , ] : χ(M)× χ(M) −→ χ(M)

is an R-bilinear and skew-symmetric operation, satisfying (for any X,Y, Z ∈ χ(M)) the Jacobi
identity [

X, [Y,Z]
]

+
[
Y, [Z,X]

]
+
[
Z, [X,Y ]

]
= 0 .

Then χ(M), as a real vector space endowed with the Lie bracket, is a real Lie algebra.

Finally, let Φ : M → N be a smooth mapping and X ∈ χ(M) , Y ∈ χ(N). The vector fields X
and Y are said to be Φ-related to each other, X Φ∼Y , if the diagram

NM

TNTM

.................................................................................................................................................................................. ............

Φ

....................................................................................................................................................................................... ............TΦ

........

........

........

........

........

........

...............

............

X
........
........
........
........
........
........
...............
............

Y

is commutative, i.e.,
TΦ ◦X = Y ◦ Φ.

4.2.7 Lemma. The vector fields X and Y are Φ-related to each other if, and only if, X(g ◦Φ) =
Y g ◦ Φ, for all g ∈ C∞(N).

Proof. For all x ∈M and g ∈ C∞(N), it is

X
Φ∼Y ⇐⇒ TΦ ◦X = Y ◦ Φ⇐⇒ TxΦ ·Xx = YΦ(x) ⇐⇒ (TxΦ ·Xx)g = YΦ(x)g

⇐⇒ Xx(g ◦ Φ) = YΦ(x)g ⇐⇒
(
X(g ◦ Φ)

)
(x) =

(
Y g ◦ Φ

)
(x)

⇐⇒ X(g ◦ Φ) = Y g ◦ Φ.

4.2.8 Proposition. If X1
Φ∼Y1 and X2

Φ∼Y2, then [X1, X2]Φ∼[Y1, Y2].

Proof. For any g ∈ C∞(N), we have

[X1, X2](g ◦ Φ) = X1

(
X2(g ◦ Φ)

)
−X2

(
X1(g ◦ Φ)

)
= X1(Y2g ◦ Φ)−X2(Y1g ◦ Φ)

= Y1(Y2g) ◦ Φ− Y2(Y1g) ◦ Φ = [Y1, Y2]g ◦ Φ.

4.2.9 Distributions. A k-dimensional distribution (29) on M is a vector subbundle V of TM over
M , with k-dimensional fibres Vx ⊂ TxM . An example is given by the collection of vector subspaces
spanned by the values of k R-linearly independent vector fields on M . An integral manifold of V
is any k-dimensional, connected submanifold L ↪→ M s.t., for each x ∈ L, Txj(TxL) = Vx. The
distribution V is said to be integrable if, for each x ∈M , there exists one, and only one, maximal
integral manifold, leaf, containing x. In this case, any integral manifold is contained in one leaf
and is an open subset of it. The set of all leaves is a k-dimensional foliation of M . A vector field
X ∈ χ(M) belongs to V if Xx ∈ Vx for each x ∈M . The dfistribution V is said to be involutive if,
for any two nowhere-vanishing vector fields X, Y belonging to V , the commutator [X,Y ] belongs to
V too. Involutiveness is a necessary and sufficient condition of integrability (Frobenius theorem).

(29) See Brickell and R.S.Clark, Differentiable Manifolds, (1970), ch.11.
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I 4.3 Cotangent bundle

4.3 Cotangent bundle

Let us consider, at any point x ∈M , the cotangent space T ∗xM , dual of TxM , whose elements will
be called covectors at x. Let ξ = (xi)i=1,...,m be an admissible chart at x. From Remark 2.2.5, it
follows that

dxx
i · v = v(xi) , ∀v ∈ TxM.

As a consequence, the coordinate covectors {dxxi} form the dual basis in T ∗xM of basis { ∂
∂xi |x} in

TxM which corresponds to the isomorphism

ξ̃x : T ∗xM −→Rm

given, for each α ∈ T ∗xM , by

ξ̃x(α) := (αi) =
(
α · ∂

∂xi

∣∣∣∣
x

)
.

Let T ∗M be the (disjoint) union of all the cotangent spaces of M and πM : T ∗M →M its natural
projection onto M , defined by

π−1
M (x) := T ∗xM ∀x ∈M

Any m-dimensional admissible chart (U , ξ) on M , determines a 2m-dimensional natural chart
(U1, ξ1) on T ∗M defined on

U1 := π−1
M (U),

and given by
ξ1 : U1 −→ ξ(U)×Rm : α = αidxx

i 7→ ξ1(α) =
(
ξ(x), ξ̃x(α)

)
.

Natural charts set up a 2m-dimensional atlas on T ∗M , whose C∞-differentiability is shown in the
following

4.3.1 Lemma. The atlas of natural charts on T ∗M is C∞.

Proof. Let ξ = (x1, . . . , xm) : U →Rm and η = (y1′ , . . . , ym
′
) : V →Rm, be admissible charts on

M , with U ∩ V 6= ∅. If (U1, ξ1) and (V1, η1) are the corresponding natural charts on T ∗M , each
transition function, say

η1 ◦ (ξ1)−1 : ξ(U ∩ V)×Rm −→ η(U ∩ V)×Rm : (x̄, ᾱ) = (xi, αi) 7→ (yj
′
, αj′)

has smooth projections (30), given (for any j′ = 1, . . . ,m) by

yj
′

= prj
′
◦ η1 ◦

(
ξ1
)−1(x̄, ᾱ) = prj

′
◦ η ◦ πM

(
αidξ−1(ᾱ)x

i
)

= yj
′(
ξ−1(ᾱ)

)
,

and
αj′ = prm+j′ ◦ η1 ◦

(
ξ1
)−1(x̄, ᾱ) = prj′ ◦ η̃ξ−1(x̄)

(
αidξ−1(x̄)x

i
)

=
(
αidξ−1(x̄)x

i
)( ∂

∂yj′

∣∣∣∣
ξ−1(x̄)

)

(30) As for the smoothness, see the proof of Lemma 4.2.1.
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I 4.3 Cotangent bundle

i.e.,

αj′ = αi
∂xi

∂yj′

∣∣∣∣
ξ−1(x̄)

(covariant transformation law of the components of a covector).

The atlas of natural charts then determines a natural differential structure on T ∗M (with a Haus-
dorff and second-countable topology (31)). Endowed with its natural differential structure, T ∗M
is called the cotangent bundle of M .

4.3.2 Theorem. πM : T ∗M →M is a locally trivial vector bundle, with type fibre Rm (32).

Let θ be a differentiable section of the cotangent bundle πM over M , i.e., a smooth mapping

θ : M −→ T ∗M : x 7→ θx ,

such that
πM ◦ θ = idM .

The section θ is called a covector field on M .

4.3.3 Coordinate expression.
Let (U , ξ) be an admissible chart on M , and (U1, ξ1) the corresponding natural chart on T ∗M .
The coordinate expression of the covector field θ,

ξ1 ◦ θ ◦ ξ−1 : ξ(U) −→ ξ(U)×Rm ,

has projections given (for any i = 1, . . . ,m) by

pri ◦ ξ1 ◦ θ ◦ ξ−1(x̄) = pri ◦ ξ ◦ πM
(
θξ−1(x̄)

)
= pri ◦ ξ ◦ ξ−1(x̄)

= pri(x̄)

(3)

and
prm+i ◦ ξ1 ◦ θ ◦ ξ−1(x̄) = pri ◦ ξ̃ ◦ θ ◦ ξ−1(x̄)

= θi ◦ ξ−1(x̄)
(4)

where

θi : U −→R : x 7→ θi(x) := (θx)i = θx
∂

∂xi

∣∣∣∣
x

are the components of θ in ξ. The first block (3) of projections reduces to
(
pri|ξ(U)

)
, which

are smooth. The second block (4) of projections reduces to (θi ◦ ξ−1), which are the coordinate
expressions of components (θi). Therefore, the smoothness of θ implies the smothness of the
components (θi) – in any admissible chart. Conversely, the smoothness of the components (θi) –
in suitably many admissible charts – ensures the smoothness of θ.

(31) See Proposition 4.2.2.
(32) See the proof of Theorem 4.2.3.
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4.3.4 Example. Let f ∈ C∞(M). The differential df (33) is the covector field

df : x ∈M −→ dxf ∈ T ∗xM ⊂ T ∗M,

whose smoothness is ensured by the smoothness of its components in any admissible chart (U , ξ),
given by

(df)i:U −→R : x 7→ dxf

(
∂

∂xi

∣∣∣∣
x

)
=

∂f

∂xi

∣∣∣∣
x

that is
(df)i =

∂f

∂xi
.

We will denote the set of all the covector fields on M by χ∗(M) . For any θ, θ′ ∈ χ∗(M) and
f ∈ C∞(M), the sum θ + θ′ and the multiplication fθ (pointwise defined) are both in χ∗(M) and
give χ∗(M) the structure of a C∞(M)-module. Let W be an open submanifold of M . Owing to
the canonical isomorphism T ∗xW = T ∗xM (for each x ∈ W ), a covector field on W can be viewed
as a local covector field on M , i.e., a local section of πM , and vice versa. For instance, if U is the
domain of an admissible chart ξ = (xi)i=1,...,m on M , on the one hand, by putting

dxi : x ∈ U −→ dxx
i ∈ T ∗U

we have dxi ∈ χ∗(U), and on the other hand, from any θ ∈ χ∗(M), we obtain θ|U ∈ χ∗(U), related
to the previous coordinate covector fields by the local decomposition law

θ|U = θidx
i .

The pointwise interaction between a covector field θ ∈ χ∗(M) and a vector field X ∈ χ(M), defines
the pairing

θX : x ∈M −→ θxXx ∈R .

On the domain U of an admissible chart ξ, we have

(θX)|U = θ|UX|U = (θidxi)
(
Xj ∂

∂xj

)
= θiX

j

(
dxi

∂

∂xj

)
= θiX

jδij

= θiX
i ∈ C∞(U)

and then
θX ∈ C∞(M) .

An example of pairing is the Lie derivative

Xf = dfX .

Local examples of pairings are the components of a vector or covector field

Xi = dxiX|U

θi = θ|U
∂

∂xi
.

(33) See Remark 2.2.5(i).
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4.4 Tensor bundles

In this section we will embody tangent vectors and covectors in the general context of tensor
calculus.

Let x ∈M and let r, s be non-negative integers. For r = s = 0, put

(T 0
0M)x = {x}×R

and, in any other case, let (T rsM)x denote the set of all the R-multilinear forms of the following
type

A : T ∗xM × . . .× T ∗xM︸ ︷︷ ︸
r times

×TxM × . . .× TxM︸ ︷︷ ︸
s times

−→R.

Notice that, for r = 0 and s = 1, we have, up to a canonical isomorphism,

(T 0
1M)x = T ∗xM

and , for r = 1 and s = 0, we have

(T 1
0M)x = T ∗∗x M = TxM .

In any case, (T rsM)x is called the
(
r
s

)
-tensor space at x, its elements being called (r times con-

travariant and s times covariant) tensors at x. Sum and multiplication by real numbers are natural
operations in (T rsM)x, which is so given the structure of a vector space. Another useful operation
on tensors is the tensor product, which acts on a pair A ∈ (T rsM)x , B ∈ (T r

′

s′M)x and yields
A⊗ B ∈ (T r+r

′

s+s′M)x given by ordinary multiplication AB if r = s = 0 or r′ = s′ = 0, and, in any
other case, by

A⊗B (α1, . . . αr, β1, . . . βr
′
, u1, . . . us, v1, . . . vs′) := A (α1, . . . αr, u1, . . . us)B (β1, . . . βr

′
, v1, . . . vs

′
)

In particular, if ξ = (xi)1,...,m is an admissible chart at x, then the system of mr+s coordinate
tensor products (

∂

∂xi1

∣∣∣∣
x

⊗ . . .⊗ ∂

∂xir

∣∣∣∣
x

⊗ dxxj1 ⊗ . . .⊗ dxxjs
)

(5)

is a basis of (T rsM)x, as is shown in the following

4.4.1 Proposition. Any tensor A ∈ (T rsM)x can be uniquely expressed as a linear combination

A = Ai1...irj1...js

∂

∂xi1

∣∣∣∣
x

⊗ . . .⊗ ∂

∂xir

∣∣∣∣
x

⊗ dxxj1 ⊗ . . .⊗ dxxjs

with components

Ai1...irj1...js
:= A

(
dxx

i1 , . . . , dxx
ir
∣∣ ∂

∂xj1

∣∣∣∣
x

, . . . ,
∂

∂xjs

∣∣∣∣
x

)
.

Proof. (i) For each

(α1, . . . αr, u1, . . . us) ∈ T ∗xM × . . .× T ∗xM︸ ︷︷ ︸
r times

×TxM × . . .× TxM︸ ︷︷ ︸
s times
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we have

A (α1, . . . αr, u1, . . . us) =

= A

(
α1
i1dxx

i1 , . . . , αrirdxx
ir , uj11

∂

∂xj1

∣∣∣∣
x

, . . . , ujss
∂

∂xjs

∣∣∣∣
x

)
= Ai1...irj1...js

α1
i1 . . . α

r
ir u

j1
1 . . . ujss

= Ai1...irj1...js
α1

(
∂

∂xi1

∣∣∣∣
x

)
. . . αr

(
∂

∂xir

∣∣∣∣
x

)
dxx

j1(u1) . . . dxxjs(us)

=
(
Ai1...irj1...js

∂

∂xi1

∣∣∣∣
x

⊗ . . .⊗ ∂

∂xir

∣∣∣∣
x

⊗ dxxj1 ⊗ . . .⊗ dxxjs
)

(α1, . . . αr, u1, . . . us),

whence the required decomposition of A.
(ii) The uniqueness of the above decomposition is due to the linear independence of the coordinate
tensor products. This can be checked by evaluating a vanishing linear combination

Ai1...irj1...js

(
∂

∂xi1

∣∣∣∣
x

⊗ . . .⊗ ∂

∂xir

∣∣∣∣
x

⊗ dxxj1 ⊗ . . .⊗ dxxjs
)

= 0

on (
dxx

h1 , . . . , dxx
hr ,

∂

∂xk1

∣∣∣∣
x

, . . . ,
∂

∂xks

∣∣∣∣
x

)
.

We obtain
Ai1...irj1...js

δh1
i1
. . . δhrir δ

j1
k1
. . . δjsks = 0

that is
Ah1...hr
k1...ks

= 0

for all the values of the indexes.

Owing to the above proposiition, dim
(
T rsM

)
x

= mr+s and basis (5) of
(
T rsM

)
x

corresponds to
the isomorphism

ξ̄x :
(
T rsM

)
x
−→Rm

r+s

given, for any A ∈
(
T rsM

)
x
, by

ξ̄x(A) :=

(
A

(
dxx

i1 , . . . , dxx
ir ,

∂

∂xj1

∣∣∣∣
p

, . . . ,
∂

∂xjs

∣∣∣∣
x

))

(for r = s = 0, just put ξ̄x := idR).
Now let T rsM be the (disjoint) union of all the

(
r
s

)
-tensor spaces of M . Notice that

T 0
0M = M×R , T 1

0M = TM , T 0
1M = T ∗M.

Let
τ rs M : T rsM −→M

be the natural projection of T rsM onto M , defined by

(τ rs M )−1(x) :=
(
T rsM

)
x

∀x ∈M.
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Any admissible chart (U , ξ) on M , determines a (m+mr+s)-natural chart on T rsM defined on

Urs := (τ rs M )−1(U)

and given by
ξrs : Urs −→ ξ(U)×Rm

r+s

A = Ai1...irj1...js

(
∂

∂xi1

∣∣∣∣
x

⊗ . . .⊗ ∂

∂xir

∣∣∣∣
x

⊗ dxxj1 ⊗ . . .⊗ dxxjs
)
7→ ξrs(A) =

(
ξ(x), ξ̄x(A)

)
.

Natural charts set up a (m+mr+s)-dimensional atlas on T rsM , whose C∞-differentiability is shown
in the following

4.4.2 Lemma. The atlas of natural charts on T rsM is C∞.

Proof. Let ξ = (x1, . . . , xm) : U →Rm and η = (y1′ , . . . , ym
′
) : V →Rm be admissible charts on

M , with U ∩ V 6= ∅. If (Urs , ξrs) and (Vrs , ηrs) are the corresponding natural charts on T rsM , each
transition function, say

ηrs ◦ (ξrs)−1 : ξ(U ∩ V)×Rm
r+s
−→ η(U ∩ V)×Rm

r+s
: (x̄, Ā) =

(
xi, Ai1...irj1...js

)
7→
(
yj
′
, A

i′1...i
′
r

j′1...j
′
s

)
has smooth projections (34), given (for any j′ = 1, . . . ,m) by

yj
′

= uj
′
◦ pr1 ◦ ηrs ◦

(
ξrs
)−1(x̄, Ā)

= uj
′
◦ η ◦ σ

(
Ai1...irj1...js

(
∂

∂xi1

∣∣∣∣
x

⊗ . . .⊗ ∂

∂xir

∣∣∣∣
x

⊗ dxxj1 ⊗ . . .⊗ dxxjs
))

= yj
′(
ξ−1(x̄)

)
,

and (for any i′1 . . . i
′
r , j

′
1 . . . j

′
s = 1, . . . ,m)

A
i′1...i

′
r

j′1...j
′
s

= u
i′1...i

′
r

j′1...j
′
s
◦ pr2 ◦ ηrs ◦

(
ξrs
)−1(x̄, Ā)

= u
i′1...i

′
r

j′1...j
′
s
◦ η̄ξ−1(x̄)

(
Ai1...irj1...js

∂

∂xi1

∣∣∣∣
ξ−1(x̄)

⊗ . . .⊗ ∂

∂xir

∣∣∣∣
ξ−1(x̄)

⊗ dξ−1(x̄)x
j1 ⊗ . . .⊗ dξ−1(x̄)x

js

)

=

(
Ai1...irj1...js

∂

∂xi1

∣∣∣∣
ξ−1(x̄)

⊗ . . .⊗ ∂

∂xir

∣∣∣∣
ξ−1(x̄)

⊗ dξ−1(x̄)x
j1 ⊗ . . .⊗ dξ−1(x̄)x

js

)
(
dξ−1(x̄)y

j′1 ⊗ . . .⊗ dξ−1(x̄)y
j′s ⊗ ∂

∂yi
′
1

∣∣∣∣
ξ−1(x̄)

⊗ . . .⊗ ∂

∂yi
′
r

∣∣∣∣
ξ−1(x̄)

)

= Ai1...irj1...js

∂yi
′
1

∂xi1

∣∣∣∣∣
ξ−1(x̄)

. . .
∂yi

′
s

∂xir

∣∣∣∣∣
ξ−1(x̄)

∂xj1

∂yj
′
1

∣∣∣∣
ξ−1(x̄)

. . .
∂xjs

∂yj
′
r

∣∣∣∣
ξ−1(x̄)

(r-times contravariant and s-times covariant transformation law of the components of a tensor).

The atlas of natural charts then determines a natural differential structure on T rsM (with a Haus-
dorff and second-countable topology (35)). Endowed with its natural differential structure, τ rs M ,
or T rsM , is called the

(
r
s

)
- tensor bundle of M .

(34) As for the smoothness, see the proof of Lemma 4.2.1.
(35) See Proposition 4.2.2.

35



I 4.4 Tensor bundles

4.4.3 Theorem. τ rs M : T rsM →M is a locally trivial vector bundle, with type fibre Rmr+s (36).

Let A be a differentiable section of the
(
r
s

)
-tensor bundle τ rs M over M , i.e., a smooth mapping

A : M → T rsM

such that

τ rs M ◦A = idM .

The section A is called a
(
r
s

)
-tensor field on M .

4.4.4 Coordinate expression.
Let (U , ξ) be an admissible chart on M , and (Usr , ξsr) the corresponding natural chart on T rsM .
The coordinate expression of a tensor field A,

ξrs ◦A ◦ ξ−1 : ξ(U) −→ ξ(U)×Rm
r+s
,

has projections given (for any i = 1, . . . ,m) by

ui ◦ pr1 ◦ ξrs ◦A ◦ ξ−1(x̄) = ui ◦ ξ ◦ σ
(
Aξ−1(x̄)

)
= ui ◦ ξ ◦ ξ−1(x̄)

= ui(x̄)

(6)

and (for any i1, . . . , ir, j1, . . . , js = 1, . . . ,m) by

ui1...irj1...js
◦ pr2 ◦ ξrs ◦A ◦ ξ−1(x̄) = ui1...irj1...js

◦ ξ̄ ◦A ◦ ξ−1(x̄)

= Ai1...irj1...js
◦ ξ−1(x̄)

(7)

where

Ai1...irj1...js
: U −→R : x 7→ Ai1...irj1...js

(x) : = (Ax)i1...irj1...js

= Ax

(
dxx

i1 , . . . , dxx
ir ,

∂

∂xji

∣∣∣∣
x

, . . . ,
∂

∂xjs

∣∣∣∣
x

)

are the components of A in ξ. The first block (6) of projections reduces to
(
ui|ξ(U)

)
, which are

smooth. The second block (7) of projections reduces to (Ai1...irj1...js
◦ ξ−1), which are the coordinate

expressions of A’s components. Therefore, the smoothness of A implies the smothness of its
components – in any admissible chart. Conversely, the smoothness of A’s components – in suitably
many admissible charts – ensures the smoothness of A.

(36) See the proof of Theorem 4.2.3.
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4.4.5 Example. Let A, B be tensor fields of type
(
r
s

)
and

(
r′

s′

)
respectively. Their tensor product

A⊗B :M −→ T r+r
′

s+s′M : x ∈M 7→ Ax ⊗Bx ∈
(
T r+r

′

s+s′M
)
x

is an
(
r+r′

s+s′

)
-tensor field, whose smoothness is ensured by the smoothness of its components, given

(in any admissible chart) by

(A⊗B)
i1...irir+1...ir+r′
j1...jsjs+1...js+s′

:= Ai1...irj1...js
B
ir+1...ir+r′
js+1...js+s′

We will denote the set of all the
(
r
s

)
-tensor fields on M by χrs(M).

Notice the following identifications:

χ0
0(M) = C∞(M) , χ1

0(M) = χ(M) , χ0
1(M) = χ∗(M) .

For any A, A′ ∈ χrs(M) and f ∈ C∞(M), the sum A + A′ and the multiplication fA (pointwise
defined) are both in χrs(M) and give χrs(M) the structure of a C∞(M)-module.
Let W be an open submanifold of M . Owing to the canonical isomorphism (T rsW )x = (T rsM)x
(for each x ∈W ), a tensor field on W can be viewed as a local tensor field on M , i.e., a local section
of τ rs M , and vice versa. For instance, if U is the domain of an admissible chart ξ = (xi)i=1,...,m on
M , on the one hand, we have

∂

∂xi1
⊗ . . .⊗ ∂

∂xir
⊗ dxj1 ⊗ . . .⊗ dxjs ∈ χrs(U)

and, on the other hand, from any A ∈ χrs(M), we obtain A|U ∈ χrs(U), related to the previous
coordinate tensor fields by the local decomposition law

A|U = Ai1...irj1...js

∂

∂xi1
⊗ . . .⊗ ∂

∂xir
⊗ dxj1 ⊗ . . .⊗ dxjs .

The pointwise action of a tensor field A ∈ χrsM on covector and vector fields defines the pairing

Ã : χ∗(M)× . . .× χ∗(M)︸ ︷︷ ︸
r times

×χ(M)× . . .× χ(M)︸ ︷︷ ︸
s times

−→ C∞(M) (8)

given by
Ã(θ1, . . . , θr, X1, . . . , Xs)(x) := Ax(θ1

x, . . . , θ
r
x, X1x, . . . , Xsx) .

Notice that Ã is well defined since on the domain of any admissible chart (U , ξ), we have

Ã(θ1, . . . , θr, X1, . . . , Xs)|U = Ai1...irj1...js
θ1
i1 , . . . , θ

r
irX

j1
1 , . . . , X

js
s ∈ C∞(U)

and then
Ã(θ1, . . . , θr, X1, . . . , Xs) ∈ C∞(M).

Moreover Ã is easily checked to be C∞(M)-multilinear. Let us denote by χ̃rs(M) the C∞(M)-
module of all the C∞(M)-multilinear mappings of type (8).
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4.4.6 Theorem. The mapping

∼ :χrs(M) −→ χ̃rs(M) : A 7→ Ã

is an isomorphism.

Proof. For the sake of notational simplicity, we shall put r = 0 and s = 1 and then we shall prove
the bijectivity of the mapping

∼:χ∗(M) −→ χ̃∗(M)

given by
θ̃(X) := θX.

Let θ̃:χ(M)→ C∞(M) be an C∞(M)-linear mapping.
(o) Let X ∈ χM be such that Xx = 0. We shall show that (θ̃X)x = 0. To this purpose, let
(U , ξ) be an admissible chart at x, where X|U = Xi ∂

∂xi , and β ∈ C∞(M) a bump function at
x with support in U . As is known (37), we can ‘extend’ both Xi ∈ C∞(U) and ∂

∂xi ∈ χ(U) to

X̃i ∈ C∞(M) and ∂̃
∂xi ∈ χ(M) by putting

X̃i|U = β|UXi , X̃i|M−U = 0

∂̃

∂xi
∣∣
U = β|U

∂

∂xi
,

∂̃

∂xi
∣∣
M−U = 0.

From

β2X = X̃i ∂̃

∂xi

we draw

β2(θ̃X) = θ̃(β2X) = θ̃

(
X̃i ∂̃

∂xi

)
= X̃i

(
θ̃
∂̃

∂xi

)
.

Evaluating the left and right hand side at x (where β(x) = 1 and X̃i(x) = Xi(x) = 0), we have
(θ̃X)(x) = 0. As a consequence, if X,Y ∈ χ(M) are such that Xx = Yx, i.e.,

(X − Y )(x) = 0,

we have
0 =

(
θ̃(X − Y )

)
(x) = (θ̃X − θ̃Y )(x) = (θ̃X)(x)− (θ̃Y )(x)

that is (θ̃X)(x) = (θ̃Y )(x). So the value of θ̃X at x only depends on the value of X at x.
(i) Owing to (o), we can define

θ : M −→ T ∗M

by putting, for any x ∈M and v ∈ TxM ,

θx(v) := (θ̃X)(x)

(37) See 1.3.
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where X ∈ χ(M) is any vector field such that Xx = v (38). Clearly θx : TxM →R is linear, i.e.,
θx ∈ T ∗xM . The smoothness of θ is ensured by smoothness ot its components (θi) in any admissible
chart (U , ξ), for (if V ⊂ U denotes an open neighbourhood of a x ∈ U where β|V = 1)

θ|V
∂

∂xi

∣∣∣∣
V

= θi|V =

(
θ̃
∂̃

∂xi

)∣∣∣∣∣
V

∈ C∞(V).

So θ ∈ χ∗(M). Since

θX = θ̃X , ∀X ∈ χ(M), (9)

θ̃ is the image of θ under ∼. This shows that ∼ is surjective.
(ii) θ̃ is the image of just one θ ∈ χ∗(M) under ∼. Indeed, owing to (9), there is no choice as to
the value θx of θ at any x ∈M , θx is to be the linear form acting on each v ∈ TxM as follows:

θxv = θxXx = (θX)(x) = (θ̃X)(x),

where, X ∈ χ(M) is any vector field such that Xx = v. This shows that ∼ is injective.

Owing to Theorem 4.4.6, a tensor field A ∈ χrs(M) will now be meant as an C∞(M)-multilinear
mapping

A : χ∗(M)× . . .× χ∗(M)︸ ︷︷ ︸
r times

×χ(M)× . . .× χ(M)︸ ︷︷ ︸
s times

−→ C∞(M).

Restriction of A to any s-tuple X1, . . . , Xs ∈ χ(M), is a C∞(M)-multilinear mapping

A( . . .︸︷︷︸
r

;X1, . . . , Xs) : χ∗(M)× . . .× χ∗(M)︸ ︷︷ ︸
r times

−→ C∞(M)

and then

A( . . .︸︷︷︸
r

;X1, . . . , Xs) ∈ χr0(M).

The consequent mapping

Â : χ(M)× . . .× χ(M)︸ ︷︷ ︸
s times

−→ χr0(M) (10)

defined by

Â(X1, . . . , Xs) := A( . . .︸︷︷︸
r

;X1, . . . , Xs) (11)

is easily checked to be C∞(M)-multilinear.
Let us denote by χ̂rs(M) the C∞(M)-module of all the C∞(M)-multilinear mappings of type (10).

(38) For example, if (U , ξ) is an admissible chart at x, consider Y ∈ χ(U) characterized by constant
components Y i = vi in ξ; then ‘extend’ Y to an X ∈ χ(M) by means of am bump function β at
x with support in U .
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4.4.7 Theorem. The mapping

∧ :χrs(M) −→ χ̂rs(M) : A 7→ Â

is an isomorphism.

Proof. Let Â be an C∞(M)-multilinear mapping of type (10).
(i) We obtain an A ∈ χrs(M), by putting, for each θ1, . . . , θr ∈ χ∗(M) and X1, . . . , Xs ∈ χ(M),

A(θ1, . . . , θr, X1, . . . , Xs) := Â(X1, . . . , Xs)(θ1, . . . , θr), (12)

and Â is the image of A under ∧. This shows that ∧ is surjective.
(ii) Â is the image of just one A ∈ χrs(M) under ∧. Indeed, owing to (11), there is no choice as to
the value of A at any θ1, . . . , θr ∈ χ∗(M) and X1, . . . , Xs ∈ χ(M); this value is to be (12). This
shows that ∧ is injective.

Owing to Theorem 4.4.7, a tensor field A ∈ χrs(M) can also be meant as an C∞(M)-multilinear
mapping

A : χ(M)× . . .× χ(M)︸ ︷︷ ︸
s times

−→ χr0(M)

4.4.8 Remark. On the domain of any admissible chart (U , ξ), from the local decomposition

A|U = Ai1...irj1...js

∂

∂xi1
⊗ . . .⊗ ∂

∂xir
⊗ dxj1 ⊗ . . .⊗ dxjs ,

we draw

A|U
(

∂

∂xj1
, . . . ,

∂

∂xjs

)
=
[
A|U

(
∂

∂xj1
, . . . ,

∂

∂xjs

)]i1...ir ∂

∂xi1
⊗ . . .⊗ ∂

∂xir

=
[
A|U

(
dxi1 , . . . , dxir ,

∂

∂xj1
, . . . ,

∂

∂xjs

)]
∂

∂xi1
⊗ . . .⊗ ∂

∂xir

= Ai1...irj1...js

∂

∂xi1
⊗ . . .⊗ ∂

∂xir

and then the above local decomposition reads

A|U = A|U
(

∂

∂xj1
, . . . ,

∂

∂xjs

)
⊗ dxj1 ⊗ . . .⊗ dxjs .
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5 External forms and derivations

5.1 External forms

Let M be an m-dimensional smooth manifold and s be an integer. If s < 0, let ΛsM be the null
C∞(M)-module. If s = 0, let

Λ0M := χ0
0M = C∞(M)

be the C∞(M)-module of
(

0
0

)
-tensor fields, i.e., real smooth functions, on M . If s = 1, let

Λ1M := χ0
1M = χ∗M

be the C∞(M)-module of
(

0
1

)
-tensor fields. If s > 1, let

ΛsM ⊂ χ0
sM

be the C∞(M)-module of skew-symmetric,
(

0
s

)
-tensor fields on M . Any such field, as a C∞(M)-

multilinear mapping
ω : χM × . . .× χM︸ ︷︷ ︸

s times

−→ C∞(M),

satisfies, for all X1, . . . , Xs ∈ χM and i, j = 1, . . . , s, the skew-symmetry condition

ω(X1, . . . , Xi, . . . , Xj , . . . , Xs) = −ω(X1, . . . , Xj , . . . , Xi, . . . , Xs).

Notice that, for any skew-symmetric ω ∈ ΛsM , the restriction ω|U to the domain of any admissible
chart (U , ξ), is skew-symmetric too and then, if s > m, ω|U

(
∂

∂xj1
, . . . , ∂

∂xjs

)
= 0. From the

decomposition law of ω|U it follows that ω|U = 0 and then, from the arbitrariness of ξ, we have
ω = 0. So, also for s > m, ΛsM = {0}.
For any integer s, the elements of ΛsM are called exterior s-differential forms. In the set ΛM of
all the exterior forms on M , called Grassman or exterior algebra of M , the exterior product

∧ : ΛM × ΛM −→ ΛM

is an (associative, C∞(M)-bilinear) operation that maps each τ ∈ ΛrM and ω ∈ ΛsM onto an
image τ ∧ ω ∈ Λs+rM given by

τ ∧ ω = 0

if either r or s is negative, and, in any other case, by

τ ∧ ω
(
X1, . . . , Xs+r

)
= =

1
s!r!

∑
σ

(signσ)τ ⊗ ω
(
Xσ(1), . . . , Xσ(r+s)

)
=

1
s!r!

∑
σ

(signσ)τ
(
Xσ(1), . . . , Xσ(r)

)
ω
(
Xσ(r+1), . . . , Xσ(r+s)

)
(the sum being extended to all the permutations σ of {1, . . . , s+ r}). Hence

τ ∧ ω = (−1)rsω ∧ τ.
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5.1.1 Examples. Check that
(i) if f ∈ Λ0M and ω ∈ ΛsM with s ≥ 0, then

f ∧ ω = fω ;

(ii) if τ, ω ∈ Λ1M , then
τ ∧ ω = τ ⊗ ω − ω ⊗ τ .

5.1.2 Coordinate expression.
In any admissible chart (U , ξ), the components of τ ∧ ω ∈ Λs+rM are

(τ ∧ ω)j1...jr+s = (τ ∧ ω)|U
(

∂

∂xj1
, . . . ,

∂

∂xjr+s

)
=

1
r!s!

∑
σ

(signσ)τjσ(1)...jσ(r)ωjσ(r+1)...jσ(r+s)

In particular, for r = s = 1, (τ ∧ ω)ij = τiωj − τjωi.

5.1.3 Remark. The local decomposition law of any ω ∈ ΛsM , with s > 1, in an admissible
chart (U , ξ), reads

ω|U =
∑

j1<...<js

ωj1...jsdx
j1 ∧ . . . ∧ dxjs .

Proof. For the sake of simplicity, we shall put s = 2. The local decomposition law of ω ∈ Λ2M in
(U , ξ), is

ω|U = ωijdx
i ⊗ dxj ,

with

ωij = ω|U
(

∂

∂xi
,
∂

∂xj

)
.

Owing to the skew-symmetry of ω|U , we have

ωij =

{
−ωji i 6= j

0 i = j

and then

ω|U =
∑
i<j

(ωijdxi ⊗ dxj + ωjidx
j ⊗ dxi) =

∑
i<j

ωij(dxi ⊗ dxj − dxj ⊗ dxi)

=
∑
i<j

ωijdx
i ∧ dxj .

Let Φ : M → N be a smooth mapping. The pull-back by Φ is the additive operator

Φ∗: ΛN −→ ΛM

which maps ω ∈ ΛsN onto Φ∗ω ∈ ΛsM given by

Φ∗ω =
{ 0 s < 0

ω ◦ Φ s = 0
and for s > 0,

(Φ∗ω)x = ωΦ(x) ◦ (TxΦ× . . .× TxΦ︸ ︷︷ ︸
s times

)

for all x ∈M .
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5.1.4 Coordinate expression.
Let ξ = (xj)j=1,...,m : U →Rm and η = (yα)α=1,...,n : V →Rn, with Φ(U) ⊂ V, be admissible charts
on M and N , respectively. Recall (39) that, at any x ∈ U , the relation w = TxΦ · v is expressed in
ξ and η by w = wα ∂

∂yα

∣∣∣
Φ(x)

with wα = ∂Φα

∂xi

∣∣
x
vi (where Φα := yα ◦ Φ|U ). As a consequence,

TxΦ · ∂

∂xj

∣∣∣∣
x

=
∂Φα

∂xj

∣∣∣∣
x

∂

∂yα

∣∣∣∣
Φ(x)

.

Now let ω ∈ ΛsN , with s > 0. At any x ∈ U , we have

(Φ∗ω)j1...js(x) = (Φ∗ω)x j1...js = (Φ∗ω)x

(
∂

∂xj1

∣∣∣∣
x

, . . . ,
∂

∂xjs

∣∣∣∣
x

)
= ωΦ(x)

(
TxΦ · ∂

∂xj1

∣∣∣∣
x

, . . . , TxΦ · ∂

∂xjs

∣∣∣∣
x

)
= ωΦ(x)

(
∂Φα1

∂xj1

∣∣∣∣
x

∂

∂yα1

∣∣∣∣
Φ(x)

, . . . ,
∂Φαs

∂xjs

∣∣∣∣
x

∂

∂yαs

∣∣∣∣
Φ(x)

)

=
∂Φα1

∂xj1

∣∣∣∣
x

. . .
∂Φαs

∂xjs

∣∣∣∣
x

ωΦ(x)

(
∂

∂yα1

∣∣∣∣
Φ(x)

, . . . ,
∂

∂yαs

∣∣∣∣
Φ(x)

)

=
∂Φα1

∂xj1

∣∣∣∣
x

. . .
∂Φαs

∂xjs

∣∣∣∣
x

ωΦ(x)α1...αs

=
∂Φα1

∂xj1

∣∣∣∣
x

. . .
∂Φαs

∂xjs

∣∣∣∣
x

ωα1...αs(Φ(x)) .

So Φ∗ω has components

(Φ∗ω)j1...js =
∂Φα1

∂xj1
. . .

∂Φαs

∂xjs
(ωα1...αs ◦ Φ|U )

(whose smoothness ensures the smoothness of Φ∗ω).

5.1.5 Proposition. The pull back operator Φ∗ preserves the exterior product, i.e.,

Φ∗(τ ∧ ω) = Φ∗τ ∧ Φ∗ω ,

for any τ , ω ∈ ΛN .

Proof. For the sake of notational simplicity, we shall put τ , ω ∈ Λ1N .
On the one hand, we have

(
Φ∗(τ ∧ ω)

)
i,j

=
∂Φα

∂xi
∂Φβ

∂xj
(τ ∧ ω)αβ ◦ Φ|U =

∂Φα

∂xi
∂Φβ

∂xj
(ταωβ − τβωα) ◦ Φ|U .

On the other hand, from

(Φ∗τ)i =
∂Φα

∂xi
(τα ◦ Φ|U )

(Φ∗ω)j =
∂Φβ

∂xj
(ωβ ◦ Φ|U ),

(39) See 2.2.4.
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it follows that

(Φ∗τ ∧ Φ∗ω)ij = (Φ∗τ)i(Φ∗ω)j − (Φ∗τ)j(Φ∗ω)i

=
∂Φα

∂xi
∂Φβ

∂xj
(ταωβ ◦ Φ|U )− ∂Φβ

∂xj
∂Φα

∂xi
(τβωα ◦ Φ|U )

=
∂Φα

∂xi
∂Φβ

∂xj
(ταωβ − τβωα) ◦ Φ|U .

Hence the statement.

5.1.6 Remark. The action of Φ∗ – as above defined between ΛN and ΛM – naturally extends
to the action between ΛV and ΛU where V is any open submanifold of N and U := Φ−1(V) its
open inverse image in M . From this extension of Φ∗, it follows that, for any ω ∈ ΛN ,

Φ∗(ω|V) = (Φ∗ω)|U .

5.2 Derivations

Let k be an integer. A derivation of degree k on the exterior algebra ΛM , after Frolicher and
Nijenhuis (40) is an operator

D : ΛM → ΛM

that maps each ω ∈ ΛsM onto an image Dω ∈ Λs+kM , satisfying (for each τ , ω ∈ ΛM and a,
b ∈R)
(i) R-linearity

D(aτ + bω) = aDτ + bDω

(in every ΛsM);
(ii) Leibniz rule

D(τ ∧ ω) = Dτ ∧ ω + (−1)rkτ ∧Dω

(where r is the degree of τ).
The local character of a derivation is pointed out in the following

5.2.1 Proposition. If σ, τ ∈ ΛrM coincide on an open subset U ⊂M ,

σ|U = τ |U ,

then
(Dσ)|U = (Dτ)|U .

Proof. If we put ω := σ− τ , we have ω|U = 0. Then, if x ∈ U and β is a bump function at x with
support in U , we also have ω = (1 − β)ω both on U (where ω vanishes) and on M − U (where β
vanishes). Now, on the one hand, Leibniz rule implies

Dω = D(1− β) ∧ ω + (1− β)Dω

(40) See A.Frolicher and A.Nijenhuis, Theory of vector-valued differential forms, Ind.Math., 18 (1956),
p.338-385.
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and then
(Dω)x = 0

since ωx = 0 and β(x) = 1. On the other hand, R-linearity implies

Dω = Dσ −Dτ

and then
(Dσ)x = (Dτ)x .

Hence, owing to the arbitrariness of x ∈ U , the statement follows.

A consequence of the ‘locality’ of a derivation D on ΛM , is the possibility of extending the action
of D to the exterior algebra ΛW of any open submanifold W ⊂ M . To this end, let α ∈ ΛW . If
σ, τ ∈ ΛM are equal to α around a point x ∈W , i.e.,

σ|V1 = α|V1 , τ |V2 = α|V2

on the open neighbourhoods V1, V2 ⊂W of x, then

σ|V1∩V2 = α|V1∩V2 = τ |V1∩V2

and, owing to the above proposition,

(Dσ)x = (Dτ)x .

Therefore the action of D can be extended to α by putting, at each x ∈W ,

(Dα)x := (Dσ)x

with any σ ∈ ΛM equal to α around x (the smoothness of Dα is ensured by the smoothness of its
components, which, in a suitably small coordinate neighbourhood of x, are the components of Dσ).
Clearly this action of D on ΛW still satisfies R-linearity and Leibniz rule, i.e., D is a derivation
on ΛW too. The above extension clearly implies that, for any open submanifold W ⊂M and any
ω ∈ ΛM ,

D(ω|W ) = (Dω)|W .

5.2.2 Lemma. Let D and D′ be derivations on ΛM . If for each f ∈ C∞(M),

Df = D′f

Ddf = D′df ,

then

D = D′ .

Proof.
(i) Let us first show that, if W is an open submanifold of M , then, for each ϕ ∈ C∞(W ),

Dϕ = D′ϕ , Ddϕ = D′dϕ .
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To this purpose, let x ∈ W . If f ∈ C∞(M) is equal to ϕ around x, i.e., f |V = ϕ|V on an open
neighbourhood V ⊂W of x, then df is equal to dϕ on V, and consequently

(Dϕ)x := (Df)x = (D′f)x =: (D′ϕ)x ,

(Ddϕ)x := (Ddf)x = (D′df)x =: (D′dϕ)x .

(ii) Let us now prove the main statement, i.e.,

Dω = D′ω , ∀ω ∈ ΛM.

For the sake of simplicity, as usual, we shall only check the result for ω ∈ Λ1M . On the domain of
any admissible chart (U , ξ) on M , we have

(Dω)|U = D(ω|U ) = D(ωidxi) = Dωi ∧ dxi + ωiDdx
i

Then, owing to (i),

(Dω)|U = D′ωi ∧ dxi + ωiD
′dxi = D′(ωidxi) = D′(ω|U ) = (D′ω)|U

whence the statement.

Let D1 and D2 be derivations on ΛM of degree k1 and k2, respectively. The operator

[D1, D2] : ΛM −→ ΛM

defined by
[D1, D2] := D1D2 − (−1)k1k2D2D1

is called the commutator of D1 and D2.

5.2.3 Remark. Notice that

−(−1)k1k2 [D1, D2] = −(−1)k1k2D1D2 +D2D1 = [D2, D1].

5.2.4 Proposition. The operator [D1, D2] is a derivation of degree k1 + k2.

Proof. From the definition of commutator, one can directly draw that [D1, D2] takes, R-linearly,
any ΛsM into Λs+(k1+k2)M . Then we only have to prove Leibniz rule

[D1, D2](σ ∧ τ)︸ ︷︷ ︸
(1)

=
(
[D1, D2]σ

)
∧ τ + (−1)(k1+k2)sσ ∧

(
[D1, D2]τ

)︸ ︷︷ ︸
(2)

for any σ ∈ ΛsM, τ ∈ ΛM . As to right hand side (2), we have

(2) =
(
D1D2σ − (−1)k1k2D2D1σ

)
∧ τ

+ (−1)(k1+k2)sσ ∧
(
D1D2τ − (−1)k1k2D2D1τ

)
=
(
D1D2σ

)
∧ τ︸ ︷︷ ︸

1

−(−1)k1k2
(
D2D1σ

)
∧ τ︸ ︷︷ ︸

2

+ (−1)(k1+k2)sσ ∧
(
D1D2τ

)︸ ︷︷ ︸
3

−(−1)(k1+k2)s(−1)k1k2σ ∧
(
D2D1τ

)︸ ︷︷ ︸
4

.
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As to left hand side (1), we have

(1) = D1D2(σ ∧ τ)− (−1)k1k2D2D1(σ ∧ τ)

where the first term of the sum is
D1

(
D2σ ∧ τ + (−1)sk2σ ∧D2τ

)
= D1

(
D2σ ∧ τ

)
+ (−1)sk2D1

(
σ ∧D2τ

)
=
(
D1D2σ

)
∧ τ︸ ︷︷ ︸

1

+ (−1)(s+k2)k1D2σ ∧D1τ︸ ︷︷ ︸
a

+ (−1)sk2D1σ ∧D2τ︸ ︷︷ ︸
b

+ (−1)sk2+sk1σ ∧
(
D1D2τ

)︸ ︷︷ ︸
3

and the second term (which can be obtained from the first one via permutation of {1, 2} and
multiplication by −(−1)k1k2) is

−(−1)k1k2
(
D2D1σ

)
∧ τ︸ ︷︷ ︸

2

−(−1)k1k2+(s+k1)k2D1σ ∧D2τ︸ ︷︷ ︸
−b

−(−1)k1k2+sk1D2σ ∧D1τ︸ ︷︷ ︸
−a

−(−1)k1k2+sk1+sk2σ ∧
(
D2D1τ

)︸ ︷︷ ︸
4

.

So (with the above numeration) we have

(1) = (1 + a+ b+ 3) + (2− b− a+ 4) = 1 + 2 + 3 + 4 = (2)

that is the statement.

5.3 Cartan calculus

A classical derivation on ΛM , which extends the ordinary differentiation on C∞(M) (and is at the
foundation of the so called Cartan calculus), is given in the following

5.3.1 Theorem. There exists a unique derivation d of degree 1 on ΛM , called exterior derivative,
such that, for any f ∈ C∞(M),
(i) df is the differential of f ,
(ii) d(df) = 0.
(iii) The action of d vanishes on ΛsM for s < 0, is given by (i) on Λ0M , and, on each ω ∈ ΛsM
with s > 0, is given by

dω(X0, X1, . . . , Xs) : =
s∑
i=0

(−1)iXiω(X0, . . . , X̂i, . . . , Xs)

+
∑
i<j

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xs)
(13)

(where X0, X1, . . . , Xs ∈ χM and symbol ˆ denotes omission of the term where it is placed).

Proof. Existence. One should prove that operator d, defined by (13) is a derivation which satisfies
condition (ii). We shall only check (ii). If ω ∈ Λ1M , then, for any X0 = X,X1 = Y ∈ χM , we
have

dω(X,Y ) = X(ωY )− Y (ωX)− ω[X,Y ].

If ω = df (with f ∈ C∞(M)),

ddf(X,Y ) = X(Y f)− Y (Xf)− [X,Y ]f = 0.

Hence the statement.
The uniqueness follows from the above Lemma 5.2.2.
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5.3.2 Remark. If you want to be led to find out action (13) of exterior derivative d (i.e., of
a derivation of degree 1 satisfying (i), (ii)), you can follow these directions. First, check that d
satisfies (i), (ii) on any open submanifold U ⊂M too. Then, let U be the domain of an admissible
chart. On U , for any ω ∈ ΛM , e.g. ω ∈ Λ1M , we have

(dω)|U = d(ω|U ) = d(ωjdxj) = dωj ∧ dxj =
∂ωj
∂xi

dxi ∧ dxj

=
∂ωj
∂xi

(dxi ⊗ dxj − dxj ⊗ dxi)

or, equivalently,

(dω)|U =
(
∂ωj
∂xi
− ∂ωi
∂xj

)
dxi ⊗ dxj .

As a consequence, for any X,Y ∈ χM , it is(
dω(X,Y )

)
|U = d(ω|U )(X|U , Y |U ) =

(
∂ωj
∂xi
− ∂ωi
∂xj

)
XiY j = Xi ∂ωj

∂xi
Y j − Y j ∂ωi

∂xj
Xi

= Xi ∂

∂xi
(ωjY j)− Y j

∂

∂xj
(ωiXi)−Xi ∂Y

j

∂xi
ωj + Y j

∂Xi

∂xj
ωi

= Xi ∂

∂xi
(ωjY j)− Y j

∂

∂xj
(ωiXi)− ωj

(
Xi ∂Y

j

∂xi
− Y i ∂X

j

∂xi

)
=
(
X(ωY )− Y (ωX)− ω[X,Y ]

)
|U .

On M then we have
dω(X0, X1) = X0(ωX1)−X1(ωX0)− ω[X0, X1]

(with X0 = X and X1 = Y ), that is

dω(X0, X1) =
1∑
i=0

(−1)iXiω(X̂i, Xi+1) +
∑
i<j

(−1)i+jω([Xi, Xj ], X̂i, X̂j).

5.3.3 Property. The exterior derivative is nilpotent, i.e.,

d2 = 0.

Proof. The proof is based on the following remark: Leibniz rule and condition (ii) imply that
d(dϕ1 ∧ . . . ∧ dϕs) = 0

for any ϕ1, . . . , ϕs ∈ C∞(U) and any open submanifold U ⊂ M . With this remark, we evaluate d
on ω ∈ ΛsM in the domain U of an admissible chart, where

ω|U =
∑

j1<...<js

ωj1...js(dx
j1 ∧ . . . ∧ dxjs);

we have
(dω)|U = d(ω|U )

=
∑

j1<...<js

(
dωj1...js ∧ dxj1 ∧ . . . ∧ dxjs + ωj1...jsd(dxj1 ∧ . . . ∧ dxjs)

)
=

∑
j1<...<js

dωj1...js ∧ dxj1 ∧ . . . ∧ dxjs .

With the same remark, we now evaluate d on dω in U . We have

(d2ω)|U = (ddω)|U = d(dω|U ) =
∑

j1<...<js

d(dωj1...js ∧ dxj1 ∧ . . . ∧ dxjs) = 0.

So, for any ω ∈ ΛsM , d2ω = 0.
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I 5.3 Cartan calculus

5.3.4 Property. The exterior derivative commutes with pull-back, i.e., if Φ : M → N is a smooth
mapping, then

Φ∗d = dΦ∗.

Proof. (i) Let V be an open submanifold ofN and ϕ ∈ C∞(V). At any point x of open submanifold
U := Φ−1(V) ⊂M , we have

(Φ∗dϕ)x = dΦ(x)ϕ ◦ TxΦ = dx(ϕ ◦ Φ|U ) = dx(Φ∗ϕ).

Then on U ,
Φ∗dϕ = dΦ∗ϕ

and, consequently,
d(Φ∗dϕ) = d(dΦ∗ϕ) = 0.

(ii) Now let V be the domain of an admissible chart η = (y1, . . . , yn) on N , where, for any ω ∈ ΛsN ,

ω|V =
∑

j1<...<js

ωj1...js(dy
j1 ∧ . . . ∧ dyjs)

and
(dω)|V = d(ω|V) =

∑
j1<...<js

dωj1...js ∧ (dyj1 ∧ . . . ∧ dyjs).

On U , we have

(Φ∗ω)|U = Φ∗(ω|V) =
∑

j1<...<js

Φ∗ωj1...js(Φ
∗dyj1 ∧ . . . ∧ Φ∗dyjs)

and
(Φ∗dω)|U = Φ∗(dω|V) =

∑
j1<...<js

Φ∗dωj1...js ∧ (Φ∗dyj1 ∧ . . . ∧ Φ∗dyjs)

Owing to (i), we also have

(dΦ∗ω)|U = d(Φ∗ω)|U
=

∑
j1<...<js

(
dΦ∗ωj1...js ∧ (Φ∗dyj1 ∧ . . . ∧ Φ∗dyjs) + Φ∗ωj1...jsd(Φ∗dyj1 ∧ . . . ∧ Φ∗dyjs)

)
=

∑
j1<...<js

Φ∗dωj1...js ∧ (Φ∗dyj1 ∧ . . . ∧ Φ∗dyjs)

So
(Φ∗dω)|U = (dΦ∗ω)|U .

As {U = Φ−1(V) | V coordinate domain onN} is a covering of M ,

Φ∗dω = dΦ∗ω.

The theory of deRham is the study of closed and exact forms. Any ω ∈ ΛM such that dω = 0,
is said to be a closed form. Any ω ∈ ΛM such that ω = dτ for some τ ∈ ΛM , is said to be an
exact form. More generally, if for each x ∈ M there exists an open neighboourhood U of x where
ω|U = dτU for some τU ∈ ΛU , ω is said to be a locally exact form.
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I 5.3 Cartan calculus

5.3.5 Theorem. Let ω ∈ ΛM . Then ω is locally exact iff it is closed.

Proof. We will only prove the theorem in Λ+M (union of all the ΛsM ’s with s > 0).
(i) Let ω be a locally exact form. From ω|U = dτU , we draw

(dω)|U = d(ω|U ) = d(dτU ) = 0

and then dω = 0.
(ii) Let ω be a closed form. For any x ∈ M , let U be the domain of a spherical chart at x,
i.e., Bo := ξ(U) is an open ball with center in the origin of Rm (41). In order to show that ω is
locally exact, it will suffice to prove that any closed form ωo ∈ Λ+Bo is exact. Indeed, if we put
ωo := (ξ−1)∗ω|U ∈ ΛBo, then

dωo := (ξ−1)∗d(ω|U ) = (ξ−1)∗(dω)|U = 0,

whence
ωo = dτo

for some τo ∈ ΛBo, and finally

ω|U = ξ∗ωo = d(ξ∗τo) = dτU

with
τU := ξ∗τo ∈ ΛU .

In order to prove that any closed form ωo ∈ Λ+Bo is exact, one has to use the following

5.3.6 Poincaré Lemma. (42) There exists a mapping

h : Λ+Bo → ΛBo

such that
hd+ dh = id .

Indeed, if
dωo = 0,

then
ωo = (hd+ dh)ωo = dhωo = dτo

with
τo = hωo .

Let X ∈ χ(M). The interior product iX is another classical derivation (of degree −1) of Cartan
calculus, whose action, on any ω ∈ ΛsM with s > 0, is given by

iXω(X2, . . . , Xs) =
1

(s− 1)!

∑
σ

(signσ)ω(X,Xσ(2), . . . , Xσ(s))

= ω(X,X2, . . . , Xs)

(41) See footnote (4).
(42) For the proof, see Y. Choquet-Bruhat and C. De Witt-Morette, Analysis, Manifolds and Physics,

Part I, (1982) p.224.
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that is
iXω = ω(X, ·, . . . , ·︸ ︷︷ ︸

s

)

The components of the(s − 1)-form iXω in the domain U of an admissible chart ξ, consequently
are

(iXω)j2,...,js = (iXω)|U
(

∂

∂xj2
, . . . ,

∂

∂xjs

)
= iXω|U

(
∂

∂xj2
, . . . ,

∂

∂xjs

)
= ω|U

(
X|U ,

∂

∂xj2
, . . . ,

∂

∂xjs

)
= ω|U

(
Xj1

∂

∂xj1
,
∂

∂xj2
, . . . ,

∂

∂xjs

)
= Xj1ω|U

(
∂

∂xj1
,
∂

∂xj2
, . . . ,

∂

∂xjs

)
that is

(iXω)j2,...,js = Xj1ωj1,j2,...,js .

Also notice that, for any f ∈ C∞(M),

iXdf = dfX = Xf.

The Lie derivation dX is the last classical derivation (of degree zero) of Cartan calculus, given by

dX = iXd+ diX .

Its action, e.g. on ω ∈ Λ1M , is given (for any Y ∈ χM) by

(dXω)Y = (iXdω)Y + (diXω)Y = dω(X,Y ) +
(
d(ωX)

)
Y

= X(ωY )− Y (ωX)− ω[X,Y ] + Y (ωX)
= X(ωY )− ω[X,Y ]

The components of 1-form dXω in the domain U of an admissible chart ξ, consequently are

(dXω)i = (dXω)|U
∂

∂xi
= (dXω|U )

∂

∂xi
= X|U

(
ω|U

∂

∂xi

)
− ω|U

[
X|U ,

∂

∂xi

]
=
(
Xj ∂

∂xj

)
ωi − ωj

[
Xh ∂

∂xh
,
∂

∂xi

]j
= Xj ∂ωi

∂xj
+
∂Xj

∂xi
ωj .

Also notice that, for any f ∈ C∞(M),

dXf = iXdf = Xf

is the Lie derivative of f along X, already introduced in 4.2.
A useful identity is the following
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5.3.7 Property. For any X,Y ∈ χ(M), it is

i[X,Y ] = iXdY − dY iX .

Proof. Owing to the local character of derivations, it will suffice to check that the left and right
hand sides take the same value on both f and df (for each f ∈ C∞(M)). To this purpose, we have

(iXdY − dY iX)f = iX(dY f)− dY (iXf) = 0

since both f and dY f are in C∞(M) and then

i[X,Y ]f = (iXdY − dY iX)f.

Moreover

(iXdY − dY iX)df = iX(dY df)− dY (iXdf) = iX(iY d+ diY )df − dY (dXf) = iXdiY df − dY (Xf)
= iXd(Y f)− Y (Xf) = X(Y f)− Y (Xf) = [X,Y ]f
= i[X,Y ]df.
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II.

Hamiltonian systems

1 Dynamical systems

1.1 Dynamical systems

Let M be an m-dimensional smooth manifold and

c : I −→M

any motion in M , defined in an open time interval I ⊂R. The tangent lift

ċ : I −→ TM : t 7→ ċ(t) ∈ Tc(t)M
is a section of tangent bundle τM : TM →M over c, i.e., τM ◦ ċ = c. The composition

X ◦ c : I −→ TM : t 7→ Xc(t) ∈ Tc(t)M
is another section of τM over c, τM ◦ (X ◦ c) = c. If

ċ = X ◦ c (14)

then c is called an integral curve of X in M . It is called a maximal integral curve if there does not
exist any integral curve k : J →M , such that I ⊂6=J and k|I = c. We will call equation (14) a first-
order differential equation on M , associated with X. From a dynamical point of view, equation
(14) expresses the problem of searching for the motions in M whose velocity (at each time) equals
the value prescribed by X. Therefore, it will be read as the equation of the motion of dynamical
system

D := (M,X).

The manifold M is called the phase space and X the (velocity) field of D. Any (maximal) solution
of the equation of the motion is called a (maximal) motion and its image a (maximal) orbit of D.
The collection of all the maximal orbits is called the phase portrait of D.

1.1.1 Lemma. Let D = (M,X) and E = (N,Y ) be dynamical systems, whose fields are related
to each other by a smooth mapping Φ : M → N (i.e., TΦ ◦X = Y ◦ Φ). If c : I →M is a motion
of D, then k := Φ ◦ c : I → N is a motion of E .

Proof. Owing to hypothesis ċ = X ◦ c, from k = Φ ◦ c we draw

k̇ = TΦ ◦ ċ = TΦ ◦X ◦ c = Y ◦ Φ ◦ c = Y ◦ k.

The above lemma (with its possible enrichments for special Φ’s) will often prove to be useful in
the study of the motions of a given dynamical system. A first example is the following.
Let D = (M,X) be a dynamical system. Consider an open submanifold W of M and denote by
XW ∈ χ(W ) the vector field on W defined by Tj ◦ XW = X ◦ j with j : W ↪→ M (43). Then
consider the restricted system DW = (W,XW ), j-related to D

(43) For any x ∈ W, (XW )x = Xx in the canonical isomorphism TxW
Txj= TxM (see I. Remark 2.1.7).

As to the smoothness of XW , i.e., of its components in admissible charts, see the next Coordinate
expression.
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1.1.2 Proposition.
(i) (The image under j of) every motion of DW is a motion of D.
(ii) Every motion of D whose orbit meets W , is a prolongation of (the image under j of) a motion
of DW .

Proof. (i) The statement is a direct consequence of the above lemma.
(ii) Let c : I →M be a motion of D such that c(t0) ∈W fro some t0 ∈ I. By continuity, c(J) ⊂W
for a suitable J ⊂ I with t0 ∈ J . As a consequence, we can consider the induced motion γ : J →W .
From c|J = j ◦ γ, we draw

(c|J)· = Tj ◦ γ̇.

From ċ = X ◦ c, we draw

ċ|J = X ◦ c|J = X ◦ j ◦ γ = Tj ◦XW ◦ γ.

Then, as (c|J)· = ċ|J and Tj is an isomorphism at any point of W , we have

γ̇ = XW ◦ γ

i.e., γ (which, from a set-theoretical point of view, does not differ from c|J) is a motion of DW .

The above proposition implies that a local analysis of D, i.e., the study of its motions within an
open submanifold W , reduces to the study of restricted system DW . Typical case of local analysis
is the following

1.1.3 Coordinate expression. (44)

Let U be the domain of an admissible chart ξ = (xi)i=1...,m in M and j : U ↪→M . Let γ : J → U
be a motion in U , with coordinate expression in ξ given by

ξ ◦ γ = (x1 ◦ γ, . . . , xm ◦ γ) =: (γ1, . . . , γm).

From the decompositions

γ̇ =
dγi

du

(
∂

∂xi
◦ γ
)

XU = Xi ∂

∂xi

we draw

XU ◦ γ = (Xi ◦ γ)
(

∂

∂xi
◦ γ
)

=
(
Xi
ξ ◦ (γ1, . . . , γm)

)( ∂

∂xi
◦ γ
)

where (Xi
ξ := Xi ◦ ξ−1) are the coordinate expression of components (Xi) of X in ξ. Then γ is a

motion of DU , if, and only if,
dγi

du
= Xi

ξ ◦ (γ1, . . . , γm). (15)

This shows that the coordinate local analysis of a dynamical system D, reduces to the study of
a system (15) of m ordinary, first-order, normal, differential equations in m unknown real-valued
functions (γ1, . . . , γm).

(44) See also the coordinate expression of a smooth curve in I 2.3.1 and the local decomposition law of
a vector field in I 4.2.
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1.1.4 Note. If x ∈M is a non-singular point, i.e. Xx 6= 0, then there exists an admissible chart
(U , ξ) on M at x, such that, XU is one of the coordinate vector fields, say

XU =
∂

∂x1

(straightening theorem (45)). The equation of the motion of DU =
(
U , ∂

∂x1

)
is ‘integrable by

quadratures’, for its expression in ξ is

dγi

dt
= δi1 (i = 1, . . . ,m),

and then its solutions correspond in ξ(U) to motions which take place, with velocity ∂
∂u1 , on straight

lines of direction δ1 = (δi1).

1.2 Determinism

Let D = (M,X) be a dynamical system and (t0, x) ∈R×M arbitrarily chosen Cauchy data. Any
motion c : I → M , starting at time t0 ∈ I from c(t0) = x, and (maximal) solution of differential
equation

ċ = X ◦ c ,
will be said to be a (maximal) solution of Cauchy problem (M,X, t0, x). We shall conventionally
choose t0 = 0 as initial instant, and we shall denote a Cauchy problem by (M,X, x). From the
local analysis of a dynamical system, we draw the following

1.2.1 Local determinism theorem. For each x ∈ M , there exist solutions of (M,X, x). Any
two of them locally agree (46).

Proof. This is basically a result of the theory of ordinary differential equations. On the domain
U of an admissible chart ξ at x, consider Cauchy problem (U , XU , x), i.e.,{

γ̇ = XU ◦ γ

γ(0) = x
(16)

whose coordinate expression in ξ is (47)
dγi

dt
= Xi

ξ ◦ (γ1, . . . , γm)

γi(0) = xi(x).
(17)

From the theory of ordinary differential equations, it is known that problem (17) admits solutions
in ξ(U) and that any two of them

(γ1
α, . . . , γ

m
α ) : Iα −→ ξ(U) (α = 1, 2)

locally agree. Consequently, curves

γα := ξ−1 ◦ (γ1
α, . . . , γ

m
α ) : Iα −→ U (α = 1, 2)

are solutions to problem (11) and locally agree. Hence, since solutions of (U , XU , x) are solutions
of (M,X, x) too (48), the statement follows.

(45) See Brickell and R.S.Clark, Differential Manifolds, (1970), p.140.
(46) This amounts to saing that, if c1 : I1 →M and c2 : I2 →M are solutions of (M,X, x), then there

exists an open interval I0, with 0 ∈ I0 ⊂ I1 ∩ I2, where c1|I0 = c2|I0 .
(47) See II 1.1.3.
(48) See II 1.1.2(i).
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II 1.2 Determinism

1.2.2 Lemma. Let c : I →M be a smooth curve through x0 := c(t0), with t0 6= 0. By means of
the translation

τt0 :R −→R : t 7→ t+ t0

which maps the open interval

I − t0 := τ−1
t0 (I) = {t ∈R | t+ t0 ∈ I}

onto I, define a re-parametrization of c,

c0 := c ◦ τt0 : I − t0 −→M : t 7→ c(t+ t0),

with c0(0) = x0. The curve c is a solution of (M,X, t0, x0) iff c0 is a solution of (M,X, x0).

Proof. From c0 := c ◦ τt0 , it follows that

ċ0 := Tc ◦ τ̇t0 = Tc ◦ d
dt
◦ τt0 = ċ ◦ τt0 .

So ċ = X ◦ c iff ċ ◦ τt0 = X ◦ c ◦ τt0 iff ċ0 = X ◦ c0.

The intermediate passage is the following.

1.2.3 Proposition. If c1 : I1 →M and c2 : I2 →M are solutions of Cauchy problem (M,X, x),
then they agree on the whole intersection I1 ∩ I2:

c1|I1∩I2 = c2|I1∩I2 .

Proof. Let
I0 := {t ∈ I1 ∩ I2 | c1(t) = c2(t)}.

Notice that 0 ∈ I0 ⊂ I1∩I2 and that I1∩I2, being an open interval, is a connected space. So one can
prove the statement I0 = I1 ∩ I2 by showing that I0 is both a closed and an open subset of I1 ∩ I2.
Define a smooth mapping λ : I1∩ I2 →M ×M by putting, for any t ∈ I1∩ I2, λ(t) =

(
c1(t), c2(t)

)
.

Clearly, we have I0 = λ−1(∆), where ∆ := {(x, x) ∈ M ×M} is the diagonal of M ×M . The
diagonal ∆ is a closed subset of M ×M , for M is a Hausdorff space. As a consequence, its inverse
image I0 by continous mapping λ is a closed subset of I1 ∩ I2. Let now t0 ∈ I0. Consider the
re-parametrization c10 , c20 of c1, c2 as in the previous lemma. The same lemma ensures that c10

and c20 are both solutions of Cauchy problem (M,X, x0) with x0 := c1(t0) = c2(t0). Owing to local
determinism theorem, there exists a suitably small open interval (−ε, ε) such that., c10(t) = c20(t)
for all t ∈ (−ε, ε), i.e., c1(t+t0) = c2(t+t0) for all t+t0 ∈ (t0−ε, t0 +ε) and then (t0−ε, t0 +ε) ⊂ I0.
So I0, as union of open intervals, is an open subset of I1 ∩ I2.

1.2.4 Global Determinism Theorem. For each x ∈M , there exists a unique maximal motion
of D starting from x.

Proof. Let {cα : Iα →M} be the collection of all the solutions of (M,X, x),{
ċα = X ◦ cα

cα(0) = x.

Put
Ix := ∪αIα
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II 1.2 Determinism

and note that Ix is an open interval containing zero. Owing to the previous proposition, all of the
cα’s are restrictions of the smooth curve

Φx : Ix →M

defined by
Φx|Iα := cα .

First Φx is a solution of (M,X, x), since for all t ∈ Ix we have

Φ̇x(t) = ċα(t) = X ◦ cα(t) = X ◦ Φx(t)

and
Φx(0) = cα(0) = x.

Moreover Φx is a maximal solution, for any solution is one of its restrictions and, finally, Φx is the
unique maximal solution, for the same reason.

A consequence of global determinism is the following globalization of II 1.2.1, in the case of a
covering map.

1.2.5 Corollary. Let D = (M,X) and E = (N,Y ) be dynamical systems, related to each other
by a covering map h : M → N . If, for any y ∈ N and x ∈ h−1(y), Ψy : Jy → N and Φx : Ix →M
are the maximal solutions of E and D starting from y and x respectively, then

Ψy = h ◦ Φx .

Proof. On the one hand, h ◦ Φx : Ix → N is a motion of E (owing to Lemma 1.2.1) and starts
from h ◦ Φx(0) = h(x) = y. Global determinism then ensures that it is a restriction of Ψy, i.e.,

Ix ⊂ Jy (18)

and
h ◦ Φx = Ψy|Ix . (19)

On the other hand, the lift theorem (49) ensures that there exixts a unique lift c : Jy −→M of Ψy

by h,
h ◦ c = Ψy , (20)

starting from c(0) = x. Notice that c is a motion of D, for the time derivative of (20) yields

Th ◦ ċ = Ψ̇y = Y ◦Ψy = Y ◦ h ◦ c = Th ◦X ◦ c

whence, Th being an isomorphism at any point of M , ċ = X ◦ c. If c is a motion of D starting
from x, it must be a restriction of Φx, and then

Jy ⊂ Ix . (21)

Owing to (18) and (21), one has
Ix = Jy ,

and then equality (19) reads
h ◦ Φx = Ψy .

(49) See I 3.3.6.
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1.2.6 Lemma. Let Φx : Ix →M be the maximal solution of (M,X, x). For any

x0 = Φx(t0)

(with 0 6= t0 ∈ Ix), the maximal solution of (M,X, x0) is given by

Φx0 = Φx ◦ τt0 .

Proof. Put
c0 := Φx ◦ τ0 : Ix − t0 −→M.

Owing to Lemma 1.2.2, c0 is a solution of (M,X, x0). Consequently, it is a restriction of Φx0 , i.e.,

Ix − t0 ⊂ Ix0 (22)

and
c0 = Φx0 |Ix−t0 . (23)

Now, evaluating (23) in −t0 ∈ Ix − t0, we have

Φx0(−t0) = c0(−t0) = Φx(−t0 + t0) = Φx(0) = x.

As above, x = Φx0(−t0) implies Ix ⊃ Ix0 + t0, i.e.,

Ix − t0 ⊃ Ix0 . (24)

Owing to (22) and (24), we have Ix0 = Ix − t0 and then (23) reads

Φx0 = c0 .

1.2.7 Remark. It is useful to explicitly remark that, during the proof of the above lemma, we
have obtained the following ‘time reversibility’ law

x0 = Φx(t0) ⇐⇒ x = Φx0(−t0).

With the aid of the above lemma, we shall now show that, in the phase space of D, maximal orbits
are separated.

1.2.8 Orbital Determinism Theorem. For each x ∈ M , there exists a unique maximal orbit
of D containing x.

Proof. On one hand,
x ∈ Γ := Φx(Ix)

for x = Φx(0). On the other hand, if

x ∈ Γ0 := Φx0(Ix0) ,

then x = Φx0(−t0), for some −t0 ∈ Ix0 , or equivalently x0 = Φx(t0), whence owing to Lemma
1.2.6, Ix0 = Ix − t0 and Φx0 = Φx ◦ τt0 . As a consequence

Γ0 = Φx0(Ix0) = Φx
(
τt0(Ix − t0)

)
= Φx(Ix) = Γ.
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II 1.3 Flow of a dynamical system

1.3 Flow of a dynamical system

We shall now collect all the maximal motions {Φx ; x ∈ M} of a dynamical system D = (M,X)
into one mapping

Φ : D −→M

defined on
D :=

⋃
x∈M

(
Ix × {x}

)
by putting, for any (t, x) ∈ D,

Φ(t, x) := Φx(t).

The mapping Φ is called the flow of D. Firstly, we have the following

1.3.1 Theorem. The set D is an open submanifold of R×M , and Φ is a smooth mapping.

Proof. We shall only sketch the proof, whose spirit is to show that, for any (t, x) ∈ D,
(o) there exists an open interval I 3 t and an open neighbourhood W 3 x, such that I ×W ⊂ D
and Φ|I×W is smooth.
(i) First, one proves that the above condition holds true at any (0, x) ∈ D (this is basically a
result from the theory of ordinary differential equations, taken back to M by an admissible chart
at x).
(ii) Then one proves that, for any x ∈M , non-void subset

Kx := {t ∈ Ix | condition (o) is satisfied at (t, x)}
is both (obviously) open and closed in Ix (the latter result follows (50) from (i) above and a
forthcoming pseudo-group property of Φ) and then, owing to the connectedness of Ix, Kx = Ix.
This shows that condition (o) holds true at any (t, x) ∈ D.

1.3.2 Remark. It is useful to explicitly remark that, owing to conditon (o), for any x ∈M and
t ∈ Ix, there exixts a real number ε > 0 and an open neighbourhood W of x such that, for all
x ∈W ,

(t− ε, t+ ε) ⊂ Ix .

For any t ∈R, define
Φt : Dt →M

on
Dt := {x ∈M | t ∈ Ix}

by putting, for any x ∈ Dt,
Φt(x) := Φ(t, x) = Φx(t).

1.3.3 Corollary. Dt is an open submanifold of M , and Φt is a smooth mapping.

Proof. First notice that the above Remark 1.3.2 implies that, for any x ∈ Dt, there exists an
open neighbourhood W of x such that t ∈ Ix, for all x ∈ W , i.e., W ⊂ Dt. This shows that Dt is
open in M . Moreover

Φt = Φ ◦ ϕt|Dt
where

ϕt : M −→R×M : x 7→ ϕt(x) = (t, x).

So Φt, composition of smooth mappings, is smooth.

(50) See S.Lang, Differential Manifolds, (1972), p.86.
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II 1.3 Flow of a dynamical system

1.3.4 Pseudo group property.
(i) Φ0 = idM
(ii) For any t1, t2 ∈R, on Dt1+t2 ∩Dt2 , it is

Φt1+t2 = Φt1 ◦ Φt2 .

Proof. (i) Trivial.
(ii) Let us first check that

Φt2(Dt1+t2 ∩Dt2) ⊂ Dt1 .

To this end, let x ∈ Dt2 ∩Dt1+t2 , i.e., t2, t1 + t2 ∈ Ix . Then put

x2 := Φt2(x) = Φx(t2)

and note that
t1 ∈ Ix − t2 = Ix2

whence
x2 ∈ Dt1 .

So both the left and the right hand side of (ii) are defined on Dt1+t2 ∩Dt2 (if non-empty), where
they agree, for

Φt1
(
Φt2(x)

)
= Φt1(x2) = Φx2(t1) = Φx(t1 + t2)

= Φt1+t2(x).

1.3.5 Corollary. For any t ∈R, Φt induces a diffeomorphism of Dt onto D−t.

Proof. Let us first check that Φt(Dt) ⊂ D−t. To this end, let x ∈ Dt, i.e., t ∈ Ix. Then put
xt := Φt(x) = Φx(t) and recall that Ixt = Ix − t 3 −t, whence xt ∈ D−t. Consequently, since D−t
is an open and then smoothness preserving submanifold of M , the smooth mapping Φt : Dt →M
induces a smooth mapping Φt : Dt → D−t. Now let us notice that, owing to Theorem 1.3.4, such
induced mappings satisfy

Φ−t ◦ Φt = Φ0|Dt = idDt ,
Φt ◦ Φ−t = Φ0|D−t = idD−t .

Then Φt : Dt → D−t is a smooth mapping which admits of a smooth inverse Φ−t : D−t → Dt, and
then is a diffeomorphism.

Any diffeomorphism between open subsets of M is called a local transformation in M . So Theorem
1.3.4 and Corollary 1.3.5 can be rephrased by saying that Φ defines a one-parameter pseudogroup
{Φt; t ∈R} of local transformations in M . A special case is the one of a complete vector field X on
M (or complete dynamical system), characterized by

Ix =R

for all x ∈M , or equivalently
Dt = M

for all t ∈R, or
D =R×M.
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II 1.3 Flow of a dynamical system

In this case, the flow is a one-parameter group of transformations of M , i.e., a smooth mapping

Φ :R×M −→M

such that
Φt := Φ ◦ ϕt : M −→M

satisfy
Φ0 = idM

Φt1+t2 = Φt1 ◦ Φt2 .

The family of transformations {Φt ; t ∈R} form an Abelian group of diffeomorphisms of M onto
itself. The trajectories

Φx := Φ ◦ ϕx :R −→M , x ∈M

(with ϕx : t ∈R→ (t, x) ∈R×M) are the maximal motions of the system.
This result can be inverted. Let Φ be a one-parameter group of transformations of a manifold M .
Define the infinitesimal generator of Φ as the vector field X ∈ χ(M) given, for any x ∈M , by

Xx := Φ̇x(0)

As to the smoothness of X see the following coordinate expression.

1.3.6 Proposition. The infinitesimal generator X of a one-parameter group Φ of transformations
of M , is a complete vector field on M whose flow is Φ itself.

Proof. We have to prove that, for any x ∈M ,

Φ̇x = X ◦ Φx .

To this end, let t0 ∈R, x0 := Φx(t0), Φx0 = Φx ◦ τt0 , then

X ◦ Φx(t0) = Xx0 = Φ̇x0(0) = Φ̇x ◦ τt0(0) = Φ̇x(t0) .

1.3.7 Coordinate expression. Let ξ = (x1, . . . , xm) : U →Rm be an admissible chart on M .
For any x ∈ U , the coordinate expression of Φx – restricted to a suitably small open interval I 3 0
so that Φx(I) ⊂ U – is

Φix := xi ◦ Φx|I = xi ◦ Φ ◦ ϕx|I , (i = 1, . . . ,m).

Then

Xi
x =

dΦix
dt

∣∣∣∣
0

= d(0,x)(xi ◦ Φ) (ϕ̇x(0)) = d(0,x)(xi ◦ Φ)

(
∂

∂t

∣∣∣∣
(0,x)

)
=

∂

∂t
(xi ◦ Φ)

∣∣∣∣
(0,x)

whence

Xi =
∂

∂u
(xi ◦ Φ) ◦ ϕ0|U .

Notice that the smoothness of components (Xi) ensures that X ∈ χ(M).
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II 1.3 Flow of a dynamical system

We will now find an intrinsic link between the action of the flow Φ of a given dynamical system
(M,X) on the exterior algebra ΛM and the Lie derivative dX . Indeed each local transformation

Φt : Dt →M , t ∈R

acts on ΛM by pull-back (51)

Φ∗t : ω ∈ ΛM 7→ φ∗tω ∈ ΛDt ' ΛM .

So, if ω ∈ ΛrM (in the non trivial case r ≥ 0) (52),

(Φ∗tω)x = ωΦt(x) ◦ (TxΦt)r

for any t ∈R and x ∈ Dt or, equivalently, for any x ∈ M and t ∈ Ix. Notice that, for any x ∈ M ,
the mapping

t ∈ Ix 7→ (Φ∗tω)x ∈ (ST 0
rM)x

takes its values in the vector subspace (ST 0
rM)x ⊂ (T 0

rM)x of skew-symmetric
(

0
r

)
-tensors at x.

Its (ordinary) derivative at any t0 ∈ Ix is

d

dt
(Φ∗tω)x

∣∣∣∣
t=t0

:= lim
t→t0

1
t− t0

(
(Φ∗tω)x − (Φ∗t0ω)x

)
∈ (ST 0

rM)x .

If, in particular, we put

(LXω)x :=
d

dt
(Φ∗tω)x

∣∣∣∣
t=0

= lim
t→t0

1
t

(
(Φ∗tω)x − ωx

)
we have

1.3.8 Lemma. If x0 := Φx(t0), for some t0 ∈ Ix, then

d

dt
(Φ∗tω)x

∣∣∣∣
t=t0

= (LXω)x0 ◦ (TxΦt0)r

Proof. From x0 = Φx(t0), it follows that

x = Φx0(−t0)

and then, for any t ∈ Ix,
Φx(t) = Φx0(t− t0)

that is
Φt(x) = Φt−t0(x0)

and, on Dt ∩Dt0 3 x,
Φt = Φt−t0 ◦ Φt0

(51) See I 5.1.
(52) (TxΦt)r := TxΦt × . . .× TxΦt︸ ︷︷ ︸

r times

is absent if r = 0.
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whence
TxΦt = Tx0Φt−t0 ◦ TxΦt0 .

As a consequence,

(Φ∗tω)x = ωΦt(x) ◦ (TxΦt)r = ωΦt−t0 (x0) ◦ (Tx0Φt−t0)r ◦ (TxΦt0)r = (Φ∗t−t0ω)x0 ◦ (TxΦt0)r

and then

d

dt
(Φ∗tω)x

∣∣∣∣
t=t0

=
d

dt
(Φ∗t−t0ω)x0

∣∣∣∣
t−t0=0

◦ (TxΦt0)r = (LXω)x0 ◦ (TxΦt0)r

If we put
LXω : x ∈M 7→ (LXω)x ∈ ST 0

rM

we obtain a scalar form LXω ∈ ΛrM .

1.3.9 Coordinate expression. Let, e.g., ω ∈ Λ1M . Let ξ = (xi)i=1,...,m be an admissible chart
at x. For suitably small t ∈ Ix, also Φx(t) = Φt(x) ∈ U and then (Φ∗tω)x has components in ξ,
given by (53)

(Φ∗tω)i(x) =
∂Φjt
∂xi

∣∣∣∣∣
x

ωj(Φtx) =
∂Φj

∂xi

∣∣∣∣
(t,x)

ωj
(
Φ(t, x)

)
where Φj = xj ◦ Φ| (Φ| stands for a suitable restriction of Φ). Then (54)

(LXω)i(x) =
d

dt
(Φ∗tω)i(x)

∣∣∣∣
0

=
∂2Φj

∂t∂xi

∣∣∣∣
(0,x)

ωj(x) +
∂Φj

∂xi

∣∣∣∣
(0,x)

∂ωj
∂xh

∣∣∣∣
x

∂Φh

∂t

∣∣∣∣
(0,x)

=
∂Xj

∂xi

∣∣∣∣
x

ωj(x) + δij
∂ωj
∂xh

∣∣∣∣
x

Xh(x)

=
(
∂Xj

∂xi
ωj +

∂ωi
∂xj

Xj

)
(x)

The smoothness of components (LXω)i ensures that LXω ∈ Λ1M .

Now consider
LX : ω ∈ ΛM 7→ LXω ∈ ΛM

1.3.10 Lemma.
LX = dX .

Proof. Let, e.g., ω ∈ Λ1M. The statement LX = dX , simply follows from the above coordinate
expression, which shows that, in any admissible chart, (LXω)i = (dXω)i (55).

The interest of the above point of view about Lie derivative dX , stays in the following result. An
exterior form ω ∈ ΛM is said to be Φ-invariant if for all t ∈R,

Φ∗tω = ω|Dt
(53) See I 5.1.4.
(54) See 1.3.6.
(55) See I 5.3.
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that is
(Φ∗tω)x = ωx

for all t ∈R and x ∈ Dt (or for all x ∈M and t ∈ Ix), or equivalently

d

dt
(Φ∗tω)x = 0 , ∀x ∈M

As a consequence, owing to Lemmas 1.3.8 and 1.3.9,

1.3.11 Theorem. An exterior form ω ∈ ΛM is Φ-invariant if, and only if

dXω = 0.

Now a similar reasoning on the action of Φ on vector fields, will lead us to extend the action of
LX on χM . Let Y ∈ χ(M). For any x ∈ (M), put

(Φ−t ∗Y )x := (TΦ−t ◦ Y ◦ Φt)x = TΦ−t(YΦt(x)).

Consider the mapping
t ∈ Ix 7→ (Φ−t ∗Y )x ∈ TxM

and its ordinary derivative at t = 0

(LXY )x :=
d

dt
(Φ−t ∗Y )x

∣∣∣∣
t=0

= lim
t→0

1
t

(
(Φ−t ∗Y )x − Yx

)
∈ TxM

1.3.12 Lemma. If x0 := Φx(t0), for some t0 ∈ Ix, then

d

dt
(Φ−t ∗Y )x

∣∣∣∣
t=t0

= TΦ−t0(LXY )x0 .

Proof. The same considerations as in the proof of Lemma 1.3.8, yield Φt(x) = Φt−t0(x0) for any
t ∈ Ix, and Φ−t = Φ−t0 ◦ Φ−t+t0 on D−t ∩D−t+t0 3 Φt(x). As a consequence,

(Φ−t ∗Y )x = TΦ−t0 ◦ TΦ−t+t0(YΦt−t0 (x0)) = TΦ−t0(Φ−t+t0 ∗Y )x0

and then

d

dt
(Φ−t ∗Y )x

∣∣∣∣
t=t0

= TΦ−t0

(
d

dt
(Φ−t+t0 ∗Y )x0

∣∣∣∣
t−t0=0

)
= TΦ−t0(LXY )x0

If we now put
LXY : x ∈M 7→ (LXY )x ∈ TM

we obtain a vector field LXY ∈ χ(M).
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1.3.13 Coordinate expression. In a chart ξ as in 1.3.9., (Φ−t ∗Y )x has components given by
(56)

(Φ−t ∗Y )ix = Y j
(
Φt(x)

)∂Φi

∂xj
(
− t,Φt(x)

)
and then

(LXY )i(x) = −Y i(x)
∂2Φi

∂t∂xj

∣∣∣∣
(0,x)

+
∂Y j

∂xh

∣∣∣∣
x

∂Φh

∂t

∣∣∣∣
(0,x)

∂Φi

∂xj

∣∣∣∣
(0,x)

=
(
−Y j ∂X

i

∂xj
+
∂Y i

∂xj
Xj

)
(x)

The smoothness of components (LXY )i ensures that of LXY ∈ χ(M).

Consider now
LX : Y ∈ χ(M) 7→ LXY ∈ χ(M)

1.3.14 Lemma. LX = [X, ·].

Proof. Let Y ∈ χ(M). The statement LXY = [X,Y ], simply follows from the above coordinate
expression, which shows that, in any admissible chart, (LXY )i = [X,Y ]i (57).

1.3.15 Remark. A simple calculation of components, also shows that LX : χ(M)→ χ(M) is a
derivation on the C∞(M)-module χ(M), i.e., R-linear

LX(aαY α) = aα(LXY α)

(with aα ∈R , Y α ∈ χ(M)) and Leibniz

LX(fY ) = f(LXY ) + (LXf)Y

(with f ∈ C∞(M), Y ∈ χ(M)).

The interest of the above view of Lie bracket [X, ·] as a Lie derivative on χ(M), lies in the following
result. A vector field Y ∈ χ(M) is said to be Φ-invariant if for any t ∈R,

Φ−t ∗Y = Y |Dt

that is, for all t ∈R and x ∈ Dt, or for all x ∈M and ∈ Ix,

(Φ−t ∗Y )x = Yx

or, equivalently,
d

dt
(Φ−t ∗Y )x = 0

for all x ∈M . Owing to Lemmas 1.3.12 and 1.3.14, we have

(56) See I 2.3.4.?
(57) See I 4.4.?

65
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1.3.16 Theorem. A vector filed Y is Φ-invariant iff

[X,Y ] = 0.

An interesting consequence of the above theorem, is the following

1.3.17 Corollary. Let X,Y ∈ χ(M) be complete vector fields. Their flows Φ,Ψ commute,

Φt ◦Ψs = Ψs ◦ Φt , ∀t, s ∈R

if, and only if, X,Y commute,
[X,Y ] = 0.

The proof can be drawn from the following

1.3.18 Remark. Let Y ∈ χ(M) be a complete vector field, and h : M → M a transformation
of M . As is known, Y is the infinitesimal generator of a one-parameter group {Ψs , s ∈R} of
transformations of M , and then, for any x ∈M , Yx is tangent at x to the trajectory

s ∈R 7→ Ψs(x) ∈M.

As a consequence, the push-forward of Y by h:

h∗Y := Th ◦ Y ◦ h−1 ∈ χ(M)

turns out to be the infinitesimal generator of the one-parameter group {χs , s ∈R} given by χs =
h ◦ Ψs ◦ h−1, since, for any y ∈ M , (h∗Y )y = Txh(Yy) (with x := h−1(y)) is tangent at y to the
trajectory

s ∈R 7→ h ◦Ψs(x) = χs(y) ∈M.

Therefore, Y is h-invariant:
h∗Y = Y

(i.e., Y is h-related to itself: Th ◦ Y = Y ◦ h), iff

χs = Ψs ∀s ∈R

(i.e., Ψs commutes with h: h ◦Ψs = Ψs ◦ h, for any s ∈R).

Let P be the phase portrait of dynamical system D. It splits into two disjoint parts

P = P0 ∪ P1 ,

where P0 is the set of all 0-dimensional orbits (singular points), and P1 is the set of all 1-dimensional
orbits (singularity-free). We shall here be dealing with the global geometric structure of P1. To
this purpose, first notice that, on the one hand, any Γ ∈ P1 is a subset of the carrier of X

carrX := M − P0

(which clearly is an open submanifold of M ),and being connected in its own manifold topology,
Γ is connected in its (coarser) subspace topology too. On the other hand, owing to the Orbital
Determinism Theorem, singulatity-free maximal orbits are mutually disjoint and cover carrX. So
P1 is a partition of carrX into connected subsets. More than that,
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1.3.19 Theorem. P1 is a foliation of carrX.

Proof. P1 is the phase portrait of singularity-free system DN = (N,XN ) with N := carrX. Let
V be the 1-dimensional distribution (58) on N spanned by XN . It is involutive, since for any
nowhere-vanishing Y, Z ∈ χ(N) belonging to V , we have Z = fY with f ∈ C∞(N) and then the
commutator

[Y,Z] = [Y, fY ] = (Y f)Y + f [Y, Y ] = (Y f)Y

belongs to V as well. Owing to the consequent integrability of V , we can consider the 1-dimensional
foliation F on N given by the maximal integral manifolds (leaves) of V . We shall prove the theorem
by showing that

P1 = F .
To this end, let us compare – for any x ∈ N – the unique leaf L ∈ F and the unique orbit Γ ∈ P1

containing x. Recall that Γ carries a submanifold structure which ensures the smoothness of the
mapping Φ̃x : Ip → Γ induced by maximal motion Φx : Ix → N of DN . Then, from Φx = j ◦ Φ̃x
(with j : Γ ↪→ N) we draw

Txj
( ˙̃Φx(0)

)
= Φ̇x(0) = Xx .

Since Xx 6= 0, ˙̃Φx(0) turns out to be a basis of TxΓ and then, as Xx ∈ Vx ,

Txj(TxΓ) = Vx .

So Γ is an integral manifold of V . As a consequence Γ is an open subset of L and L is then union of
such open subsets – there is one of them for each point of L – which either coincide or are disjoint.
Since L is connected, L = Γ.

2 Reduction

2.1 Invariant manifolds

Let D = (M,X) be a dynamical system. A submanifold L of M such that, for any x ∈ L, the
maximal orbit Γ through x lies in L, is called an invariant manifold of D.

2.1.1 Remark. The above invariance condition on L does correspond to the invariance of L
under the action of the flow

Φt(L ∩Dt) ⊂ L ∀t ∈R.

Let L be a smoothness preserving (59), invariant manifold. In this case, for any x ∈ L, the maximal
motion Φx : Ix → M induces a smooth curve in L, Φ̃x : Ix → L, characterized by Φx = j ◦ Φ̃x,
where j is the immersion of L into M . Smoothness allows time derivation of Φ̃x, and then

Φ̇x(0) = Txj
( ˙̃Φx(0)

)
,

that is
Xx = Txj

( ˙̃Φx(0)
)

with
˙̃Φx(0) ∈ TxL.

Hence it follows that
(58) See I 4.2.9.
(59) See I 3.1.
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2.1.2 Lemma. If L is a smoothness preserving, invariant manifold, then X is tangent to L, i.e.,

Xx ∈ Txj(TxL) ∀x ∈ L.

The above tangency condition ammounts to say that there exists, for any x ∈ L, a unique vector
(XL)x ∈ TxL, such that

Txj(XL)x = Xx ,

i.e., a vector field XL ∈ χ(L), j-related to X:

Tj ◦XL = X ◦ j.

Owing to the canonical isomorphism TxL ' Txj(TxL), for any x ∈ L, we will put

XL = X|L
and will call XL the restriction of X on L.

2.1.3 Coordinate expression. Let ξ = (x1, . . . , x`) and η = (x1, . . . , x`, c`+1, . . . , cm) be charts
on L and M , distinguished by immersion j. It is easy to check that the components of XL in ξ
satisfy

Xi
L = Xi ◦ j|U

and their smoothness ensures that of XL.

Then consider restricted system DL = (L, XL), j-related to D.

2.1.4 Theorem. The flow of DL is {Φ̃x;x ∈ L}.
Proof. Let {γx : Jx → L;x ∈ L} denote the flow of DL. On the one hand, for any x ∈ L, it is

Tj ◦ ˙̃Φx = Φ̇x = X ◦ Φx = X ◦ j ◦ Φ̃x = Tj ◦XL ◦ Φ̃x

and then, Tj being injective at any point of L,

˙̃Φx = XL ◦ Φ̃x

i.e., Φ̃x is a motion of DL (starting from x). Global determinism then ensures that

Ix ⊂ Jx (25)

and
Φ̃x = γx|Ix . (26)

On the other hand, j-relatedness of DL and D implies that j ◦ γx : Jx → M is a motion of D
(starting from x), and then a restriction of Φx, whence

Jx ⊂ Ix . (27)

Owing to (25), (27):
Ix = Jx ,

equality (26) finally reads
Φ̃x = γx

for all x ∈ L.

The above theorem shows that, if L is a smoothness-preserving, invariant manifold, the problem of
determining the partial flow {Φx;x ∈ L} of D through L, reduces to the problem of determining the
flow of DL, i.e., to integrating a differential equation on a (generally) lower dimensional manifold.
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2.1.5 Remark. Notice that N := carrX is a trivial example of smoothness preserving, invariant
manifold of D. So the partial flow {Φx;x ∈ N} of D through N is (the image under j : N ↪→ M
of) the flow of DN .

2.2 Reductions and constants of the motion

Let
π : M → B

be a submersion (60) from the phase space M to a smooth manifold B, which projects the velocity
field X onto a vector field Y ∈ χ(N) on the quotient manifold N := π(M) ⊂ B, i.e.,

Tπ ◦X = Y ◦ π.

In such a case, the submersione π is called a reduction of D = (M,X).
Now consider reduced system Dπ := (N,Y ), π-related to D. If Pπ denotes the phase portrait of
Dπ, its lift by π is

π∗(Pπ) := {L ⊂M | L is a connected component of π−1(Γπ) , with Γπ ∈Pπ}.

The main result of reduction theory is the following

2.2.1 Theorem. π∗(Pπ) is a partition of M into smoothness preserving, invariant manifolds.

Proof. Recall that Pπ is a partition of N . Moreover, it is disjoint union of sub-portraits Pπ1

and Pπ0 made of maximal orbits which meet or do not meet carrY , respectively; as is well known,
Pπ0 is a set of singletons and Pπ1 is a 1-dimensional foliation of the open submanifold carrY ⊂ N
(61). As a consequence, π∗(Pπ) is a partition of M . Moreover, it is the disjoint union of π∗

(
Pπ1

)
and π∗

(
Pπ0

)
. As to π∗(Pπ0), each one of its elements is an open subset of a fibre of π, and then

an (m − n)-dimensional embedded submanifold of M (62). As to π∗(Pπ1), it is an (m − n + 1)-
dimensional foliation of the open submanifold π−1(carrY ) ⊂M , and then each one of its elements
is an (m − n + 1)-dimensional, smoothness preserving submanifold of M (63). So, what is left, is
to prove that each manifold of π∗(Pπ) is invariant. To this end, let us denote the flows of D and
Dπ by

{Φx : Ix →M ;x ∈M} and {Ψy : Jy → N ; y ∈ N}

respectively. Now let L ∈ π∗(Pπ) be a connected component of π−1(Γπ), with Γπ ∈ Pπ. For any
x ∈ L, π-relatedness of D and Dπ implies that π ◦ Φx : Ix → N is a motion of Dπ, starting from
y := π(x) ∈ Γπ = Ψy(Jy). Then Ix ⊂ Jy and

π ◦ Φx = Ψy|Ix

whence
Φx(t) ∈ π−1

(
Ψy(t)

)
⊂ π−1(Γπ) ∀t ∈ Ix

(60) See I 3.2.
(61) See II 1.3.19.
(62) See Implicit Function Theorem I 3.2.5. Recall that n = dimN = dimB.
(63) See I 3.2.7.
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that is
x ∈ Γ := Φx(Ix) ⊂ π−1(Γπ)

or, owing to the connectedness of Γ
Γ ⊂ L.

As a consequence, in view of the theorem of the previous section, the flow of D turns out to be the
union of the disjoiunt flows of systems

{DL = (L, XL) : L ∈ π∗(Pπ)}.

This shows that a reduction π just splits up the problem of ‘integrating’ D into two problems (both
on lower dimensional manifolds):
(i) first, to integrate reduced system Dπ – at least at the level of phase potrait;
(ii) then, to integrate systems DL’s – which will consequently be called the residuals of π.
A fortunate case is one in which the reduced system or the residuals are ‘integrable’. A simple
example of integrable reduced system is the following.
Let

k : M −→ B

be a smooth mapping from the phase space M to a smooth manifold B, which projects the velocity
field X onto the null vector field Y = 0 of B, i.e.,

Tk ◦X = 0.

The mapping k is called a constant of the motion of D = (M,X).

2.2.2 Proposition. A smooth mapping k : M → B is a constant of the motion of D = (M,X)
if, and only if,

k ◦ Φx = const. ∀x ∈M.

Proof. Just notice that, for any x ∈M ,

d

dt
(k ◦ Φx) = Tk ◦ Φ̇x = Tk ◦X ◦ Φx .

So, if k ◦ Φx = const., then d
dt (k ◦ Φx) = 0 identically and, in particular,

(Tk ◦X)x =
d

dt
(k ◦ Φx)(0) = 0.

Conversely, if Tk ◦X = 0, then
d

dt
(k ◦Φx) = 0 and consequently (owing to the global determinism

of first-order equations)
k ◦ Φx = k(x) = const.

The case of a constant of the motion k, of constant maximal rank given by

rank k = dimM

is trivial since the existence of such a constant of the motion obviously amounts to say that X = 0
and then D is trivially integrable (all of its maximal motions reducing to rest).
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The case of a constant of the motion k, of constant maximal rank given by

rank k = dimB

is, on the contrary, remarkable. Indeed in this case, k is a submersion which projects X onto the
null vector field Y = 0 on quotient manifold N := k(M) ⊂ B, i.e., a reduction of D whose reduced
system Dk = (N,Y ) – trivially integrable – has a phase portrait

Pk = Pk0 = N.

Lift k∗(Pk) is then the foliation of M determined by submersion k (64). Residuals of k are then
the restrictions of D to the leaves of k – called (connected) level manifolds of k. The problem of
integrating D directly reduces to the problem of integrating the residuals on the (m-n)-dimensional
level manifolds of the constant of the motion.

2.3 First integrals

Let f ∈ C∞(M) be a real-valued smooth function on phase space M , whose Lie derivative along
velocity field X identically vanishes:

Xf = 0.

Such a function f is called a first-integral of D = (M,X). More generally, consider a system of
functions f1, . . . , fn ∈ C∞(M) or, equivalently, a smooth mapping

F = (f1, . . . , fn) : M −→Rn

2.3.1 Proposition. Functions f1, . . . , fn ∈ C∞(M) are first integrals, if and only if F =
(f1, . . . , fn) is a constant of the motion.

Proof. Recall that

dF ◦X = (df1 ◦X, . . . , dfn ◦X) = (Xf1, . . . , Xfn)

and that, at any x ∈M , TxF and dxF are related to each other by a linear isomorphism (65). So

TF ◦X = 0 ⇐⇒ dF ◦X = 0 ⇐⇒ (Xf1, . . . , Xfn) = 0.

The n-tuple (f1, . . . , fn) is said to be an independent system of functions, if, for any x ∈ M ,
(dxf1, . . . , dxf

n) is a linearly independent system of covectors.

2.3.2 Lemma. The family (f1, . . . , fn) is an independent system of functions, if and only if
F = (f1, . . . , fn) is a submersion.

Proof. Recall that, in an admissible chart ξ at x ∈M ,

(rank F )x = rank
(
∂fα

∂xi

)
x

(64) See I 3.2.7.
(65) See I 2.2.5.
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and that the rows of matrix
(
∂fα

∂xi

)
x

are the m-tuples of components in ξ of covectors (dxfα).

Hence, it follows that F is a submersion at x iff

(rank F )x = n ⇐⇒ rank
(
∂fα

∂xi

)
x

= n

⇐⇒ (dxf1, . . . , dxf
n) is linearly independent.

So, n independent first integrals (f1, . . . , fn) yield a constant of the motion F of constant, maximal
rank n, and then they reduce the problem of integrating D to the integration of the residuals on
the (m−n)-dimensional level manifolds of F . Then, the more independent first integrals one finds,
the lower dimensional residuals will be left to integrate. An extreme example is the following

2.3.3 Example. Check that, if D admits m = dimM independent first integrals, it is trivially
integrable (i.e., all of its maximal motions reduce to rest).

A more meaningful example is given in the following

2.3.4 Theorem. If D admits m-1 independent first integrals, it is integrable (by a quadrature).

Proof. Owing to the hypothesis, the problem of integrating D reduces to the integration of 1-
dimensional residuals. Let DL = (L,XL) be a residual. Since L is a 1-dimensional connected
manifold, it is diffeomorphic to R or S1

(66). In any case, one can find a covering map

h :R −→ L

and then a vector field A ∈ χ(R), h-related to XL,

Th ◦A = XL ◦ h.

As is known, the flow of DL is the h-image of the flow of (R, A) (67) and this one can be worked
out by a quadrature.

2.3.5 Note. The global integtration of (R, A) is an exercise of both calculus and dynamics.
We will be concerned with the maximal solution of Cauchy problem (R, A, x0), where vector field
A will be regarded as a smooth function A ∈ C∞(R), and initial point x0 will be assumed to be
non-singular: x0 ∈ carrA, say A(x0) > 0. Let W be the connected component (open interval) of
carrA containing x0. As the maximal orbits which meet W are all singularity-free and connected,
they lie in W . This means that W is an invariant manifold. So we are led to consider restricted
problem (W,AW , x0), where AW only takes positive values. We shall work out its maximal solution
by means of the following quadrature:

c : x ∈W 7−→ t :=
∫ x

x0

1
AW

dx ∈R .

This method defines a smooth function c on W , whose derivative is

dc

dx
=

1
AW

> 0 ,

(66) See J.Milnor, Topology from the differential viewpoint, (1965).
(67) See II 1.2.5.
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which shows that c is an injective local diffeomorphism. As a consequence the image I := c(W ) ⊂R
is a connected open subset (open interval), containing c(x0) = 0. The induced mapping c̃ : W → I
is a bijective local diffeomorphism, and then a diffeomorphism. Consider inverse diffeomorphism

γ := c̃−1 : I −→W

For any t ∈ Ix0 ,

γ̇(t) =
dγ

dt

∣∣∣∣
t

=

(
dc̃

dx

∣∣∣∣
γ(t)

)−1

=

(
dc

dx

∣∣∣∣
γ(t)

)−1

= AW
(
γ(t)

)
i.e.,

γ̇ = AW ◦ γ

and
γ(0) = x0.

So γ is a solution of (W,AW , x0). Now, maximal solution γx0 of this problem still defines (owing
to its detivative AW > 0) a diffeomorphism – extension of γ – of an open interval onto the same
image W as γ’s. This implies γx0 = γ. So γ is the maximal solution of (W,AW , x0).

3 Hamiltonian Systems

3.1 Symplectic geometry

Let M be an m-dimensional smooth manifold. An exterior 2-form ω ∈ Λ2(M) defines a vector
bundle musical morphism

[ : TM −→ T ∗M

X ∈ TxM 7−→ X[ := ωx(X, ·) ∈ T ∗xM
(27)

and then induces a C∞(M)-linear mapping (68)

[ : χM −→ χ∗M

X 7−→ X[ = ω(X, ·) = iXω
(28)

If, for each x ∈M ,
rank [x = m, (29)

then the mapping (27) is a vector bundle isomorphism, and the induced mapping (28) is a C∞(M)-
linear isomorphism. In this case, ω is said to be non-degenerate.

(68) See I 4.4.6.
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3.1.1 Coordinate expression. Evaluate the coordinate expression of the musical morphism in
natural charts ξ1, ξ1 on TM and T ∗M induced by an admissible chart ξ on M , and check that it
is smooth. Also check that the action

α = X[

(on both vectors and vector fields), is expressed, in terms of components, by

αi = Xjωji = −ωijXj

whence one draws that ω is non-degenerate if, and only if, the matrix (ωij) is non-singular.

A non-degenerate exterior 2-form ω ∈ Λ2(M), is said to be an almost-symplectic structure on M ,
and (M,ω) is called an almost-symplectic manifold.

3.1.2 Remark. If ω is an almost-symplectic structure on M , so is its restriction ω|W on any
open submanifold W ⊂M .

3.1.3 Lemma. An almost-symplectic manifold M is even-dimesional.

Proof. This is an algebraic result. For any x ∈M , consider the skew-symmetric, bilinear form

ωx : TxM × TxM −→R.

Condition (29) implies that ωx 6= 0. Then we can find two linearly independent vectors u1, v1 ∈
TxM such that ωx(u1, v1) 6= 0 or, multiplying one of the vectors by a suitable factor,

ωx(u1, v1) = 1.

Let P1 be the plane spanned by (u1, v1) and E1 := {z ∈ TxM |ωx(z, u1) = ωx(z, v1) = 0} the ωx-
orthogonal complement of P1. Notice that P1 ∩ E1 = {0} (because λu1 + µv1 ∈ E1 ⇒ λ = µ = 0)
and TxM = P1 + E1 (because, for any z ∈ TxM , z −

[
ωx(z, v1)u1 − ωx(z, u1)v1

]
∈ E1), i.e.,

TxM = P1 ⊕ E1. As we can repeat the process on E1, we choose (u2, v2) ∈ E1 such that

ωx(u2, v2) = 1

and we obtain TxM = P1 ⊕ P2 ⊕ E2, where P2 is the plane spanned by (u2, v2) and E2 the ωx-
orthogonal complement of P2 in E1. If we continue inductively, we finally obtain TxM as direct
sum of a number, say n, of planes

TxM = P1 ⊕ P2 ⊕ . . .⊕ Pn

whence
dimTxM = 2n.

3.1.4 Remark. If we order the above couples (u1, v1), . . . , (un, vn) into one system
(u1, . . . , un ; v1, . . . , vn), we obtain an ωx-orthonormal basis of TxM , where ωx has a matrix of
components given by (

0 1

−1 0

)
(0 being the null element of Rn2

and 1 the identity of GL(n,R)).

On R2n we have a canonical example of non-degenerate exterior 2-form, globally characterized (in
ξ = idR2n) by the above constant matrix of components.
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3.1.5 Example. In R2n let us denote by (qh, ph)h=1,...,n the natural coordinate functions defined
by ξ = idR2n . Put

Θ := phdq
h

and
Ω := −dΘ = dqh ∧ dph .

From the definition of exterior product we draw

Ω = dqh ⊗ dph − dph ⊗ dqh = δkh(dqh ⊗ dpk)− δhk (dph ⊗ dqk)

or
Ω = Ωhk(dqh ⊗ dqk) + Ωkh(dqh ⊗ dpk) + Ωhk(dph ⊗ dqk) + Ωhk(dph ⊗ dpk)

then

(Ωij) =

(
0 1

−1 0

)
whence

det (Ωij) = ±1

according to whether n is even or odd.

Another classical example of a non-degenerate exterior 2-form, locally characterized (in suitable
charts) by the above constant matrix of components, is the following

3.1.6 Example. Let T ∗Q be the cotangent bundle of an n-dimensional smooth manifold Q.
Denote by θQ the Liouville 1-form on T ∗Q, given, for any α ∈ T ∗Q, by

θQ(α) := α ◦ TαπQ : TαT ∗Q
TαπQ−→ TπQ(α)Q

α−→R

and let
ωQ := −dθQ

be (up to the sign) its exterior differential . If ξ = (qh) : U →Rn is an admissible chart on Q, and
ξ1 = (qh, ph) : U1 →Rn×Rn the corresponding natural chart on T ∗Q, for any α ∈ U1, we have

θQ(α) = θh(α)dαqh + θh(α)dαph

with

θh(α) := θQ(α)
(

∂

∂qh

∣∣∣∣
α

)
= α

(
TαπQ

(
∂

∂qh

∣∣∣∣
α

))
and

θh(α) := θQ(α)
(

∂

∂ph

∣∣∣∣
α

)
= α

(
TαπQ

(
∂

∂ph

∣∣∣∣
α

))
.

Check that

TαπQ

(
∂

∂qh

∣∣∣∣
α

)
=

∂

∂qh

∣∣∣∣
πQ(α)

TαπQ

(
∂

∂ph

∣∣∣∣
α

)
= 0 .
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As a consequence,

θh(α) = α
∂

∂qh

∣∣∣∣
πQ(α)

= αh = ph(α)

θh(α) = 0

or,equivalently,
θQ(α) = ph(α)dαqh

and then
θQ|U1 = phdq

h .

Hence we draw
ωQ|U1 = dqh ∧ dph

or

(ωij) =

(
0 1

−1 0

)

Now let (M,ωM ) and (N,ωN ) be almost-symplectic manifolds. A smooth mapping

Ψ : M → N

such that
ωM = Ψ∗ωN

is said to be a morphism (or isomorphism, if it is a diffeomorphism) from (M,ωM ) to (N,ωN ). An
example of isomorphism is the following.

3.1.7 Example. Let X be a vector field on an almost-symplectic manifold (M,ω), such that

dXω = 0 .

The above condition is equivalent to the Φ-invariance of ω (where Φ is the flow of X) (69) i.e.

ω|Dt = Φ∗tω|D−t ∀t ∈R

which means that, for each t ∈R, the local transformation Φt : Dt → D−t is an isomorphism of
(Dt, ω|Dt) onto (D−t, ω|D−t).
Such a vector field is called an infinitesimal automorphism of (M,ω).

(M,ωM ) is said to be locally isomorphic to (N,ωN ) if, for any x ∈M , there exists an isomorphism
of an open neighbourhood (U , ωM |U ) of x onto an open submanifold (V, ωN |V) of N .

3.1.8 Example. Consider (T ∗Q,ωQ). Each α ∈ T ∗Q belongs to the domain of a natural chart
ξ1 which is an isomorphism of (U1 , ωQ|U1) onto

(
ξ(U)×Rn , Ω|ξ(U)×Rn

)
. Then (T ∗Q,ωQ) is locally

isomorphic to (R2n,Ω).

The above example introduces the study of ‘integrability’. An almost-symplectic structure ω on a
manifold M is said to be integrable, if (M,ω) is locally isomorphic to (R2n,Ω). This amounts to
saying that there exists an atlas of admissible charts on M – the ‘local’ isomorphisms – where ω
is characterized by the same constant matrix of components as Ω’s. In this case, (M,ω) is said a
symplectic manifold, with symplectic structure ω and symplectic charts which (locally) map ω onto
Ω. An integrability condition is given in the following

(69) See II 1.3.11.
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3.1.9 Darboux theorem. An almost-symplectic structure ω on a manifold M is integrable if,
and only if, it is closed.

Proof.
(i) If ω is integrable, then for any symplectic chart (U , ξ), we have

ω|U = ξ∗
(
Ω|ξ(U)

)
whence (70)

(dω)|U = dω|U = dξ∗
(
Ω|ξ(U)

)
= ξ∗dΩ|ξ(U) = 0

(since Ω is exact) and then
dω = 0.

(ii) If ω is closed, for any spherical chart ξ with suitably small domain U ⊂ M , one can find (71)

a diffeomorphism k of the open ball ξ(U) ⊂R2n onto an open subset A ⊂R2n such that

(ξ−1)∗ω|U = k∗Ω|A

whence ω|U = ξ∗k∗(Ω|A) = (k ◦ ξ)∗Ω|A, i.e., k ◦ ξ : U → A is an isomorphism of (U , ω|U ) onto
(A,Ω|A).

3.2 Hamiltonian systems

On an almost-symplectic manifold (Mω), let us consider the musical isomorphism

[ : χ(M) −→ χ∗(M)

and its inverse
] : χ∗(M) −→ χ(M).

They transform exact (and closed) 1-forms onto the following special kinds of vector fields. Let
X ∈ χ(M) be such that

X[ = df (f ∈ C∞(M))

or, equivalently,
X = df ] (f ∈ C∞(M)).

The vector field X is called a Hamiltonian field, and f is said to be a Hamiltonian function of X.
We will put

df ] = Xf .

More generally, let X ∈ χ(M) be such that

dX[ = 0

or, equivalently,
X[|U = dfU (fU ∈ C∞(U))

X|U = df ]U (fU ∈ C∞(U))

on each subset U of an open covering of M . In this case, X is called a locally Hamiltonian field.

(70) See I 5.3.4.
(71) See R.Abraham and J.E.Marsden, Foundations of Mechanics, (1978), p.175.
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3.2.1 Proposition. Any (locally or globally) Hamiltonian field on a symplectic manifold (M,ω),
is an infinitesimal automorphism of (M,ω), and viceversa.

Proof. Just notice that condition
dX[ = 0

i.e.,
diXω = 0,

is equivalent, owing to dω = 0, to
(diX + iXd)ω = 0

i.e.,
dXω = 0.

On an almost-symplectic manifold (M,ω), it is possible to give C∞(M) an algebra structure defined
by skew-symmetric Poisson brackets

{f, g} := ω(Xf , Xg) ∀f, g ∈ C∞(M).

For any g ∈ C∞(M), Poisson brackets

{·, g} : f ∈ C∞(M) 7→ {f, g} ∈ C∞(M)

act as a Lie derivative, owing to the following

3.2.2 Proposition. For any f, g ∈ C∞(M),

{f, g} = Xgf.

Proof. Just notice that

{f, g} = ω(Xf , Xg) = iXg (iXfω) = iXgdf = dXgf.

As a consequence the Hamiltonian fields, on a symplectic manifold (M,ω), form a Lie subalgebra
of χ(M).

3.2.3 Corollary. On a symplectic manifold (M,ω),{
dX[ = 0

dY [ = 0
=⇒ [X,Y ][ = −d

(
ω(X,Y )

)
whence

[Xf , Xg] = −X{f,g}.

Proof. Just recall that (72)

[X,Y ][ = i[X,Y ]ω = (iXdY − dY iX)ω

= iX(iY d+ diY )ω − (iY d+ diY )iXω
= iXdiY ω − iY diXω − diY iXω
= iXdY

[ − iY dX[ − d
(
ω(X,Y )

)
= −d

(
ω(X,Y )

)
(72) See I 5.3.7.
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3.2.4 Coordinate expression. If (M,ω) is a symplectic manifold, in a symplectic chart ξ
we have the following specialization of coordinate expression concerning the musical morphisms.
Denote the 2n-tuples of components of a vector and a covector (field) by(

X(1)

X(2)

)
=

(
Xh

Xh

)
(h = 1, . . . , n)

(α(1), α(2)) = (αh, αh) (h = 1, . . . , n)

and recall that ω has a matrix of components(
ω(11) ω(12)

ω(21) ω(22)

)
=

(
0 1

−1 0

)

So α = X[, or X = α], iff, in any symplectic chart,

α(1) = −ω(11)X
(1) − ω(12)X

(2) = −X(2)

α(2) = −ω(21)X
(1) − ω(22)X

(2) = X(1),

that is
X(1) = α(2) , X(2) = −α(1)

or
Xh = αh , Xh = −αh .

In particular, Xf = df ] iff

Xh
f =

∂f

∂ph
, Xf h = − ∂f

∂qh
.

As a consequence

{f, g} = Xgf =
∂f

∂qh
∂g

∂ph
− ∂f

∂ph

∂g

∂qh
.

Symplectic manifolds and Hamiltonian fields are the ingredients of Hamiltonian dynamics.
A Hamiltonian system is a triplet

H = (M,ω,H)

formed by a symplectic manifold (M,ω) and a ‘Hamiltonian function’ H ∈ C∞(M). Any vector
field X ∈ χ(M) whose flow leaves ω and H invariant, i.e.,

dXω = 0 , dXH = 0

is said to be an infinitesimal automorphism of H. Among the infinitesimal automorphisms of H,
there is the Hamiltonian field XH = dH], characterized by Hamilton field equation

iXHω = dH.

The dynamical system
D(H) := (M,XH)

is said to be the dynamical system associated with H. The (maximal) solutions of the Hamilton
equation of motion

ċ = XH ◦ c

are called the (maximal) motions of H.
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3.2.5 Coordinate expression. Let ξ = (qh, ph) : U →R2n be a symplectic chart on M . A
motion γ : I → U is a solution of the Hamilton equation of motion, iff

d

dt
(qh ◦ γ) =

∂H

∂ph
◦ γ

d

dt
(ph ◦ γ) = − ∂H

∂qh
◦ γ

A function f ∈ C∞(M) is a first integral of the Hamiltonian system H = (M,ω,H), i.e., of the
associated dynamical system D(H), iff (73)

XHf = 0. (30)

Owing to the characterization of Poisson brackets as a Lie derivative (74), condition (30) reads

{f,H} = 0 (31)

which is usually expressed by saying that functions f and H are in involution. Owing to skew-
symmetry of Poisson brackets, condition (31) also reads

XfH = 0 (32)

which means that Xf is an infinitesimal automorphism of H. Any Hamiltonian field Xf satisfying
condition (32) will be called a Noether automorphism of H, and f its momentum. The above
conditions show that

3.2.6 Noether Theorem. A function f ∈ C∞(M) is a first integral of H, iff it is the momentum
of a Noether automorphism of H.

3.3 Hamiltonian reduction

Let H = (M,ω,H) be a Hamiltonian system (with dimM = 2n). Let F := (f1, . . . , fk) : M →Rk
(with k ≤ n) be a submersion, satisfying

{fα, fβ} = 0

for all α, β = 1, . . . , k, k + 1 – where fk+1 = H, i.e., F is an involution set of k independent first
integrals of H.

(i) The above involution condition says that any fβ is a first integral of each dynamical system
(M,Xfα). This amounts to saying that F is a constant of the motion of (M,Xfα), for all α =
1, . . . , k + 1. As a consequence, any leaf S of F is an invariant manifold of each (M,Xfα). This
implies that each Hamiltonian field Xfα on M is tangent to S, and then its restriction Xfα ◦ j to

S
j
↪→M defines a vector field Xα ∈ χ(S) through

Tj ◦Xα = Xfα ◦ j.

(73) See II 2.3.
(74) See II 3.2.2.
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As is known, the flow of (M,XH) through S – {Φx;x ∈ S} – is (the image under j of) the flow of the
restricted system DS := (S,X), with X := Xk+1. Remaining systems (S,Xα), with α = 1, . . . , k,
will give a contribution – under a suitably hypothesis – to a reduction of DS .

(ii) We shall now study some geometry on S. First we recall that S (connected component – and
then open submanifold – of a fibre of F ) is an embedded submanifold of M , whose dimension is

dimS = 2n− k = n+ (n− k) ≥ n ≥ k.

For any x ∈ S, the tangent space TxS will be identified (through Txj) to vector subspace (75)

kerTxF = ker dxF = ker(dxf1, . . . , dxf
k) ⊂ TxM.

Therefore, we will put
Xα = Xfα ◦ j.

When we consider
ωS := j∗ω ,

at any x ∈ S we shall also put
ωS x = ωx|TxS×TxS

and the musical morphism [s : TS → T ∗S of ωS will be thought of as acting on each v ∈ TxS by

v[s = v[|TxS .

3.3.1 Proposition. The characteristic distribution ker [s is a k-dimensional, integrable distribu-
tion on S.

Proof. For any x ∈ S, we have

ker [sx := {v ∈ TxS | v[s = 0} = TxS ∩ orthωx(TxS) (33)

where
orthωx(TxS) := {v ∈ TxM | v[|TxS = 0}

is the ωx-orthogonal complement of TxS in TxM , whose dimension is (76)

dim orthωx(TxS) = 2n− (2n− k) = k.

Consider now the vector subspace
Vx ⊂ TxS (34)

spanned by (X1
x, . . . , X

k
x ) in TxM . As (X1

x, . . . , X
k
x ) – like (dxf1, . . . , dxf

k) – is a linearly indepen-
dent system, we have

dimVx = k.

We easily see that
Vx = orthωx(TxS). (35)

(75) See I 3.2.6.
(76) See C.Godbillon, Géométrie différentielle et Mécanique Analytique, (1969), p.19 (Proposition 1.9).
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To this end, owing to the equality of dimensions, it sufficies to check that any

v = ajX
j
x ∈ Vx

belongs to orthωx(TxS), i.e.,

v[|TxS = (ajXj)[x|TxS = aj(Xj[

x)|TxS = aj(dxf j |TxS) = 0

(for TxS = ker(dxf1, . . . , dxf
k)). From (33), (34) and (35) we draw, for any x ∈ S,

ker [sx = Vx

which proves that ker [s = V is a k-dimensional distribution on S (77). Now notice that

dωS = d(j∗ω) = j∗(dω) = 0

and then, for any two vector fields A,B on S belonging to ker [s

A[s = 0 = B[s ,

we have (78)

i[A,B]ωS = (iAdB − dBiA)ωS = iAdBωS ,

since iAωS = A[s = 0. As a consequence,

i[A,B]ωS = iA(iBd+ diB)ωS = 0

for iBωS = B[s = 0 and dωS = 0. In conclusion

[A,B][s = 0

which means that
[A,B] ∈ ker [s .

This proves that the distribution ker [s is involutive, and then integrable.

As a consequence, ker [s admits maximal integral manifolds which set up a foliation of S, called
characteristic foliation of ωS .

(iii) Let us assume that the characteristic foliation of ωS is a fibration. This amounts to saying
that there exists a submersion with connected fibres

ρ : S −→ N

such that,
kerTρ = ker [s .

Notice that the fibres of ρ are k-dimensional, and then

dimN = (2n− k)− k = 2(n− k).

Moreover the exterior forms
ωS := j∗ω , HS := j∗H

turn out to be projectable on N , in view of the following

(77) See I 4.2.9.
(78) See I 5.3.7.
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3.3.2 Lemma. There exist a unique symplectic structure ωN and a unique Hamiltonian function
HN on N such that

ωS = ρ∗ωN

HS = ρ∗HN .
(36)

Proof. With the aid of admissible charts on S and N , distinguished by ρ, one can see that the
existence on N of an almost symplectic structure ωN and a Hamiltonian function HN satisfying
(36), follows from the invariance of ωS and HS under the action of all vector fields belonging to
kerTρ (i.e., tangent to the fibres of ρ):

dZωS = 0
dZHS = 0

for all Z ∈ χ(S) such that Tρ ◦ Z = 0. The uniqueness of such ωN and HN is then ensured by
condition (36) itself, and the integrability property dωN = 0 follows from ρ∗(dωN ) = d(ρ∗ωN ) =
dωS = 0. In order to prove the above invariance properties, first notice that, from kerTρ = ker [s ,
one draws

Tρ ◦ Z = 0 ⇐⇒ iZωS = 0

and then

dZωS = iZdωS + diZωS = 0.

Now notice that, from kerTρ = ker [s = V , one draws

Tρ ◦ Z = 0 ⇐⇒ Z = aiX
i

with aj ∈ C∞(S), i = 1, . . . , k, and then

dZHS = dHS ◦ Z = ai(dHS ◦Xi) = ai(dH ◦ Tj ◦Xi)

= ai(dH ◦Xfi ◦ j) = ai{H, f i} ◦ j
= 0

Now we come to the main result

3.3.3 Theorem. ρ is a Hamiltonian reduction, which projects DS onto the dynamical system
associated with Hρ := (N,ωN , HN ).

Proof. We have to prove

Tρ ◦X = XHN ◦ ρ

(recall that X ∈ χ(S) is characterized by Tj ◦X = XH ◦ j, with j : S ↪→M). To this end, we just
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start – at each x ∈ S – from Hamiltonian equation:

ωx
(
XH(x), ·

)
= dxH

ωx
(
XH(x), ·

)
◦ Txj = dxH ◦ Txj

ωx
(
Txj(Xx), Txj(·)

)
= dx(H ◦ j)

(j∗ω)x(Xx, ·) = dx(j∗H)
ωS x(Xx, ·) = dxHS

(ρ∗ωN )x(Xx, ·) = dx(ρ∗HN )

ωN ρ(x)

(
Txρ(Xx)

)
, Txρ(·)

)
= dx(HN ◦ ρ)

(Txρ ·Xx)[N ◦ Txρ = dρ(x)HN ◦ Txρ
(Txρ ·Xx)[N = dρ(x)HN

Txρ(Xx) = XHN

(
ρ(x)

)
(Tρ ◦X)(x) = (XHN ◦ ρ)(x).

So, by means of k independent first integrals in involution, not only we have a restriction from H
to DS (with a dimensional decrease of k units); we also have a Hamiltonian reduction from DS to
Hρ (with a further dimensional decrease of another k units), whose residuals will now be studied.

Let Pρ be the phase portrait of Hρ, and ρ∗Pρ its lift by ρ – whose leaves are the phase spaces of
the residuals DS = (S,X) (79). Let L be any one of these leaves.

(i) First we shall prove that

3.3.4 Lemma. Each vector field Xα, (α = 1, . . . , k, k + 1), is tangent to L.

Proof. For α = k + 1, we have Xk+1 = X and the result follows from the fact that L is a
smoothness preserving submanifold of S, invariant for DS . For α 6= k + 1, notice that, on the
one hand, for any x ∈ L, the fibre ρ−1(q) over q := ρ(x) is a connected subset of ρ−1(Γ) – with
q ∈ Γ ∈ Pρ – containing x; on the other hand, L is the connected component of ρ−1(Γ) containg
x; then ρ−1(q) ⊂ L. As a consequence, the embedding

ι : ρ−1(q) ↪→ S

whose image is contained in L, induces a smooth mapping

ι̃ : ρ−1(q) ↪→ L

such that ι = i ◦ ι̃, where i : L ↪→ S. Owing to kerTxρ = Vx, we have

Xα
x ∈ kerTxρ = Txι

(
Txρ

−1(q)
)

= Txi
(
Txι̃
(
Txρ

1(q)
))
⊂ Txi(TxL)

which is our claim.

So each vector field Xα, restricted to L, yields – through Ti – a vector field Y α on L

Ti ◦ Y α = Xα ◦ i.
(79) See II 2.2.
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As is known, the flow of DS through L is (the image under i of) the flow of residual DL := (L, Y ),
with Y := Y k+1. Remaining systems (L, Y α), with α = 1, . . . , k, will give a contribution – under
a suitable hypothesis – to the integration of DL.

(ii) Now we shall study some geometry on L. Put

` := dimL.

If L ∈ ρ∗(Pρ0),
` = (2n− k)− 2(n− k) = k.

If L ∈ ρ∗Pρ1 ,
` = (2n− k)− 2(n− k) + 1 = k + 1.

In any case

3.3.5 Lemma. The vector fields (Y 1, . . . , Y l) are a parallelization of L, i.e., for any x ∈ L,
(Y 1
x , . . . , Y

`
x ) is a linearly independent system.

Proof. Let ` = k. For any x ∈ L, (Y 1
x , . . . , Y

k
x ) is a linearly independent system, because of linear

independence of Xα
x = Txi(Y αx ), α = 1, . . . , k. Let ` = k + 1. For any x ∈ L, put ρ(x) ∈ Γ ∈ Pρ .

On the one hand, from hypothesis L ∈ ρ∗(Pρ1), it follows that

Γ ∈ Pρ1 .

On the other hand, from hypothesis per absurdum Y k+1
x = aαY

α
x (with aα ∈R and α = 1, . . . , k),

it would follow that
Xx = Txi(Yx) = aαTxi(Y αx ) = aαX

α
x ∈ kerTxρ

and then
(XHN ◦ ρ) (x) = (Tρ ◦X)(x) = Txρ(Xx) = 0

that is
Γ ∈ Pρ0 .

This is in contrast with Pρ0 ∩ Pρ1 = ∅. Then (Y 1
x , . . . , Y

k
x , Y

k+1
x ) still is a linearly independent

system.

3.3.6 Lemma. Vector fields (Y 1, . . . , Y l) commute with each other, i.e., for all α, β = 1, . . . , l ,
[Y α, Y β ] = 0.

Proof. We shall make use of relations L i
↪→S

j
↪→M relating vector fields (Y α), (Xα) and (Xfα),

and their Lie brackets too (80). We have

T (j ◦ i) ◦ [Y α, Y β ] = Tj ◦ Ti ◦ [Y α, Y β ] = Tj ◦ [Xα, Xβ ] ◦ i
= [Xfα , Xfβ ] ◦ j ◦ i = −X{fα,fβ} ◦ (j ◦ i) = 0

As j ◦ i is an immersion, we draw [Y α, Y β ] = 0.

The existence of a parallelization on L set up by commuting vector fields (Y α), is a very peculiar
geometrical feature, which strongly recalls the situation of a Euclidean space R` with its natu-
ral parallelization defined by commuting vector fields

(
∂
∂uα

)
corresponding to natural coordinate

function (yα). The only difference is that natural coordinate fields on R` are complete.
From now on we shall assume vector fields (Y 1, . . . , Y l) to be complete as well. In this hypothesis,
we have

(80) See I 4.2.8 and II 3.2.3.
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3.3.7 Theorem. There exists a covering map

h : R` −→ L

such that

Th ◦ ∂

∂yα
= Y α ◦ h (37)

for all α = 1, . . . , `.

Proof. We shall first prove that there exists a smooth mapping (local diffeomorphism) satisfying
(37). To this end, let Ψα be the flow of Y α (for all α = 1, . . . , `). As Y α is complete, Ψα is a
one-parameter group of transformations of L. As [Y α, Y β ] = 0, Ψα and Ψβ commute with each
other (81). As a consequence, if – for any y = (y1, . . . , y`) ∈R` and x ∈ L – we put

Ψ(y, x) = Ψ1
y1 ◦ . . . ◦Ψ`

y`(x),

we defene an action
Ψ :R` × L −→ L

of additive Lie group R` on L.
Now, choose a point x ∈ L and consider the corresponding trajectory

h := Ψx :R` −→ L .

For any y ∈R`, the tangent map Tyh : TyR` → Th(y)L acts on ∂
∂yα

∣∣∣
y

as follows. Notice that ∂
∂yα

∣∣∣
y

is the time derivative at t = 0 of

γ : t ∈R 7→ γ(t) := y + tδα ∈R`

(where δα is the α-th vector of the canonical basis of R`). Therefore its image

Tyh

(
∂

∂yα

∣∣∣∣
y

)

is the time derivative at t = 0 of

h ◦ γ : t ∈R 7→ h
(
γ(t)

)
= Ψx(y + tδα) ∈ L.

It is
Ψx(y + tδα) = Ψy+tδα(x) = Ψy ◦Ψtδα(x) = Ψy ◦Ψα

t (x) = Ψy ◦Ψα
x(t)

and then

Tyh

(
∂

∂yα

∣∣∣∣
y

)
= (h ◦ γ)·(0) = TxΨy ◦ Ψ̇α

x(0) = TxΨy

(
Ψ̇α
x(0)

)
= TxΨy(Y αx ) (38)

Recall that, owing to [Y α, Y β ] = 0, Y α is invariant under each action Ψβ ,

TΨβ
yβ
◦ Y α = Y α ◦Ψβ

yβ
,

(81) See I 1.3.17.
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and then it is invariant under action Ψ

TΨy ◦ Y α = Y α ◦Ψy ,

whence
TxΨy(Y αx ) = Y αΨx(y) = Y αh(y) (39)

From (38) and (39) it follows – for any y ∈R` –

Tyh

(
∂

∂yα

∣∣∣∣
y

)
= Y αh(y)

i.e., the statement.
Now we shall only list the main steps that complete the proof (82). What is left, is to prove that
trajectory h is a covering map. To this end, one first check that h(R`) is a non-void, open and
closed subset of connected manifold L, whence

h(R`) = L.

As a consequence, if
G := {y ∈R` |h(y) = x} ⊂R`

is the isotropy group of x (Lie subgroup of R`), h induces a bijection ĥ of quotient R` \G onto L
through the commutative diagram

R` \G

LR`

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
.......................
............

ĥ

...................................................................................................................................................................... .........
...

π

.............................................................................................................................................................................................................................................. ............h

(where π is the canonical projection). The mapping ĥ turns out to be a diffeomorphism. Hence
we draw that dim R` \G = ` and then dimG = 0, i.e., G is a discrete subgroup of R`. It is known
that the only discrete subgroups of R` are – up to isomorphisms – of the type

(0, . . . , 0)︸ ︷︷ ︸
r times

×Z`−r

with 0 ≤ r ≤ `. Without loss of generality we put

G = (0, . . . , 0)︸ ︷︷ ︸
r times

×Z`−r

and then we have the generalized cylinder

R` \G = (R \ 0)r × (R \ Z)`−r = Rr × T `−r

(82) For details, see R.Abraham and J.E.Marsden, Foundations of Mechanics, (1978), p.393-394.
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where
T `−r = S1 × . . .× S1︸ ︷︷ ︸

`−r times

is the (`− r)-dimensional torus. So
h :R` −→ L

is the composition of the diffeomorphism

ĥ :Rr × T `−r −→ L

with the canonical projection
π :R` −→Rr × T `−r

which is a classical covering map (83). Therefore h is a covering map.

Finally we come to the problem of integrating DL = (L, Y ). Let

aα : L −→R (α = 1, . . . , `)

be the smooth component of Y with respect to parallelization (Y 1, . . . , Y `), i.e.,

Y = aαY
α.

3.3.8 Lemma. Y is a parallel vector field, i.e., aα = const. for all α = 1, . . . , `.

Proof. From Lemma 3.3.2, which holds true also for Y :

[Y β , Y ] = 0 (∀β = 1, . . . , `)

we draw (84)

0 = LY βY = aα(LY βY
α) + (LY βaα)Y α = (Y βaα)Y α

or, (Y α) being linearly independent at each point,

0 = Y βaα = (daα)Y β (∀α, β)

that is
daα = 0 (∀α)

which, L being connected, proves our claim.

As a consequence, we can consider a simple dynamical system:

D := (R`, A)

with
A := aα

∂

∂yα

and, making use of covering map h, we see that, for any y ∈R`,

Tyh(Ay) = aαTyh

(
∂

∂yα

∣∣∣∣
y

)
= aαY

α
h(y) = Yh(y)

or equivalently
Th ◦A = Y ◦ h

that is
(83) See footnote (23).
(84) See II 1.3.14 and 1.3.15.
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II 3.4 Conjugate momenta

3.3.9 Generalized Arnold-Liouville Theorem.
The dynamical systems D and DL are h-related to each other.

We can summarize the Hamiltonian reduction in the following diagram

RkMSLR`

TMTSTLTR`

R`/G
N R

TN

XHN ........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...................
............

XH

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...................

............

X

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...................

............

aαY
α = Y

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...................

............

aα
∂
∂yα

............................................................................................................................................................................................ ............h

....................................................................................................................................................................................... ............Th ............................................................................................................................................................................................ ............ ............................................................................................................................................................................................ ............

................................................................................................................................... .........
...

π
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
.....................
............

h̃ ................................................................................................................................................................... ............

HN

..............................................................................................................
...
............

ρ
..................................................................................................................................

..
............

H........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...................
............

..............................................................................................................
...
............

Tρ

The above theorem is the main result of this section. Owing to it, the flow of DL comes out
to be the image under h of the flow of D, which is trivially known by quadratures. If we put
L =Rr × T `−r, from the translational flow of D

(t ∈R 7→ at+ y ∈R` ; y ∈R`)

with a := (aα)α=1,...,l, we draw the helicoidal flow of DL:(
t ∈R 7→ π(at+ y) ∈Rr × T `−r ; π(y) ∈Rr × T `−r

)
where

π(at+ y) =
(
a1t+ y1, . . . , art+ yr; ar+1t+ yr+1(mod 1), . . . , a` + y`(mod 1)

)
The above result then claims that the residuals of reduction ρ of DS are integrable by quadratures.
This is a generalization of a famous Jacobi-Liouville theorem, which is concerned with the case of
k = n = 1

2 dimM independent first integrals in involution F = (f1, . . . , fn). In this case, on the

one hand, for any level manifold S
j
↪→M of F , dimS = 2n−n = n; on the other hand ker [S is an

n-dimensional distribution on S, spanned by the R-linearly independent vector fields (Xα) induced
by (Xfα ◦ j) α = 1, . . . , n. So ker [S = TS. Now, TS is a trivially integrable distribution on S,
which admits only one maximal integral manifold, actually S itself; therefore, the zero-dimensional
space N of all the leaves of characteristic foliation, reduces to a singleton, and then ρ is a trivial
reduction from which only one residual arises: DL = kDS . As a consequence, if vector fields
(X1, . . . , Xn) are complete, Theorem 3.3.9 directly shows that DS is integrable by quadratures
(Jacobi-Liouville theorem).

3.4 Conjugate momenta

Let us turn back to the canonical example of Hamiltonian system H:

M =R2n , ω = dqh ∧ dph , H = H(qβ | pα, pβ)
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II 3.5 Time-dependent systems

with ignorable coordinates (qα), α = 1, . . . , k (11). It is already known that conjugate momenta
F = (pα) are independent first integrals of H – whose Hamiltonian fields d]pα) are the complete,
coordinate vector fields

(
∂
∂qα

)
. It is easy to check (e.g., through the coordinate expression of

Poisson brackets in a symplectic chart) that conjugate momenta are in involution too. So, if XH is
complete as well, we are in a position like the one assumed in secs 3.1, 3.2. Therefore the problem
of integrating H first reduces to the level manifolds of F – each of which is an affine subspace
S = {(qα, qβ ;µα, pβ)} for any choice of constants µα ∈R), naturally diffeomorphic to R2n−k =

{(qα, qβ ; pβ)}. In S, the characteristic foliation spanned by vector fields Xα = ∂
∂qα

∣∣∣
S

is the

fibration of submersion ρ : S → N (with N =R2n−2k = {(qβ ; pβ)} given by (qα, qβ ; pβ) 7→ (qβ ; pβ).
So the problem of integrating (S,XH |S) furtherly reduces to the integration of Hamiltonian system
Hρ:

N = {(qβ ; pβ)} , ωN = dqβ ∧ dpβ , HN (qβ ; pβ) = H(qβ ;µα, pβ)

where unknown functions
(
qα(t)

)
do not appear at all (ignorability). To an orbit Γ ∈ Pρ0 there

corresponds a residual DL whose phase space L = ρ−1(Γ) is a fibre of ρ and then diffeomorphic to

Rk, and whose velocity field XH |L has constant components
(

∂H
∂pα

∣∣∣
ρ−1(Γ)

)
. To an orbit Γ ∈ Pρ1

there corresponds a residual DL whose phase space H = ρ−1(Γ) is diffeomorphic to Rk×R or

Rk × S1, and whose velocity field XH |L can be lifted to the vector field ∂
∂uk+1 on Rk+1 by a

suitable covering map h :Rk+1 → L.

3.5 Time-dependent systems

A time-dependent vector field on a manifold M is a smooth mapping

X :R×M −→ TM

such that the diagram

MM

TMR×M

....................................................................................................................................................................................................................................................................................................................................................................................................................................................

....................................................................................................................................................................................................................... ............X

..............................................................................................................
...
.........
...

pr1

..............................................................................................................
...
.........
...

τM

is commutative, i.e.,
(t, x) ∈R×M 7−→ X(t, x) ∈ TxM ⊂ TM .

X will be identified with the vector field on R×M given by

X̂ : (t, x) ∈R×M 7−→
(
0t, X(t, x)

)
∈ TtR× TxM
' T(t,x)(R×M) ⊂ T (R×M)

Now, let t the time vector field on R×M given by

t : (t, x) ∈R×M 7−→ t(t, x) :=
(
d

dt

∣∣∣∣
t

, 0x

)
∈ T (R×M)

(11) See DS III 2.3.
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II 3.5 Time-dependent systems

The suspension of X is the vector field X̃ on R×M given by

X̃ := t + X̂,

i.e., for any (t, x) ∈R×M ,

X̃(t, x) =
(
d

dt

∣∣∣∣
t

, X(t, x)
)
.

If ϕx : Ix ⊂R→M is a solution of {
ϕ̇x(t) = X

(
t, ϕx(t)

)
ϕx(0) = x

(23)

then ϕx is said to be a integral curve of X through x.

3.5.1 Proposition. ψ(0,x) : I ⊂R→R×M is an integral curve of X̃ through (0, x) if, an only is,
pr1 ◦ ψ(0,x) = ιI and pr2 ◦ ψ(0,x) is an integral curve of X through x

I R×M

R

M

T (R×M) TM........................................................................................ ............
pr2

........

........

........

........

........

........

........

........

........

................

............

X̃

..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
........................
............

X

................................................................................................................. ............

pr2

.....................................................................................
...
.........
...

τM

............................................................................................................................................................................................ ............

ψ(0,x)

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

.....................
............

ψ̇(0,x)

............................................................
...
.........
...
pr1

........................................................................................................................................................................................................................... ............

.........
.........

ιI

Proof. Let
ψ(0,x)(t) =

(
a(t), b(t)

)
be an integral curve of X̃ through (0, x), i.e., for any t ∈ I,

ψ̇(0,x)(t) = X̃
(
ψ(0,x)(t)

)
(
ȧ(t), ḃ(t)

)
=

(
d

dt

∣∣∣∣
a(t)

, X
(
a(t), b(t)

))
.

As a consequence, from
da

dt

∣∣∣∣
t

= 1

it follows that
a(t) = a(0) + t.

Owing to the initial condition a(0) = 0, it must be a(t) = t and then, for all t ∈ I,{
ψ(0,x)(t) =

(
t, b(t)

)
ḃ(t) = X

(
t, b(t)

)
i.e.,

pr1 ◦ ψ(0,x) = ιI
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II 3.6 Time-dependent Hamiltonian systems

and b(t) = pr2 ◦ψ(0,x) is a solution of (23). Conversely, if ψ(0,x)(t) =
(
t, ϕx(t)

)
with ϕx(t) solution

of (23), then

ψ̇(0,x)(t) =
(
d

dt

∣∣∣∣
t

, ϕ̇x(t)
))

=
(
d

dt

∣∣∣∣
t

,
(
X ◦ ϕx

)
(t)
)

= X̃
(
t, ϕx(t)

)
=
(
X̃ ◦ ψ(0,x)

)
(t)

From the above Proposition, one can easily infer an analogous relation between maximal integral
curves of X̃ and X.
The flow of a complete, time-dipendent vector field X will then be defined by

ψ :R×M −→R×M
(t, x) 7−→ ψ(t, x) := ψ(0,x)(t)

If X = 0, i.e., X̃ = t, then ψ(t, x) = (t, x), i.e., ψ = idR×M .
Let

F :R×M1 −→R×M2

be a fiber bundle isomorphism over R, such that

X̃1 = F ∗X̃2 .

For π ∈M1, put F (0, π) = (0, x). Then, as is well known,

F ◦ ψ1
(0,π) = ψ2

(0,x).

Hence
F ◦ ψ1(t, π) = ψ2(t, x).

If ψ1 = idR×M1 ,
F (t, π) = ψ2(t, x).

3.6 Time-dependent Hamiltonian systems

A contact manifold is a pair (M, ω̃) consisting of a (2n+ 1)-dimensional manifold M and a closed
2-form ω̃ of (maximal) rank 2n on M . The characteristic bundle

Rω̃ = {v ∈ TM : ivω̃ = 0}

is a line bundle (i.e., has 1-dimensional fibres).

3.6.1 Proposition. If (M,ω) is a symplectic manifold, then (R ×M, ω̃), with ω̃ = pr∗2ω, is a
contact manifold. The bundle Rω̃ is generated by t, i.e., itω̃ = 0. If ω = dθ, then ω̃ = dθ̃ with
θ̃ = pr∗2θ.

Proof. Since ω is closed, ω̃ is closed too. For any (t, x) ∈R× P ,(
r
d

du

∣∣∣∣
t

, vx

)
∈ Rω̃(t, x) ⇐⇒ 0 = ω̃(t,x)

(
r
d

du

∣∣∣∣
t

, vx

)
= ωx(vx) ◦ T(t,x)pr2

⇐⇒ 0 = ωx(vx)
⇐⇒ vx = 0
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II 3.6 Time-dependent Hamiltonian systems

So

Rω̃(t, x) =
{(

r
d

du

∣∣∣∣
t

, 0x

)
: r ∈R

}
= span t(t, x).

As a consequence,
rank ω̃(t,x) = 2n+ 1− dimRω̃(t, x) = 2n

A time-dependent Hamiltonian system is a triple (M,ω,H) where (M,ω) is a symplectic manifold
and H ∈ C∞(R×M). For each t ∈R, put

Ht : M −→R
x 7−→ Ht(x) := H(t, x)

(note that Ht ∈ C∞(M)) and
XHt := dH]

t ∈ χ(M).

Then put
XH :R×M −→ TM

(t, x) 7−→ XHt(x)

XH – or its suspension X̃H ∈ χ(R ×M) – is called a time-dependent Hamiltonian vector field on
(M,ω).

3.6.2 Remark. For any t ∈R, let

λt : M −→R×M
x 7−→ λt(x) := (t, x)

Txλt : TxM −→ TtR× TxM
vx 7−→ (0t, vx)

so that
Txλt : TxM ↪→ T(t,x)(R×M)

Owing to
Ht = H ◦ λt ,

we have
dxHt = d(t,x)H ◦ Txλt = d(t,x)H|{0t}×TxM (3)

As a consequence, being XH(t, x) =
(
0t, XHt(x)

)
, one has, owing to (3),

XHH(t, x) = 〈d(t,x)H|XH(t, x)〉 = 〈dxHt|XHt(x)〉
= ωx

(
XHt(x), XHt(x)

)
= 0.

(4)

3.6.3 Remark.
iXH ω̃(t, x) = ωx

(
T(t,x)pr2

(
XH(t, x)

)
, ·
)
◦ T(t,x)pr2

= ωx
(
XHt(x), ·

)
◦ T(t,x)pr2

= dxHt ◦ T(t,x)pr2

(3)

=
d(t,x)H ◦ Txλt ◦ T(t,x)pr2

= d(t,x)H ◦ T(t,x)(λt ◦ pr2).

(5)
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II 3.6 Time-dependent Hamiltonian systems

3.6.4 Theorem. Let (M,ω,H) be a time-dependent Hamiltonian system.
(i) (R×M,ωH), with

ωH = ω̃ + dH ∧ dt

is a contact manifold. (If ω = dθ, then ωH = dθH with θH = θ̃ +Hdt).
(ii) X̃H is the unique vector field on R×M satisfying{

iX̃HωH = 0

iX̃Hdt = 1

where t := pr1 :R×M →R. (X̃H generates RωH ).
(iii) It is

dX̃HH =
∂H

∂t

where
∂H

∂t
= dtH.

Proof.
(i)

dωH = dω̃ + d(dH ∧ dt = dω̃ = pr∗2(dω) = 0

So ωH is closed. Let (t, x) ∈R×M and consider (1)

ωH(t, x)|{0t}×TxP | : {0t} × TxP −→
(
{0t} × TxP

)∗
.

(1) Let ω : V −→ V ∗ be a linear mapping and S ⊂ V a vector subspace. Two more linear mappings
can be obtained via restriction:

ω|S : S −→ V ∗ : u 7→ ω(u)

and
ω|S| : S −→ S∗ : u 7→ ω(u)|S .

Obviously
kerω|S ⊂ kerω|S| ,

hence
dim kerω|S ≤ dim kerω|S|
−dim kerω|S ≥ −dim kerω|S|

dimS − dim kerω|S ≥ dimS − dim kerω|S|
rankω|S ≥ rankω|S|

On the other hand
rank ω = dimω(V ) ≥ dimω(S) = rank ω|S

So
rank ω ≥ rank ω|S|.
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II 3.6 Time-dependent Hamiltonian systems

We have

ωH(t, x)|{0t}×TxP |(0t, vx) = ω̃(t, x)(0t, vx)|{0t}×TxM +
(
d(t,x)t(0t, vx)

)
d(t,x)H|{0t}×TxP

−
(
d(t,x)t(0t, vx)

)
d(t,x)H|{0t}×TxM

= ω̃(t, x)(0t, vx)|{0t}×TxM
= ωx

(
T(t,x)pr2(0t, vx)

)
◦ T(t,x)pr2|{0t}×TxM

= ωx(vx) ◦ ι

where ι : {0t} × TxM → TxM . Hence

rank ωH(t, x) ≥ rank ωH(t, x)||{0t}×TxM | = rank ω(x) = 2n.

(ii)
iX̃HωH = iX̃H (ω̃ + dH ∧ dt)

= iX̃H ω̃ +
(
iX̃HdH

)
dt−

(
iX̃Hdt

)
dH

(∗)

Let us consider one term at a time

iX̃H ω̃ = i(t+XH)ω̃ = itω̃+ = iXH ω̃

itω̃(t, x) + ωx
(
T(t,x)pr2 · t(t, x)

)
◦ T(t,x)pr2 = 0

and, owing to (5)
iXH ω̃ = d(t,x)H ◦ T(t,x)(λt ◦ pr2)

so, we have
iX̃H ω̃(t, x) = d(t,x)H ◦ T(t,x)(λt ◦ pr2) (a)

iX̃HdH = i(t+XH)dH = itdH + iXHdH = itdH = dtH and then(
iX̃HdH

)
dt = dtHdt (b)

iX̃Hdt = i(t+XH)dt = itdt+ iXHdt = 1 and then(
iX̃Hdt

)
dH = dH. (c)

As a consequence (1)

iX̃HωH(t, x) = d(t,x)H ◦ T(t,x)(λt ◦ pr2) + 〈d(t,x)H|t(t, x)〉dt− d(t,x)dH = 0.

The second condition in (ii) is just (7). Since the characteristic bundle is one dimensional, X̃H is
unique.
(iii) Owing to (6) it is

dX̃HH = iX̃HdH = dtH.

(1) Notice that
〈d(t,x)H|t(t, x)〉dt = d(t,x)H ◦ T(t,x)(λt ◦ pr1)

and that
T(t,x)(λt ◦ pr2) + T(t,x)(λt ◦ pr1) = idTtR×TxM.
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II 3.7 Canonical transformations

3.7 Canonical transformations

Let (M1, ω1) and (M2, ω2) be symplectic manifolds. Let

RR

R×M2R×M1

................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................. ............F

..............................................................................................................
...
.........
...

t1

..............................................................................................................
...
.........
...

t2

with t1 = F ∗t2, be a fibre bundle isomorphism over R. Put, for any t ∈R,

Ft := pr2 ◦ F ◦ λt : M1 −→M2 .

3.7.1 Theorem. The following statements are equivalent
(i) For any t ∈R, Ft is a symplectic diffeomorphism and, for any H ∈ C∞(R ×M2), there is a
K ∈ C∞(R×M1) s.t.

F ∗X̃H = X̃K .

(ii) There exists a KF ∈ C∞(R×M1) such that

F ∗ω̃2 − ω̃1 − dKF ∧ dt1 = 0,

i.e., if ω̃1 = −dθ̃1 and ω̃2 = −dθ̃2,

d
(
F ∗θ̃2 − θ̃1 +KF dt1

)
= 0.

(iii) There exists a KF ∈ C∞(R×M1) such that, for all H ∈ C∞(R×M2),

F ∗X̃H = X̃K ,

with
K := F ∗H +KF .

F is said to be a canonical transformation if it satisfies one of the above statements.

3.7.2 Remark. Let F = (idR, f), with f : M1 −→M2. Then F is a canonical transformation iff
f is a symplectic diffeomorphism.

Proof. From the commutativity of the diagram

M2M1

R×M2R×M1

.................................................................................................................................................................................................................................... ............

f

................................................................................................................................................................................................. ............
F = (idR, f)

..............................................................................................................
...
.........
...

pr2

..............................................................................................................
...
.........
...

pr2

96



II 3.8 Hamilton-Jacobi theory

i.e., pr2 ◦ F = f ◦ pr2, it follows that

Ft = pr2 ◦ F ◦ λt = f ◦ pr2 ◦ λt = f.

So, if F is a canonical transformation, then f is a symplectic diffeomorphism. Conversely, let f be
a symplectic diffeomorphism, i.e.,

f∗ω2 = ω1 ,

then, again from the commutativity of the above diagram, we have

F ∗ω̃2 = F ∗pr∗2ω2 = (pr2 ◦ F )∗ω2 = (f ◦ pr2)∗ω2 = pr∗2f
∗ω2 = pr∗2ω1 = ω̃1

and then (ii) is satisfied with KF = 0.

Let (M1, ω1, H) be a time-dependent Hamiltonian system. A canonical transformation F reduces
H to equilibrium if, and only if, K = 0, i.e.,

H ◦ F +KF = 0.

In that case, as XK = 0 (i.e. X̃K = t1), one has

ΨK = idR×M1

and then F gives the flow of XH :
ΨH(t, x0) = F (t, π0),

with π0 = F−1
0 (x0), F0 = pr2 ◦ F ◦ λ0. A method for obtaining such an F is the Hamilton-Jacobi

theory, that we are going to discuss in the following, where we will specialize to the case of a
nonautonomous Hamiltonian vector field XH on a cotangent bundle M2 := T ∗Q2.

3.8 Hamilton-Jacobi theory

Let dimQ1 = dimQ2

M1 := T ∗Q1, with coordinates (xh, πh)

M2 := T ∗Q2, with coordinates (qh, ph)

Let
V : R×Q1 ×Q2 −→R

(t, x, q) 7−→ V (t, x, q) .

Put
f : R×Q1 ×Q2 −→R× T ∗Q1

(t, x, q) 7−→ (t, x, π) ,

π := −dxV(t,q) ∈ T ∗xQ1 ,

with coordinate expression
(t, xk, qk) 7−→ (t, xh, πh) ,

πh := − ∂V
∂xh

(t, xk, qk) .

Put
g : R×Q1 ×Q2 −→R× T ∗Q2

(t, x, q) 7−→ (t, q, p) ,
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II 3.8 Hamilton-Jacobi theory

p := dqV(t,x) ∈ T ∗qQ2 ,

with coordinate expression
(t, xk, qk) 7−→ (t, qh, ph) ,

ph :=
∂V

∂qh
(t, xk, qk) .

Assume that f and g be fibre bundle isomorphisms over R and put

F := g ◦ f−1 :R×M1 −→R×M2 .

3.8.1 Theorem. F is a canonical transformation.

Proof. We shall show that 5.3.1 (ii) holds. Firstly, we have

F ∗θ̃2 = (f−1)∗
(
g∗(phdqh)

)
= (f−1)∗

(
g∗ph ∧ g∗dqh

)
= (f−1)∗

(
ph ◦ g ∧ d(qh ◦ g)

)
= (f−1)∗

(
∂V

∂qh
dqh
)
.

Secondly, we put

KF := (f−1)∗
∂V

∂t
.

Then
F ∗θ̃2 − θ̃1 +KF dt = (f−1)∗dV = d

(
(f−1)∗V

)
,

hence our claim.

Now consider a (time-dependent) Hamiltonian system (T ∗Q2, H). Owing to 5.3.1 (iii), one has

F ∗X̃H = X̃K ,

with
K = F ∗H +KF ,

F being the canonical transformation generated by V , and

KF = (f−1)∗
∂V

∂t
.

F reduces H to equilibrium, i.e., K = 0, if, and only if

H ◦ g ◦ f−1 +
∂V

∂t
◦ f−1 = 0,

i.e., V is a solution of the Hamilton-Jacobi equation associated with H:

H ◦ g +
∂V

∂t
= 0,

namely,

H (t, q, dqVt,x) +
∂V

∂t
(t, x, q) = 0,

with coordinate expression

H

(
t, qh,

∂V

∂qh

)
+
∂V

∂t
= 0.

A solution V of the H-J equation, satisfying the above conditions on f and g, is called a complete
integral. As is known, the flow Ψ of XH is the transformed by F of the flow Φ ◦ f of XK . As
XK = 0 (i.e. X̃K = t1 ), the flow of XK is idR×M1 . As a consequence, the flow of XH is given by
F itself. Therefore
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II 3.8 Hamilton-Jacobi theory

3.8.2 Theorem. If the H-J equation associated with H admits a complete integral V , the
canonical transformation F generated by V gives the flow of (T ∗Q2, H).

If H ∈ C∞(T ∗Q2), Poincaré’s method suggests to look for a complete integral with separate
variables (q, t), i.e.,

V (t, x, q) = W (x, q)− tE(x).

As
dqV(t,x) = dq (Wx − tE(x)) = dqWx

and
∂V

∂t
(t, x, q) = −E(x),

the H-J equation reduces to
H(q, dqWx) = E(x),

or
H ◦ dWx = E(x),

whose coordinate expression is - for all x ∈ Q1 -

H

(
qh,

∂W

∂qh

)
= E .

3.8.3 Coordinate expression.
One has to be aware that in general, generating functions are defined only locally, and indeed, the
global theory of generating functions and the associated global Hamilton-Jacobi theory is more
sophisticated. Since our goal is to give an introductory presentation of the theory, we will do many
of the calculations in coordinates. Recall that in local coordinates, the conditions for a generating
function are written as follows. We seek a complete integral of the H-J equation, i.e., a solution of
the nonlinear partial differential equation

H

(
t, q,

∂S

∂qh
(t, q, x)

)
+
∂S

∂t
(t, q, x) = 0

for the function S relative to the variables (t, q) in an open domain of Rn+1 depending parametri-
cally on x in some open domain of Rn. Moreover, we require that

det
(

∂2S

∂qh∂xk

)
6= 0

in the above-mentioned domains. By the implicit function theorem, this condition is equivalent to
local invertibility of the canonical transformation generated by S. Indeed,

ph = ph(t, q, x) :=
∂S

∂qh
(t, q, x),

πh = πh(t, q, x) := − ∂S

∂xh
(t, q, x).

The condition on the Jacobian determinant is equivalent to

det
(

∂2S

∂qh∂xk

)
= det

(
∂ph
∂xk

)
6= 0,
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II 3.8 Hamilton-Jacobi theory

which assures that the first equation can be (locally) inverted with respect to x, namely,

xk = xk(t, q, p).

By plugging this equation in the second equation, one gets

πk = π̂k(t, q, p) := πh(t, q, x(t, q, p)).

The last two equations are the local representatives of the canonical transformation (t, q, p) 7→
(t, x, π). Again, the condition on the Jacobian determinant assures its invertibility (prove it!).

3.8.4 Remarks.
(i) In general, the function S develops singularities, or caustics, as time increases, so it must be
used with care. This process is, however, fundamental in geometric optics and in quantization.
Moreover, one has to be careful with the sense in which S generates the identity at t = 0, as it
might have singular behavior in t. For example, it is very easy to verify that

S(t, q, x) =
1
2t
|q − x|

generates a canonical transformation that is the identity at t = 0.
(ii) Here is another link between the Lagrangian and Hamiltonian view of the Hamilton-Jacobi
theory. Define S for t close to a fixed time t0 by the action integral

S(t, q, x) =
∫ t

t0

L (s, q(s), q̇(s)) ds,

where q(s) is the solution of the Euler-Lagrange equation equaling x at time t0 and equaling q at
time t. One can show that S satisfies the Hamilton-Jacobi equation. See Arnold [1989, Section
4.6] and Abraham and Marsden [1978, Section 5.2] for more information.
(iii) If H is time-independent and W satisfies the time-independent Hamilton-Jacobi equation

H

(
q,
∂W

∂qh
(q, x)

)
= E(x),

then S(t, q, x) = W (q, x)−tE(x) satisfies the time-dependent Hamilton-Jacobi equation, as is easily
checked. When using this remark, it is important to remember that E is not really a constant, but
it equals H(x, π), the energy evaluated at (x, π), which will eventually be the initial conditions.
We emphasize that one must generate the time t-map using S rather than W . The coordinate
expression of the canonical transformation F generated by W reads qh = qh(t, xk, πk) ,

ph = ∂W
∂qh

(xk, qk).

The first equation is obtained by solving

πk = −∂W
∂xk

(xh, qh) + t
∂E

∂xk
(xh)
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II 3.9 The method of separation of variables.

with respect to qh, while the second equation is evaluated at the same value of qk of the first one.
The flow ΨH

(q,p)(t) = F (t, x, π) has the same expression, where (x, π) := F−1
0 (q, h) expressed byxk = xk(qh, ph),

πk = −∂W
∂xk

(xh, qh),

where the first equation is obtained by solving

πh =
∂W

∂qh
(xk, qk)

with respect to xk, while the second equation is evaluated at the same value of xh of the first one.
(iv) The Hamilton-Jacobi equation is crucial in the study of the quantum-classical relationship.
(v) The action function S is a key tool used in the proof of the Arnold-Liouville theorem, which
gives the existence of action angle coordinates for systems with integrals in involution; see Arnold
[1989] and Abraham and Marsden [1978] for details.

3.9 The method of separation of variables.

It is sometimes possible to simplify and even solve the Hamilton-Jacobi equation by what is often
called the method of separation of variables. Assume that in the Hamilton-Jacobi equation the
coordinate q1 and the term ∂S/∂q1 appear jointly in some expression f(q1, ∂S/∂q1) that does not
involve q2, . . . , qn, t. That is, we can write H in the form

H(t, q1, q2, . . . , qn, p1, p2, . . . , pn) = Ĥ
(
t, f(q1, p1), q2, . . . , qn, p2, . . . , pn

)
for some smooth functions f and Ĥ. Then one seeks a solution of the Hamilton-Jacobi equation
in the form

S(t, q, x) = S1(q1, x1) + Ŝ(t, q2, . . . , qn, x1, . . . , xn).

We then note that if S1 solves

f

(
q1,

∂S1

∂q1

)
= C(x1)

for an arbitrary function C and if Ŝ solves

Ĥ

(
t, C(x1), q2, . . . , qn,

∂Ŝ

∂q2
, . . . ,

∂Ŝ

∂qn

)
+
∂Ŝ

∂t
= 0,

then S solves the original Hamilton-Jacobi equation. In this way, one of the variables is eliminated,
and one tries to repeat the procedure. Note that the first equation is an ordinary first order
differential equation for S1 and can be solved by a quadrature. The second equation is again of
the H-J form, but with one variable less. When the above procedure can be iterated n+ 1 times,
by separating out all space and time variables, the evaluation of a complete integral of the H-J
equation reduces to n+ 1 quadratures. In such a case the Hamiltonian system is called separable.
In fact, a closely related situation occurs when H is independent of time and one seeks a solution
of the form

S(t, q, x) = W (q, x) + S1(t).
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II 3.9 The method of separation of variables.

The resulting equation for S1 has the solution S1(t) = −Et, and the remaining equation for W is
the time-independent Hamilton-Jacobi equation. If q1 is a cyclic variable, that is, if H does not
depend explicitly on q1, then we can choose f(q1, p1) = p1, and correspondingly, we can choose
S1(q1, x1) = C(x1)q1. In general, if there are k cyclic coordinates q1, q2, . . . , qk, we seek a solution
to the Hamilton-Jacobi equation of the form

S(t, q, x) =
k∑
j=1

Cj(xj)qj + Ŝ
(
qk+1, . . . , qn, x1, . . . , xn

)
,

with pi = Ci(xi), i = 1, . . . , k, being the momenta conjugate to the cyclic variables. We note that
in order to obtain a separable H-J equation one should choose an appropriate coordinate chart,
adapted to the symmetries of the Hamiltonian system under consideration.

3.9.1 Example: free particle.
From the Hamiltonian

H =
1

2m
(p2

1 + p2
2 + p2

3),

one gets

1
2m

[(
∂S

∂q1

)2

+
(
∂S

∂q2

)2

+
(
∂S

∂q3

)2
]

+
∂S

∂t
= 0.

It is natural to use the method of separation of variables and seek a solution of the form

S(t, q1, q2, q3) = X(q1) + Y (q2) + Z(q3) + T (t).

The H-J equation reads

1
2m

[(
dX

dq1

)2

+
(
dY

dq2

)2

+
(
dZ

dq3

)2
]

+
dT

dt
= 0,

whence
dX

dq1
= x1,

dY

dq2
= x2,

dZ

dq3
= x3,

dT

dt
= −x

2
1 + x2

2 + x2
3

2m
,

whose integration yields

S(t, q1, q2, q3, x1, x2, x3) = x1q1 + x2q2 + x3q3 −
x2

1 + x2
2 + x2

3

2m
t.

S satisfies the condition of invertibility and generates the canonical transformation

xi = pi, πi = −qi +
x1

m
t, (i = 1, 2, 3).

Thus, xi are the conserved momenta and −πi the initial positions.
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II 3.9 The method of separation of variables.

3.9.2 Example: harmonic oscillator.
The Hamiltonian of a one dimensional harmonic oscillator is

H =
1

2m
(p2 +m2ω2q2),

whence the H-J equation reads

1
2m

[(
∂S

∂q

)2

+m2ω2q2

]
+
∂S

∂t
= 0.

By setting
S(t, q, E) = W (q, E)− Et,

we get
1

2m

[(
∂W

∂q

)2

+m2ω2q2

]
= E,

whence

W (q, E) =
√

2mE
∫ q

0

√
1− mω2u2

2E
du.

Now, W (q, E) is the generating function of a canonical transformation from (q, p) to (E, π) where

p =
∂W

∂q
, π = −∂W

∂E
.

From the second equation we get

π = −1
2

√
2m
E

∫ q

0

du√
1− mω2u2

2E

= − 1
ω

arcsin

(√
mω2

2E
q

)
,

whose inverse is

q = −
√

2E
mω2

sin(ωπ).

The first equation defining the canonical transformation reads

p =
√

2mE

√
1− mω2q2

2E
=
√

2mE cos(ωπ).

We recall that in the new coordinates the Hamiltonian reads

K(E, π) = H(q(E, π), p(E, π)) = E

and thus E is conserved, while
π(t) = π0 − t,

whence the equations of motion in the original coordinates follow

q(t) =

√
2E
mω2

sin(ω(t− π0)), p(t) =
√

2mE cos(ω(t− π0)).

We note that (E, π0) is the image of the initial point (q0, p0), namely

E =
1

2m
(p2

0 +m2ω2q2
0) π0 = − arctan(mωq0/p0),

thus confirming that E is nothing but the conserved energy of the oscillator.
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3.9.3 Example: separable systems in spherical coordinates.
Consider a mass point m in R3 subjected to conservative forces derived by a potential energy V .
The representative of the Hamiltonian function in the cartesian coordinate system reads

H =
1

2m
(
p2
x + p2

y + p2
z

)
+ V (x, y, z).

By introducing spherical coordinates

x = r sinϑ cosϕ, y = r sinϑ sinϕ, z = r cosϑ,

with r > 0, 0 ≤ ϕ < 2π and 0 < ϑ < π, the representative of the Hamiltonian becomes

H =
1

2m

(
p2
r +

p2
ϑ

r2
+

p2
ϕ

r2 sin2 ϑ

)
+ V (r, ϑ, ϕ).

Suppose that in spherical coordinates the potential has the form

V (r, ϑ, ϕ) = a(r) +
b(ϑ)
r2

+
c(ϕ)

r2 sin2 ϑ
.

Then, the H-J equation

1
2m

[(
∂S

∂r

)2

+
1
r2

(
∂S

∂ϑ

)2

+
1

r2 sin2 ϑ

(
∂S

∂ϕ

)2
]

+ V (r, ϑ, ϕ) +
∂S

∂t
= 0

is separable by setting

S(t; r, ϑ, ϕ;αr, αϑ, αϕ) = W1(ϕ;αϕ) +W2(ϑ;αϑ, αϕ) +W3(r;αr, αϑ, αϕ)− E(αr, αϑ, αϕ)t.

Indeed, by plugging the above Ansatz into the H-J equation one gets

1
2m

(
∂W3

∂r

)2

+ a(r) +
1

2mr2

{(
∂W2

∂ϑ

)2

+ 2mb(ϑ) +
1

sin2 ϑ

[(
∂W1

∂ϕ

)2

+ 2mc(ϕ)

]}
= E,

which splits into a system of first order ordinary differential equations

(
∂W1

∂ϕ

)2

+ 2mc(ϕ) = e1(αϕ),(
∂W2

∂ϑ

)2

+ 2mb(ϑ) +
e1(αϕ)
sin2 ϑ

= e2(αϑ, αϕ),

1
2m

(
∂W3

∂r

)2

+ a(r) +
e2(αϑ, αϕ)

2mr2
= E(αr, αϑ, αϕ).

The integration of the system yields

W1 =
∫
dϕ
√
e1(αϕ)− 2mc(ϕ),

W2 =
∫
dϑ

√
e2(αϑ, αϕ)− 2mb(ϑ)− e1(αϕ)

sin2 ϑ
,

W3 =
∫
dr

√
2m
[
E(αr, αϑ, αϕ)− a(r)− e2(αϑ, αϕ)

2mr2

]
.

The above equations particularize in the very important situation of a particle in a central potential
V (r). In such a case one can set c(ϕ) = b(ϑ) = 0 and obtain W1(ϕ) = pϕφ. The coordinate ϕ
is cyclic and pϕ = ±√e1, the z-component of the angular momentum, is conserved. Moreover,
e2 = p2

ϕ/ sin2 ϑ+ p2
ϑ is the square modulus of the angular momentum which is also conserved.
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4 Introduction to canonical perturbation theory

4.1 Preliminaries

4.1.1 Definition. A Hamiltonian system is called quasi integrable if the Hamiltonian function is
given by

h(q, p, ε) = h0(q, p) + εh1(q, p),

where (q, p) ∈ U , 0 ≤ ε ≤ 1 and h0 is the Hamiltonian of a completely integrable system on a
time-invariant domain U ⊂ T ∗M .

4.1.2 Remarks.
(i) Since h0 is is the Hamiltonian of a completely integrable system, there exists a canonical
transformation to action-angle variables (q, p) 7→ (ϕ, J), such that the transformed Hamiltonian
only depends on J , namely

H(ϕ, J, ε) = H0(J) + εH1(ϕ, J),

with (ϕ, J) ∈ Tn ×B, B ⊂Rn open.
(ii) For ε = 0 the system is integrable and the Hamilton equations read

J̇ = 0, ϕ̇ = ω(J),

where
ω(J) = ∂JH0(J).

The phase space T ∗M is foliated into invariant tori labeled by actions which are first integrals.
The motions are bounded and quasi periodic. Namely

J(t) = J(0), ϕ(t) = ω(J(0))t+ ϕ(0).

(iii) When the perturbation is switched on, for ε 6= 0, the action variables are no longer constants
of the motion and one gets

J̇ = −ε∂ϕH1(ϕ, J).

Therefore,
|J(t)− J(0)| < ‖∂ϕH1‖ εt,

where ‖f‖ = sup(ϕ,J)∈Tn×B |f(ϕ, J)|.

4.1.3 Remark. The above is a very crude estimate. It is completely useless for time larger than
O(1). In fact it does not take into account the fact that ∂ϕH1 is a multiply periodic function of ϕ
with zero mean.
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4.1.4 Example. The Hamiltonian H(ϕ, J, ε) = J + ε cosϕ, with (ϕ, J) ∈R2 produces the
Hamilton equations

J̇ = ε sinϕ, ϕ̇ = 1,

whose solutions are

J(t) = J(0) + ε (cosϕ(0)− cos(ϕ(0) + t)) , ϕ(t) = ϕ(0) + t.

Therefore
|J(t)− J(0)| ≤ 2ε

for all t, and not only for t = O(1).

4.2 Perturbation theory

The aim of perturbation theory is to find a canonical transformation that shifts the dependence
on ϕ at order ε2. Then iterate up to the desired order.

4.2.1 Remark. Suppose there exists a canonical transformation that reduces the perturbed
Hamiltonian into a completely integrable one. From its generating function W (ϕ, I, ε) we would
get

J = ∂ϕW (ϕ, I), ψ = ∂IW (ϕ, I),

that yield the canonical transformation (ϕ, J) 7→ (ψ, I). Therefore, one would obtain the Hamilton-
Jacobi equation

H(ϕ, ∂ϕW, ε) = H0(∂ϕW ) + εH1(ϕ, ∂ϕW ) = H̃(I, ε).

4.2.2 Remark. Our requirement is that

H̃(ψ, I, ε) = H̃0(I) + εH̃1(I) + ε2F (ψ, I, ε).

Therefore we seek for a canonical transformation ε-near to the identity

W (ϕ, I, ε) = I · ϕ+ εW (1)(ϕ, I)

whence

H0(I) + ε∂IH0(I) · ∂ϕW (1)(ϕ, I) + εH1(ϕ, I) +O(ε2) = H̃0(I) + εH̃1(I) +O(ε2).

At zero order in ε
H̃0(I) = H0(I).

At first order we get

4.2.3 Definition. The fundamental equation of canonical perturbation theory is

ω(I) · ∂ϕW (1)(ϕ, I) +H1(ϕ, I) = H̃1(I),

in the unknown functions W (1)(ϕ, I) and H̃1(I).
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4.2.3 Remarks.
(i) The fundamental equation is a first order partial differential equation on the torus Tn, and
perturbation theory always yields equations of the above form.
(ii) Let us assume that the fundamental equation has a solution W (1)(ϕ, I) and H̃1(I). Then, in
the new canonical variables we would get from

İ = O(ε2), ψ̇ = ω(I) + ε∂IH̃1(I) +O(ε2),

whence for t ∈ [0, ε−1]
|I(t)− I(0)| = O(ε).

Therefore
|J(t)− J(0)| = |J(t)− I(t)|+ |I(t)− I(0)|+ |I(0)− J(0)| = O(ε),

since |J(t)− I(t)| = O(ε) uniformly in t.

4.2.4 Formal solution.
(i) Since H1 depends periodically on ϕ, it can be expanded in a Fourier series:

H1(ϕ, J) =
∑
k∈Zn

Ĥk(J) eik·ϕ,

where
Ĥk(J) =

∫
Tn

e−ik·ϕH1(ϕ, J)
dnϕ

(2π)n
,

and analogously for W (1),
W (1)(ϕ, J) =

∑
k∈Zn

Ŵ
(1)
k (J) eik·ϕ,

with
Ŵ

(1)
k (J) =

∫
Tn

e−ik·ϕW (1)(ϕ, J)
dnϕ

(2π)n
.

(ii) By taking the average of the fundamental equation over Tn, one gets

H̃1(I) = Ĥ0(I),

while the other Fourier components, with k 6= 0, satisfy the equation

ik · ω(I) Ŵ (1)
k (I) + Ĥk(I) = 0,

which is formally solved by

W (1)(ϕ, I) = −
∑
k 6=0

eik·ϕ

ik · ω(I)
Ĥk(I). (∗)

(iii) Then
H̃(ϕ, I, ε) = H0(I) + εĤ0(I) + ε2F (ϕ, I, ε),

where
F (ϕ, I, ε) = ε−2

[
H0

(
I + ε∂ϕW

(1)
)
−H0(I)− εω · ∂ϕW (1)

]
+ ε−1

[
H1

(
ϕ, I + ε∂ϕW

(1)
)
−H1(ϕ, I)

]
.
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4.2.5 Remark. The denominator of (*) vanishes whenever the frequencies are rationally de-
pendent. But, even when the ratios of the frequencies are irrational, the denominators k · ω may
become arbitrarily small, and the convergence of the formal series (*) must be checked. This is the
problem of small denominators.

4.2.6 Theorem. Let H1 be analytic on the domain |Imϕj | < ρ and |Jj | < r, (j = 1, . . . , n). If
there exist τ > n− 1 and c > 0 such that

|k · ω| ≥ c|k|−τ , ∀k 6= 0, (D)

where |k| = |k1| + . . . + |kn|, k ∈ Zn, then the series (*) converges to an analytic function on the
same domain , and the following estimates holds:

‖W (1)‖ρ−δ,r ≤ c̄δ−τ−n‖H1‖ρ,r, 0 < δ < ρ < 2,

where ‖f(ϕ, J)‖ρ,r = sup|Imϕj |<ρ sup|Jj |<r |f(ϕ, J)| and c̄ = c−123n(2τ/e)τ .

Proof. SinceH1 is periodic in ϕ, we can shift the path of integration for ϕj so that Imϕj = ρ signkj .
There results

‖Ĥk‖r = sup
|Ji|<r

∣∣∣∣∫
Tn

e−ik·ϕe−|k|ρH1(ϕ, J)
dnϕ

(2π)n

∣∣∣∣ ≤ e−|k|ρ‖H1‖ρ,r.

This means that

‖W (1)‖ρ−δ,r ≤ sup
|Imϕi|<ρ−δ

∑
k 6=0

∣∣∣eik·ϕ−|k|ρ∣∣∣ c−1|k|τ‖H1‖ρ,r

≤
∑
k 6=0

e−|k|δc−1|k|τ‖H1‖ρ,r.

In order to bound the sum over k, use the inequalities

|k|τ ≤
(

2τ
eδ

)τ
e|k|δ/2, ∀τ > 0, ∀δ > 0,

and ∑
k∈Z

e−|k|δ/2 =
2

1− e−δ/2
− 1 <

8
δ
, 0 < δ < 2.

Together these produce the inequality

‖W (1)‖ρ−δ,r ≤ c−1‖H1‖ρ,r
(

2τ
eδ

)τ∑
k 6=0

e−|k|δ/2

≤ c−1‖H1‖ρ,r8nδ−τ−n
(

2τ
e

)τ
= c̄δ−τ−n‖H1‖ρ,r.

The same bound for the sum also shows the analyticity.
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4.2.7 Remarks.
(i) By Cauchy’s theorem, the above estimate implies

∥∥∥∥∂2W (1)

∂Ii∂ϕj

∥∥∥∥
ρ−δ,r−γ

≤ c̄δ−τ−n+1γ−1‖H1‖ρ,r.

Therefore the matrix (
∂ψi
∂ϕj

)
= (δij) + ε

(
∂2W (1)

∂Ii∂ϕj

)
is invertible for small enough ε, as it is required for the generating function of a canonical trans-
formation.
(ii) The condition on the ω’s means that they must be sufficiently rationally independent. When
they have rational ratios, resonance behavior occurs, which can amplify the effect of the perturba-
tion dramatically. However, this can happen also in the vicinity of a resonance.
(iii) It is possible to show that for τ > n − 1 the measure of the set of frequencies that do not
satisfy the Diophantine condition (D),

Mc,τ =
{
ω ∈Rn : ∃k ∈ Zn\{0} such that k · ω < c|k|−τ

}
approaches zero as c in any bounded set, that is

Mc,τ ∩ {ω ∈Rn : |ω| < K} = O(c), ∀K > 0,

although it contains all rational points, Zn ⊂ Mc,τ . Thus Mc,τ is a strange example of an open,
dense set of small measure. Its complement, the set of Diophantine frequencies Rn\Mc,τ is an
example of a Cantor set: a nowhere dense, closed set with no interior points, of large measure.

4.2.8 Outlook. A perturbed integrable system has been transformed into another integrable
system up to order ε2. The question arises of whether this procedure can be repeated to eliminate
the perturbation completely. In fact, there is a fundamental obstruction to this procedure due to
a theorem by Poincaré: For a generic analytic Hamiltonian with an arbitrary small perturbation
all constants other than H are destroyed. Therefore, there has long been a wide-spread opinion
that it is sufficient a “speck of dust” for making the trajectory winding around densely through
the energy surface (ergodic system). Thanks to the work of Kolmogorov, Arnold, and Moser, the
famous KAM theory, it is now known that it is not so. If an integrable system is perturbed, many
of the invariant tori are completely destroyed, while others are only deformed. However, if the
perturbation is sufficiently small, the ones that are only deformed (named Cantori) fill up most
of the phase space. Therefore, even if there exist no constants other than H, for small ε, enough
n-dimensional submanifolds exist so that in most cases the system acts virtually like an integrable
system.
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