Fiorella Barone and Paolo Facchi

Hamiltonian Systems

63,/2007



Hamiltonian Systems

Fiorella Barone

Dipartimento di Matematica, Universita di Bari, Italy

Paolo Facchi
Dipartimento di Matematica, Universita di Bari, Italy

Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Italy

This work describes the fundamental principles and methods of Hamiltonian sys-
tems. In the first part the necessary apparatus of differential geometry is introduced
starting from manifolds up to Cartan’s calculus. The second part is devoted to the
study of Hamiltonian systems and, in particular, to reduction theory, Hamilton-

Jacobi equation and perturbation theory.

Rapporto n. 63/2007



|
Differential Geometry

1 Smooth manifolds and ssnooth mappings

1.1 Smooth manifolds
1.2 Smooth mappings
1.3 Bump functions

2 Tangent spaces and tangent mappings

2.1 Tangent spaces
2.2 Tangent mappings
2.3 Smooth curves

3 Immersions and submersions

3.1 Submanifolds
3.2 Submersions
3.3 Local diffeomorphisms

4 Vector bundles

4.1 Fibre bundles

4.2 Tangent bundle and vector fields

4.3 Cotangent bundle and covector fields
4.4 Tensor bundles and ftensor fields

5 External forms and derivations

5.1 External forms
5.2 Derivations
5.3 Cartan calculus



Il
Hamiltonian systems

1 Dynamical systems

1.1 Dynamical systems
1.2 Determinism
1.3 Flow

2 Reduction

2.1 Invariant manifold
2.2 Reduction and constants of the motion
2.3 First integrals

3 Hamiltonian systems

3.1 Symplectic geometry
3.2 Hamiltonian systems
3.3 Hamiltonian reduction

4 Hamilton-Jacobi theory

4.1 Time-dependint systems
4.2 Canonical tfransformations
4.3 Hamilton-Jacobi equation

5 An introduction to classical perturbation theory

5.1 Perturbation series
5.2 The problem of small denominators
5.3 The iteration and KAM theory



I 1.1 Smooth manifolds

Differential Geometry

1 Smooth manifolds and smooth mappings

1.1 Smooth manifolds

Let M be a set and m a positive integer. Any couple (U, ), with
& UCM—R™
injective mapping, is called an m-chart on M (global, in the case Y = M). Compositions

i
zt s U ¢ Rmp R

for (i =1,...,m), denote the coordinate functions of £. For any point x € U,

is the m-tuple of coordinates of x in £. The bijection induced by £ onto its own image &(U) is still
denoted by & : U — £(U) and then the inverse bijection by £¢=1: £(U) — U.

Let (U,€) and (V,n) be two m-charts on M. They are said to be C*—related to each other if
UNYV =0 or, when U NV # B, if their transition functions

no L EUNY) — nUNY)
o n(VNU) — EUNY)

are C* (which implies that both £(U N'V) and n(V NU) are open subsets of R™). Notice that an
m-~chart is C*°-related to itself if, and only if, its image is an open subset of R™. In the sequel we
will denote a chart (U, ) simply by ¢ if no ambiguity occurs.

A collection A of (m-)charts is said to be an (m-dimensional) atlas on M if
(A;) the domains of the charts belonging to A are a covering of M.

An (m-dimensional) atlas A is said to be C*° differentiable if

(A4s) for each € € A, £ is C°>°—related to every chart of A.

An (m-dimensional) C* atlas A is said to be complete if

(As) any (m-)chart C*-related to every chart of A, belongs to A.

1.1.1 Proposition. Each (m-dimensional) C* atlas A on M is contained in just one complete
(m~dimensional) C* atlas C, given by

C ={¢&| & is an m-chart on M, C*-related to every chart of A }.

Proof. Let us consider the above collection C of m-charts. From the second property of atlas, we
deduce that A C C. This also implies that C satisfies covering property (4,). Now, let (U;,&;1) and
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(Us, &2) be any two charts of C with Uy NUy # B. In order to prove their C°°-relatedness, choose
a chart (n,V) € A such that Uy NU2 NV # () and consider the restrictions

(&0 D) e,nrusnyy = (Gaon o (no&™)

(& o & D) eunmunyy = (G on ) o(mo&?)

Since the transition functions no&; Land & o0n~! are C®, the above restrictions are C* and then,
owing to the arbitrarity of 7, the original functions too. This shows that C satisfies C'* property
(As). Moreover, if £ is an m-chart C'*°-related to every chart of C, £ is, in particular, C'*°—related
to every chart of A C C and then £ € C. This shows that C satisfies completeness property (A4s).
As to the uniqueness of C, let us consider any complete m-dimensional C* atlas C’ containing A.
A chart £ € C' is C*°-related to every chart of A C C' and then £ € C. As a consequence, each
chart n € C is C*-related to every chart of C’ C C and then, for completeness reasons, n € C'.
This shows that C’ = C. .

A complete m-dimensional C'*° atlas is also called an m-dimensional differential structure on M.
Distinct atlases whose charts are C*°-related to one other, all determine — owing to the above
proposition — the same differential structure on M.

1.1.2 Example. Let V be an m-dimensional (real) vector space. Any linear basis of V' defines
a linear isomorphism of V' onto R™, which is an m-dimensional C'*° atlas; all of these atlases
determine the same differential structure on V. In the particular case V= R™, such a differential
structure is determined by the distinguished global chart idgm, which corresponds to the canonical
basis (0;)i=1,...m with &; := (6?);:1 m (Kronecker symbols). "

..........

A set M equipped with an m-dimensional differential structure C is called an m-dimensional smooth
manifold. All the charts of C are called admissible charts on M and their domains coordinate
domains on M. Given a point x € M, we shall say that (U, §) is a chart at « if x € U.
Coordinate domains set up a basis of a topology on M. To show that, we need the following

1.1.3 Lemma. Let (U1,&) and (Us,&2) be admissible charts; restrictions (Uy N Ua, Eiluyniss),
1 = 1,2, are admissible charts, too.

Proof. 1l is sufficient to assume U; NUs # ) and consider the case i = 1. Let us put U = Uy Ny
and & = &1l ru, - We have to prove that (U, €) € C. To this end consider any other chart (V,n) € C
such that Y NV # (. Owing to the C*°-relatedness of &1, &5 and 7, the sets

EUNY) =&UNY)NE(U NUz)
nUNY)=nU NV)Nnls NV)

are both open in R™. and then the transition functions

noé&t =no& ey

Eon ' =& on yuny

are both C°°-differentiable ]
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1.1.4 Proposition. Let Ty; be the collection of all the subsets of M which are unions of coordi-
nates domains, together with the emptyset. Ty; is a topology on M.

Proof. Topology properties
@, M e Ty
Wot Ty = U, Wa € Ti
are trivially satisfied. As for the last property,
Wi, Ws ETM:>W1QW2 GT]\/[,
it is a direct consequence of the above lemma. "

Topology 7as will be called the manifold topology of M. It is a locally Euclidean topology, since,
as we will prove, each coordinate domain is an open subset of M homeomorphic to an open subset
of R™.

1.1.5 Lemma. Given an admissible chart (U, &), for any open subset W of M contained in the
domain U, the restriction &|w is still an admissible chart.

Proof. The proof follows the same pattern of the one of Lemma 1.1.3. "

1.1.6 Proposition. Each admissible chart (U, &) defines a homeomorphism of its domain U onto
its image £(U).

Proof. For any open subset W C U, the restriction £|y belongs to C and then its image £(W) is
an open subset of £(U). This proves that & is an open map. Let £~1(A4) C U be the inverse image
of an open subset A C {(U) of R™. The restriction §[¢-1(4) is an admissible chart on M since for
any (V,n) € C, the images

n(VNEA) =n(VNUNET(A) =n(E eV nU)NEHA) =no & (EUNY) N A)
EW)NEHA) =¢(vnuUngTi(A) =¢(vnuU)nA

are open subsets of R™. This proves that £ is a continuous map too. "

It is worthwhile to remark that the locally Euclidean character of a manifold topology implies that
a manifold M is locally connected (i.e., each point of M has a connected open neighbourhood).
As a consequence, any connected component of M is an open subset of M. Moreover a manifold
topology satisfies the first axiom of separation (i.e., any two points of M can be separated by two
— not necessarily disjoint — open neighbourhoods) and the first axiom of countability (i.e., each
point of M has a countable basis of open neighbourhoods).

In what follows, manifolds will be always meant to be Hausdorff and second-countable ().

1.1.7 Exercise. Any open subset W of an m—dimensional manifold M is an m-dimensional
manifold. We will call W an open submanifold of M.

We recall that a Hausdorff manifold M is locally compact, i.e., for each point € M and each open
neighbourhood W of z, there exists an open neighbourhood V of & with compact clousure V-C W
(Cf. F.Brickell and R.S.Clark, Differentiable Manifolds, p.42).
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1.2 Smooth mappings

Let M, N be smooth manifolds (with differential structures Cps, Cy and dimensions m and n,
respectively). Let
d: M — N

be a mapping of M in N and = € M. If (U,&) € Cps is a chart at x and (V,n) € Cy is a chart such
that ®(U) C V, we define the coordinate expression of ® around z by

Dpe :=no®o& ' EU) — (V) : £(y) — n(B(y)).

The mapping @ is said to be C*°~differentiable at z, if there exists a coordinate expression @,
around z which is C* at £(x). The above definition is, in fact, an intrinsic property of ®, as
follows from the following

1.2.1 Proposition. If ®,¢ is C* at {(x), then any other coordinate expression ®,¢ around x is

O at ¢(z).

Proof. Notice that @,/ =7 0 ® 0 ¢’~! has a restriction to the open subset & U’ NU) C &' U")
given by (' on™!) o ®,¢ o (€ 0 £'71), whose C°°~differentiability at ¢'(z) follows from the C°°—

differentiability of transition functions ¢ o ¢’~! and 1’ o n~!. .

Now we show the local character of C'"*°—differentiability.

1.2.2 Proposition.
(i) If® is C* at x, so is its restriction to any open subset W containing x.
(ii) If a restriction of ® to an open subset is C*° at x, so is ® itself.

Proof. (i) Just notice that, if ®,¢ is a coordinate expression of ® around z, then

(1w )ntlunw = Poglewinw)

is a coordinate expression of ®|y, around z, since &|y~w is an admissible chart on W.
(ii) The claim immediately follows from the fact that, if W is an open subset os M, any admissible
chart on W is admissible on M too. "

1.2.3 Exercises.

(i) If® is C* at z, it is continuous at .

(ii)) If ® is C* at x and ¥ is C* at ®(z), then ¥ o & is C™ at x.

(iii) Identity map idys is C* at any x € M.

(iv) A function f: A CR™ —R" (defined on an open subset A of R™) is C*° at x if, and only if, it
is C* at = in the Euclidean sense. n

A mapping ® : M — N is called a smooth mapping if it is C* at every point of M (i.e., if it
has C*°—coordinate expressions in suitably many charts to cover M and ®(M)). Proposition 1.2.1
implies that all of the coordinate expressions of a smooth mapping ® are C*°. Proposition 1.2.2
extends to smooth mappings, and states

(i) the smoothness of the restriction of a smooth mapping ® to any open subset of M;

(ii) the smoothness of a mapping @, if it admits smooth restrictions to suitably many open subsets
to cover M.

Proposition 1.2.3 extends to smooth mappings in an obvious way.

A bijective, smooth mapping ®: M — N is called a diffeomorphism, if its inverse ®~1: N — M is
a smooth mapping. Diffeomorphic manifolds are structurally identical owing to the following
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1.2.4 Proposition. Let ®: M — N be a diffecomorphism. The map that takes each chart & with
domain U C M to the chart n:= £ o @~ with domain ®(U) C N, defines a bijection between the
differential structures Cp; and Cy (which consequently have the same dimension).

Proof. (i) First notice that, in the given map, to each chart £ € Cps there corresponds a chart
n € Cy. This is due to the fact that, for any chart (V',n') € Cy such that V' N ®U) # 0, the
transition functions

n on @y =1 0 ® o & ewna-1(vr))

non ™ ywnaw) = €027 on' ™ yawnawy

are C'™, being the coordinate expressions of ® and ®~! in admissible charts on M and N.
(ii) Then notice that, in the given map, any chart n € Cy corresponds to a unique chart £ =no ®
and, through the same reasoning as in (i), one can check that £ € Cpy. .

Any bijection onto a manifold can be turned into a diffeomorphism as follows.

1.2.5 Proposition. Let ®: M — N be a bijection of a smooth manifold M onto a set N. There
exists a unique differential structure on N such that ® is a diffeomorphism.

Proof. The differential structure Cx searched, is obtained from Cj; through the map given in
Proposition 1.2.4. "

A nice example of diffeomorphism is given in the following

1.2.6 Proposition.

(i) Any admissible chart (U,£) on M defines a diffeomorphism between the open submanifolds
U C M and £E(U) CR™.

(ii)) Conversely, any diffeomorphism £ between the open submanifolds Y C M and £UL) CR™
defines an admissible chart on M.

Proof. (i) It is enough to remark that the coordinate expressions of £ and £~! in charts £ on U
and idg ) on {(U), are C* (for they both reduce to idgy))-

(ii) Tt is enough to remark that, for any admissible chart & whose domain U’ encounters U, the
transition functions ¢ o €71 and £ o ¢!, being composition of smooth mappings, are smooth
mappings. L]

1.3 Bump functions

Let M be a smooth manifold and C*°(M) the algebra of real-valued smooth functions on M. The
existence of a special kind of functions in C*°(M) is clamed () in the following statement: for
any point © € M and any open neighbourhood W of z, there exixts a function 8 € C°°(M) which
takes the constant value 1 on an open neighbourhood of z and has its support ®) contained in W.
Te function S is called a bump function at x with support in W. The above statement implies

{ﬂ|v =1, ycw
Blar—w = 0.

(2) See B.O’Neill, Semi-Riemannian Geometry, p.6.
®) supp 3 := closureof {x € M | 3(z) # 0}.
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Bump functions are used to ‘extend’ smooth mappings defined on an open neighbourhood of a
point, to a smooth mapping on M . For instance, let ¢ € C*°(W). Put

{ﬁ(y)w(y% ifyeW
fly) =
0, ifye M —W.

We have

fec=(M)
(since flw = Blwy and f|p—supps = 0 are smooth restrictions of f to open subsets W and
M — supp 3, which cover M), and

flv=relv.

2 Tangent spaces and tangent mappings

2.1 Tangent spaces

Let M be an m—dimensional smooth manifold and € M. Any R-linear map
v:C*®(M) —R
which obeys the Leibniz rule at x

v(fg) = v(f)g(@) + f(z)v(g)  Vf, g€ CF(M)

is called a derivation of C*°(M) at x. The local character of a derivation v is pointed out in the
following proposition.

2.1.1 Proposition. Let h € C*°(M). If hly, = 0 in some open neighbourhood U of z, then
v(h) =0.

Proof. Let 3 be a bump function at « with support in ¢. We have h = (1— ()h both on U (where
h vanishes) and on M — U (where 3 vanishes). The Leibniz rule then implies

v(h) = v(1 = B)h(z) + (1 = B(x))v(h) =0
since h(z) = 0 and B(z) = 1, and R-linearity implies the thesis. .

It follows that a derivation v at x induces a derivation on any open neighbourhood W of z, by
putting, for each ¢ € C°(W),

with any f € C°°(M) equal to ¢ around .
Lastly we remark that
2.1.2 Corollary. If f is a constant function, then v(f) = 0.

Proof. TIf ¢ €R denotes the constant value of f and 1 € C°°(M) the unit function on M, from
f = cl it follows that v(f) = v(cl) = cv(1). But v(1) = v(1-1) = v(1) + v(1) that is v(1) = 0,
whence the statement. "

Let T, M be the set of all the derivations of C°°(M) at x. It is easy to prove the following
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2.1.3 Proposition. Let u,v € T, M and a €R and define, for any f € C°(M),

(u+v)f=u(f)+o(f)
(av)f = av(f)

With these operations, T,,M is given a structure of real vector space. .

The space T, M, endowed with the above structure, is called the tangent space of M at x (and any
v € T, M, a tangent vector of M at x). As to the dimension of T,, M, we will show that
dim T, M =m = dim M.

To this end, we consider an admissible chart £ = (xi)izl,“,M at x and define

0
Ox?

: C*¥(M) —R (i=1,...,m)

x

by putting, for each f € C*(M),

9
oxt|,

o &1
1= Y| o 2o

oxt

T

&(x)

(partial derivative at x with respect to the i-th coordinate function z*). From R-linearity and
Leibniz rule of partial derivatives in Euclidean calculus, it follows that

- e T, M.
ox? v

x

[e]
oz’

The coordinate vectors { z} associated with £, are a basis of T, M, owing to the following

2.1.4 Theorem. Any vector v € T, M can be uniquely written as a linear combination

0
ozt

v =1

x

with components

Proof. (i) We start with some preliminary calculations concerning C'* real functions on R™.

Let Bj be the open ball with center in the origin 0 €R™ and radius r > 0. Let Z be a point of Bj.
If Z # 0 (and obviously |Z| < r), consider the open interval I = (—r/|Z|, r/|Z|) containing [0, 1]
and define in I the C*° function vz (t) = tz. If Z = 0, the same definition yields the null function.
In both cases, the image of vz is contained in Bjj and vz(0) = 0, 7z(1) = . The projections

vii=prioq; =tz', (i =1,...,m) have constant derivatives
d i
%’Y;ﬁ =z
Now consider a C* real function F: B —R. Composition Fo~y; = F(v2,...,7™) is a well defined

C* function with derivative

d oF i
a(FO’Y:E) = (W O’Yx) .
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From elementary integral calculus, then we have

F(ar:)—F(O)=/O1 (jtFO%) dt = (/01 (25
Fi(z) := /01 (gf; O%> dt

is a C*° function on Bj. So, on Bj, we have

where

F = F(0) + Fypr'.
(ii) A similar result will be now obtained around x € M for any f € C°(M). Let (U,£) be an
admissible chart at x, with &(z) = 0 and £U) = By 4. Then let F := f o £~! be the coordinate
expression of f in £. From (i) it follows that
flu=F ot = (F(0) + Fpri) o & = F(0) + (F o ).
If we recall that F'(0) = f(z) and we put f; := F; o0& € C*(U), we have
flu = f(x) + fiz'.

(iii) Now, for any v € T, M and f € C*°(M),

v(f) = v(flu) = v(f(@) + fiz!) = v(f(2)) +v(fiz’) = v(fiz") = v(fi)a' (2) + fi(z)v(a")
= filz)v(a")

since z'(x) = 0. In particular

9 9 J) — J
aar|, ) = 1) | @)= 18] = 1)
then 5
o) = ola) 5| ()

whence the stated decomposition of v.
(iv) Lastly we remark that the uniqueness of the above decomposition is due to the linear inde-
pendence of coordinate vectors, which is easily shown by

—O:>aii
8%‘7;3:7 ozt

a

(1) =0=a’ =0

T

forall j=1,...,m. "

By applying the decomposition law to coordinate vectors, we have

Such a spherical chart can be obtained from any admissible chart at « through a translation and
a restriction.
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2.1.5 Corollary.
(i) The bases {% m} and {8%,- I} associated with the admissible charts £ = (z*) and n = (y’)

are related to each other by the chain rule

9
Oyl

B ox'
. Oy

0

i
L 0T

x

(ii)) Consequently, the controvariant transformation law of the components of a vector v is given
by

_ ox’
= oy

v(a') o(y) .

x

2.1.6 Note. We will denote by

¢ T,M —R™ : v =1’ 0 = (v')

x

ox?

the isomorphism defined by the coordinate basis { %

L} at x. n

2.1.7 Remark. Let W be an open submanifold of M and z € W.

(i) If, for any u € T, W, we define v: C*°(M) —R by putting v(f) := u(f|w), we have v € T, M.
(ii) The consequent map u € T,W +— v € T, M is a (canonical) isomorphism. We shall usually
put W =T,M. =

2.2 Tangent mappings

Let ®: M — N be a smooth mapping and x € M. For any v € T, M, define
T, v :C*(N) —R
by putting

(1,3 0)(f) = v(f 0 D).

2.2.1 Lemma. T, -v € Ty, N.

Proof. Let us check, for instance, that w := T, ® - v obeys the Leibniz rule at y := ®(x). To this
purpose, let f,g € C*°(N). We have

w(fg) =v(fgo®) =v(fo®)g(P(x)) + f(®(x))v(go®) =w(f)gy)+ fly)w(y) .

The consequent mapping
1,0 : T M — Tom N

is called the tangent mapping of ® at x.
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2.2.2 Proposition.

(i) T,® is a linear mapping.

(i) Thidas = idg, ar-

(iii) (Chain rule) Ty(W¥ 0 ®) = Tp(y) ¥ o T, P.

Proof.  Let us prove, for instance, property (iii). Let &: M — N, U: N — P be smooth mappings.
For each v € T, M and each f € C*°(P), we have

(To(To®) - v)f=v(foVod)= (T, v)(fol)=Teu)¥oT,P v)f .

2.2.3 Corollary. If ®: M — N is a diffeomorphism, then T,® is an isomorphism, whose inverse
is given by
(T9) " = To()®@ "

Proof. The statement follows from the Proposition 2.2.2(ii),(iii), applied to idy; = ®~1 o ® and
idy =® oL n

2.2.4 Coordinate expression.

Let ®: M — N be a smooth mapping. Let & = (2")i=1,.. .m=dim M and 7 = (y*)a=1,....n=dim N D€
admissible charts at = and ®(z), respectively, where ® can be given a coordinate expression ®,..
For any

=vf — T, M
VEY o . <
put
o 0
U)I:qu)"l]:’w oo ET@(w)N
Oy | (a)
By linearity, we have
. ) _ a0 P
'lU:’UZ TT@ i :U’L TT(P a (ya) i :'UZ M i ,
x|, x|, oy™ ®(x) oz’ - 0y® ®(x)
and then 5 ) .
wo =i QTR Oy e ®o Tl s O
33:1 = axl g(m) axz g(m)

(with @7 := pr® o ®@,¢), or equivalently
W = dg(a) P -V
(with @ := (w®) and v := (v%)). So we have the following commutative diagram

T,

v € TyM ———— w € Tg(;)N
5;{ lnfb(m)
v ER™ w ER™

de (o) Pre

(where &, and 7, denote the isomorphisms defined by the coordinate bases). We will say that
dg¢ (o) Pre is the coordinate expression of T,;® in &, 7.

Notice that, for a smooth function f : A CR™ —R", the Euclidean differential d f is the coordinate
expression of the tangent map T, f in charts id4 and idg». .

10
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2.2.5 Remarks.
(i) Let f € C°(M). For any x € M, the composition of the tangent map T, f: T M — TR
with the natural isomorphism id/f(w) : TyyR —R (defined by the chart idg on R) yields the
differential

def == id'f(x) ol f :T,M —R

which will usually replace T, f. Notice that d, f is a linear form on the vector space T, M, i.e., an
element of the dual space Ty M, whose action on any v € T, M is d, f - v = id'f(m) (T, f -v), that is

def v =v(f).

(i) Now conmsider a smooth mapping F' = (F!,... . F") : M —R". As above, for any x € M,
define the differential
d, I = id;;(z) oT,F : T, M —R"

(with idgr = (¥*)a=1,...,n). For any v € T, M,
Ao F - v = idp () (To F - v) = (ToF - v (y*)) = (v(y® o F))
= (v(F?)) = (do F* -v) = (d F",...,d, F") -0

that is
doF = (d,F*, ... d,F™). .

Let M and N be smooth manifolds of dimensions m and n, respectively, and ®: M — N a smooth
mapping. We define the rank of ® at x € M as

rank ®(x) := rank T, P = dim Im 7T, P.
According to the well known rank theorem for linear mappings, it is
dim T, M = dimker T, ® + dimIm 7T, ®.
As a consequence,
rank ®(z) < m,n.
Also notice that, for any coordinate expression ®,¢,

rank ®(z) = rank ®,¢(£(x)) = rank dg(,)Pye

since T, ® and T (,)®,¢ are both related to d¢(,)Pye by isomorphisms .
The main result of rank theory is the existence of adapted charts, as stated in the following theorem.

2.2.6 Rank Theorem. Let rank ®(x) = k. Then there exist admissible charts
E=(z...,2™): U -R™
n=(,...,y"): YV —=R"
at x and ®(z), respectively, such that
(o) ®U)CV
(i) yio®ly=2" Vi=1,... k.
If the rank of ® is k in some neighbourhood of x (and k < n), we can further arrange that
(i) y/ o®|yy =const. Vj=k+1,...,n.
Conversely, the existence of charts as above (0) — (it), implies that the rank of ® is k in some open
neighbourhood of .

Proof. Cf. M.Boothby An introduction to differentiable manifolds and Riemmanian geometry. =

(7) See Coordinate expression 2.2.4.

11
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2.3 Smooth curves

A smooth mapping ¢: I — M, of an open interval I CR in a smooth manifold M, is said to be a
smooth curve, or motion, in M (and ¢(I) its orbit). Let %’t € T;I = T;R be the coordinate vector
associated with chart idg on R. The time derivative of ¢ at t € I, defined by

d
C(t) =T —| € Tc(t)M,
t

dt

is said to be the tangent vector of ¢ at the point ¢(t), or the wvelocity of ¢ at time ¢.

2.3.1 Coordinate expression.

Let t € I and let £ be an admissible chart at ¢(¢). By continuity, there exists an open interval
containing ¢ and contained in I, whose c-image lies in the domain of £&. There ¢ has a coordinate
expression (2% 0 ¢);—1_m—dim M- As to ¢(t), it can be expressed as

with components

d ; ; dé y
et)(z") = <Tt0' it t> (z') = pn t (z'oc) = diu) t =:¢'(),
So we have
c(t) = é'(t) o
_ 9 . .
ort o(t)
2.3.2 Remarks.
(i) Notice that, for ¢: I —R, we have
. de| d
0= dt t dt e(t)

i.e., the Euclidean derivative %h is the natural component of the tangent vector ¢(t).
(ii) Similarly, for ¢ : I —R™, we have

d(z* 0
o) = Ao 9
dt ; Ox o(t)
i.e., the Euclidean derivative %| = (d(%itoc) ) is the m-tuple of the natural components of the
t
tangent vector ¢(t). .

12



I 3.1 Submanifolds

2.3.3 Proposition. For any x € M and v € T, M, there exists a smooth curve c¢:I — M with
0 € I, such that ¢(0) = v.

Proof. Let & = (z*) be an admissible chart at z, with domain &. Consider the rectilinear motion
in R™

Y(t) = &(x) + t& (v).
Since v(0) = £(x), by continuity there exists an open interval I whose y-image lies in £(U); so,
through restriction of  to I, one obtains a smooth mapping ~v|; : I — &(Uf). Now put

ci=¢tYoy|: I — M.

The mapping c is a smooth curve in M with the required property. This follows from the coordinate
expression 4 4 , ,
d=aloc=(priof)o (¢ o) =prioylr
and then _ _ _
c'(t) = ' (x) + to(z")
which yields ¢!(t) = v(x?). So we have

0
ozt

0
ox?

¢(0) = ¢'(0) = v(z’)

x

c(0)
2.3.4 Remark. As a consequence of Proposition 2.3.3, we have that, for any v € T, M and

fec=(M), ]
Jo-5%

i.e., v(f) is the directional derivative of f at x along any smooth curve ¢ to which v is tangent. =

d

o) =) = (Toe-

OC:d(foc)
(roa ="

0

2.3.5 Remark. Let k= ®oc: I — N whit ®: M — N. Then, by applying to the chain rule of
tangent mappings, for any ¢t € I, we have

k() = Ty ® - é(t).

As a consequence of Propositions 2.3.3 then, notice that one can always reduce the calculus of a
tangent mapping w = T,,® - v, to a time derivative w = k(0) (where k = ®oc and ¢(0) =v). =

3 Immersions and submersions

3.1 Submanifolds

Let S, M be smooth manifolds of dimensions s, m respectively, with s < m and
7:8 — M

a smooth mapping. If the tangent map of 7 at a point x € S is injective, 5 is said to be an
immersion at x. In such a case, from dimker T,y = 0, it follows that rank j(z) = s = max, and
then Rank Theorem 2.2.6 reads as follows.

13



(®)
9)

(10)

I 3.1 Submanifolds

3.1.1 Proposition. If is an immersion at x, we can find admissible charts £ : U —R?®, n: V —-R™
at x, j(x) such that

(o) yU) CV

(i) nojlu = (&, c) where ¢ : U —R™ ™% denotes a smooth mapping.

If y is an immersion in some open neighbourhood of x (and s < m), we can further arrange that
(ii) ¢ = const.

Conversely, the existence of charts as above (0) — (ii), implies that j is an immersion in some open
neighbourhood of x. "

Any differential structure on a subset S of M which makes the inclusion mapping 7 : S < M an
immersion (i.e., an immersion at each point of S) is called a submanifold structure on S, and S,
endowed with such a structure, an (immersed) submanifold of M.

3.1.2 Remarks.

(i) Any injective immersion ¢ : S — M gives rise to a submanifold of M, namely ¢(S) with the
differential structure which makes the induced mapping i : S — 1(S) a diffeomorphism (®.

(ii) If S is a submanifold of M and M is a submanifold of N, then S is a submanifold of N. In
fact, is we denote by 7: S < M and y : M — N the inclusion maps, then, at each point of S,
rank (7 oj) =dim S. .

First we will study the topology of a submanifold. As a preliminary, we recall the following well
known result on continuity.

Let ® : P — M be a continuous mapping, and consider any subset S of M, such that ®(P) C S.
With respect to the subspace topology on S,the induced mapping ®: P — S is continuous. (.

3.1.3 Proposition. The manifold topology of a submanifold is finer then its subspace topology.

Proof. Let S be a submanifold of M. Then S is endowed both with the manifold topology, that
we will denote by S;, and with the subspace topology, that we will denote by S,. The continuity
of the immersion j : S; — M implies the continuity of the induced mapping j = idg : S; — Sy,
and then the claim. .

Now we study the behaviour of submanifolds with respect to smooth mappings.

If ®: P — M is a smooth mapping, then its restriction ®|g to any submanifold S is still a smooth
mapping (since ®|g = ® 0 j). On the contrary, the induced mapping ® : P — S with values in a
submanifold S such that ®(P) C S will not generally be smooth — not even continuous, continuity
being guaranteed by the subspace topology of .S but not generally by the finer manifold topology
of § 19 If, for each smooth mapping ® : P — M with values in a given submanifold S of M, the
induced mapping ® : P — S is smooth, then we will call S a smoothness preserving submanifold.
For such a submanifold, the following remarkable property holds true.

3.1.4 Proposition. On any subset of a manifold, there exists at most one smoothness preserving
submanifold structure.

Proof. Let S := (S5,C1) and Ss := (S,C3) be two smoothness preserving submanifold structures
on S and consider the immersions 71 : S; < M and 75 : Sy — M, respectively. On the one hand,

See Proposition 1.2.5. } .

If YV = WNS with W open subset of M, then ®~1(V) = ®~1{(WNS) = &~ 1(W) is an open subset
of P.

For a counterexample, see F.Brickell and R.S.Clark, op. cit., p.76.
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I 3.1 Submanifolds

we recall that 71 (resp. j2) is a smooth mapping with values in Ss (risp. S7) and then the induced
mapping j; : S — Sz (resp. Jjo : So — S7) is smooth as well. On the other hand, from the set
theoretical point of view we have j; = idg = jo. We conclude that 7; is a diffeomorphism whose
inverse is j; and then C; = Cs. =

Let us now focus on the main type of smoothness preserving submanifold, defined as follows. An
immersion j: S — M such that the induced mapping j: S — 7(S5) is a homomorphism onto the
topological subspace 3(S) C M is called an embeddeing. A subset S of M, carrying a differential
structure which makes inclusion map j: S — M an embedding is called an embedded (or regular)
submanifold.

3.1.5 Remarks.

(i) Any embedding ¢ : S — M gives rise to an embedded submanifold of M, namely 3(S) with
the differential structure given in Remark 3.1.2(i).

(ii) Remark 3.1.2(ii) trivially extends to embedded submanifolds. n

The peculiarity of an embedded submanifold clearly lies in its manifold topology, as is comfirmed
by the following

3.1.6 Proposition. A submanifold S is embedded iff its manifold topology coincides with its
subspace topology. =

3.1.7 Open submanifolds. Let W (with differential structure Oy ) be an open submanifold
of M (V). For each x € W, we can find an m-chart (U,¢) with 2 € U C W, which is admissible
on both W and M. This implies that 7 : W < M is an immersion ('?). Moreover the manifold
topology of W coincides with its subspace topology. So W is an embedded submanifold and
dimW = dim M. Notice that the open submanifolds are the only submanifolds of M whose
dimension is dim M. In order to check this, let W be a submanifold such that dim W = dim M =m
and let y : W — M be its immersion into M. For each x € W, we can find admissible m—charts
U,&) on W and (V,n) on M with z € U C V and no gy = & From nUd) = n(3Ud)) = £&U)
or equivalently U = 77_1(5(1/1))7 we draw that U is an open subset of M. So W, being union of
open subsets such as U, is an open subset of M. Also notice that, owing to the above equality of
dimensions, for each point x of an open submanifold W the tangent mapping T,y € T, W — T, M
is an isomorphism, namely the canonical isomorphism (*3), since, for any f € C(M), (Ty7-u)f =

u(fog) =u(flw). .

3.1.8 Compact submanifolds. Let C be a compact submanifold of M (i.e., compact in its
own manifold topology) and 3 : C < M its immersion into M. The image 3(C), as a topological
subspace of a manifold M (which is meant to be Hausdorfl), is a Hausdorff space. The induced
mapping j: C — 3(C) is then a continuous bijection of a compact space onto a Hausdorff space,
and therefore a homeomorphism (). So C' is an embedded submanifold. .

As already announced, we have the following

See Exercise 1.1.7

See Proposition 3.1.1.

See Remark 2.1.7.

A continuous bijection h : X — Y of a compact space X onto a Hausdorff space Y, is an open
mapping. Indeed, given an open subset A of X, the closed subset X — A of the compact space X
is compact itself and so is its continuous image h(X — A) = h(X) — h(A) =Y — h(A); a compact
subset, such as Y — h(A), of a Hausdorff space Y is closed, and then h(A) is open.
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I 3.2 Submersions

3.1.9 Proposition. An embedded submanifold is smoothness preserving.

Proof. Let ® : N — M be a smooth mapping with values in an embedded submanifold S and
® : N — S the induced mapping. We will prove that ® is smooth.

(i) As j:S < M is an immersion, for each y € N we can find charts (i, €) and (V,n) at ®(y)
and 7(®(y)) adapted to 7, i.e., U C V and 5o gly = (&,¢) 9.

(ii) As the manifold topology of S coincides with its subspace topology, ® is continuous (
Therefore, corresponding to the open neighbourhood U of ®(y) = ®(y), there is a chart (W, p) at
y such that ®(W) C U — and then ®(W) C V.

(iii) As a consequence, the coordinate expressions igp and ®,, are both well defined and, since

E=priomojlu), it is

16)

égpzﬁoéopfl:prlono]oi)opfl:prlono<1>op71:prlo<l>np

This means that @&, is C*° owing to the assumed C*°-differentiability of ®,,. So, for each y € N,
there exists a coordinate expression ®¢, of ® which is C*, i.e., ® is smooth. "

Owing to Propositions 3.1.4 and 3.1.9, we know that, on any subset of a manifold, there exists at
most one embedded submanifold structure.

3.2 Submersions

Let M, B be smooth manifolds of dimensions m, b respectively, with m > b and let
n: M — B

be a smooth mapping. If the tangent map of 7w at a point x € M is surjective, 7 is said to be a
submersion at x. In such a case, from rank 7(z) = dimIm T,7 = dim T} ;) B = b it follows that
the rank of 7 is maximal at x. The Rank Theorem 2.2.6 now reads as follows

3.2.1 Proposition. If 7 is a submersion at x, we can find admissible charts (U, ) and (V,n) at
x and 7(z), respectively, such that

(o) m#(U)CV

(i) nomly = prio& (where pri :RPxR™~% —R? is the projection onto the first factor).
Conversely, the existence of charts as above implies that 7 is a submersion in some open neigh-
bourhood of x. .

3.2.2 Existence of a local section. Let m be a submersion at x¢. For any open neighbourhood
Uy of zq, there exists a smooth mapping

o: Vg — U
defined on an open neighbourhood V, of yo := m(xo) and taking values in Uy, such that o(yp) = xo

and
moo =idy, .

See Proposition 3.1.1.
See footnote (9.
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I 3.2 Submersions

Proof. Let (U,€) and (V,n) be adapted charts at z¢ and 7 (zg), respectively. Notice that, up to
an intersection with Uy, we can choose £ with domain U C Uy. Now consider the ‘local section’ of
the natural projection prq

p:n(V) CR® —RbxR™?

defined by putting, for each y € V,

p(n(y)) = (n(y),pr2 o &(x0))

(where pro :R®xR™~? —R™~? is the projection onto the second factor). As p is continuous and

p(n(yo)) = (nom(w),pra o &(x0)) = (pr1 o &(wa), pra o &(x0)) = &(wo),

corresponding to the open neighbourhood &(U) of £(xg), there is an open neighbourhood Vy C V
of yg, such that

p(n(Vo)) C £U).
As a consequence, we can define a smooth mapping o : Vy — Uy through the composition
o=¢ " opon|,

We shall show that o is the required local section of 7. First

o(yo) =& (p(n(yo))) = &1 (&(x0)) = 20

Then, for any y € Vy,

z:=0(y) =& (py)) =& (n(y), pra o &(x0))

on the other hand

T = 571(5(33)) = 571(}?7"1 o&(x),pro 05(1’)) = 571(77 om(x),pra o f(x))

hence
(nom(x),praoé(x)) = (n(y),pra2 0 &(w0)) < non(x) =n(y)
— 7(z)=y
that is
z=o(y) en (y).

If 7 is a submersion (i.e., a submersion at every point), the above lemma yields the following

3.2.3 Theorem. A submersion is an open mapping.

Proof. Let m: M — B be a submersion and Uy an open subset of M. We will prove that 7 (i) is
an open subset of B, by showing that each point yo € m(Uy) (say yo = m(xo), with xo € Up) admits
an open neighbourhood Vy C 7(Up). To this end, it is enough to consider an open neighbourhood
Vo of yo where a local section o : Vo — Uy is defined. For each y € Vy, we have y = m(o(y)) with
o(y) € Uy and then y € m(Up). .

As a consequence, any submersion turns into a surjective one as is proved in the following

17
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3.2.4 Corollary. A submersion induces a submersion onto its own image.

Proof. Let m : M — B be a submersion and 7 : M — B the induced mapping onto the image
B := 7(M). Owing to the above theorem, B is an open submanifold of B and then 7 is a smooth
mapping (7). Moreover, since 7 = jo 7, the chain rule gives T,m = Ts(,)j 0 T 7 (at each x € M).
As a consequence, T,) being an isomorphism at each € M, rank # = rank 7 = b = dim B.
Therefore 7 is a submersion. "

Let us now consider two smooth manifolds M, B of dimensions m, b respectively, with m > b. Let
us consider, for any point yo € B, its inverse image 7~ (o) through a smooth mapping 7 : M — B.
In the non-trivial case 7=%(yo) # 0, we have the following classical

3.2.5 Implicit Function Theorem. If 7 is a submersion in 7~ (yo), then m=1(yo) is an embed-
ded submanifold of dimension m — b.

Proof. For each g € m~1(yo), there exist adapted charts (satisfying properties (o), () stated in
Proposition 3.2.1) (U, ) and (V,n) at 2o and yo, respectively. It is
Unrt 1y = {x eU : w(x) = yo}
but, if x € U, we have
m(z) =yo <= n(7(x)) = n(yo)
= pri(&(@)) = n(y) = ¢
= {(x) € {c}xR™P.

So the intersection
UNnayo) ={z el : &(x) € {c}xR™ 1}

=& (g N ({epxR™))
= ng;b(lxl)

is an (m — b)-dimensional slice. Now, on the subset of U
U:=Unrt"y),

define the injective map ~ }
E:=aotly: U —R",

where « is the natural diffeomorphism of {¢} xR™~? onto R, The mapping € is an (m—b)—chart
on 71 (yo), subordinate to adapted chart ¢ on M. Notice that §~ , composition of homeomorphisms,
is a homeomorphism. The collection of all such charts on 7~*(y) is an (m — b)-dimensional atlas
A, whose C>-differentiability can be checked as follows. If &’ = aofl; and £=aof |;; are charts
of A with non-disjoint domains. either transition function, say

1 _ “1 1
§og |g(umu')*o‘°(nlon )o lg(unu')

(composition of smooth mappings), is smooth. It follows that, 7 ~!(y), equipped with the differ-
ential structure determined by A, is an embedded submanifold of M, since the manifold topology
coincides with subspace topology and at each x € m~1(yo), one can find a distinguished chart (U, &)
on M and the subordinate chart (4, ) on 7~ (o), such that the inclusion map 7: 7~ (yo) — M
satisfies the properties

JUycu §Oj|g=(§~,0),c=const.

which make it an immersion (18). n

See 3.1.7 and Proposition 3.1.9.
See Proposition 3.1.1.
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3.2.6 Proposition. In the hypothesis of the Implicit Function Theorem, at each point x €
7~ 1(yo), the tangent space T}, (71'_1 (yo)) is canonically isomorphic to the vector subspace ker T, m C
T.M.

Proof. It is enough to consider (if j : #=*(yo) — M is the embedding of 7~ (yo) into M) the
tangent map T3, : Tpm 1 (yo) — T M. On the one hand, T} is an injective, linear map and then
T, (W_l(yo)) is isomorphic to Im 7,7. On the other hand, from 7 o 3 = yy = const., it follows that

T,moT,3=0
that is
Im T,y C ker T, 7.
Moreover
dimIm 7,7 = dim T, (7_‘,71(2/0)) =m-—>b
dimker T, 7 = dim T, M — rank 7(z) = m —b
and then
Im T,y = ker T, 7.
Hence the statement. n

3.2.7 Note. From the Implicit Function Theorem, we draw that the collection of the fibres of
a submersion 7 : M — B , ie., {r7!(y), y € B}, is a partition of M into (m — b)-dimensional,
embedded submanifolds. The above partition admits a refiniment given by the collection of the

leaves of m, i.e., {L C M : L is a connected component of a ﬁbre}. This is still a partition of M

into connected, (m — b)-dimensional, embedded submanifolds (19)

In general, a k-dimensional foliation F' of M (with k < m) is a partition of M into smoothness
preserving, connected, k-dimensional submanifold of M, called leaves of F. If F' is a k-dimensional
foliation of B, its lift by a submersion 7 : M — B, i.e.,

7 F :={L C M : L is a connected component of the inverse image 7~ '(L’) of a leaf L' € I}

is an (m — b) + k-dimensional foliation of M ().

3.3 Local diffeomorphisms

Let M, N be smooth manifolds of dimensions m = n and
h:M— N
a smooth mapping. If the rank of h is maximal at x € M
rank h(z) =m =n,

then h is said to be a local diffeomorphism at x. In such a case h is both an immersion and a
submersion at x, i.e., T h is bijective. The Rank Theorem 2.2.6 now reads as follows

Note that any leaf is an open subset of a fibre and then a connected, (m—b)-dimensional, embedded
submanifold of M (see local connectedness in Sec.1.1, then 3.1.7 and Remark 3.1.2(ii)).

As to the submanifold structure of a leaf and the lift of a foliation, see H.B.Lawson ‘Foliations’ Bull.
Am. Math. Soc., vol.80, n.3 (1974), p.370 and 373. As to the smoothness preserving character of
a leaf, see F.Brickell and R.S.Clark, op.cit., p.203.
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3.3.1 Proposition. If h is a local diffeomorphism at x, we can find admissible charts (U, £) and
(V,n) at x and h(z), respectively, such that

(o) h(U)CV

(i) nohly=¢.

On the other hand, the existence of charts as above implies that h is a local diffeomorphism in
some open neighbourhood of x. "

We can justify the name given to a local diffeomorphism (at a point), by reformulating the above
proposition so as to have the following classical

3.3.2 Inverse Function Theorem. A smooth mapping h : M — N is a local diffeomorphism
at x if, and only if, there exixts an open neighbourhood U of = in M such that h(U) is an open
subset of N and h maps U diffeomorphically onto h(U).

Proof. Let h be a local diffeomorphism at . In this case, if (U, &) and (V,n) denote the adapted
charts satisfying the above properties (o) and (i), the image h(U) = =1 (£(U)) is an open subset
of V to which, owing to (0), 7 can be restricted so that we can assume V = h(U). From (i) we then
draw that the induced mapping hly : U — h(U), is n~1 o &, which is a diffeomorphism. Conversely,
let h be a smooth mapping satisying the requirement stated in the theorem. In this case, the
induced diffeomorphism h|y : U — h(U) makes diagram

U c ? M
13|ul Jh
hU) € 7 N
commutative, which implies that T,h = T}, © TJL|M o (Tp2)~! is an isomorphism (1), "

If a discrete topological subspace of a manifold is called embedded submanifold of zero dimension,
then the above theorem entails the extension of the Implicit Function Theorem to the case m = n,
as follows

3.3.3 Corollary. If h is a local diffeomorphism in h=(yg), then h='(yo) is an embedded sub-
manifold of zero dimension.

Proof. Owing to the Inverse Function Theorem, for each # € h~!(yg) there exists an open
neighbourhood U of x such that h|y is injective. This implies that & N h=(yo) = {x}. Therefore
each singleton is an open subset in the subspace topology of h=!(y), which is then discrete. .

We will now focus on local diffeomorphisms (i.e., mappings which are local diffeomorphisms at
every point).

3.3.4 Corollary. A local diffeomorphism is a diffeomorphism if, and only if, it is bijective.

Proof. A diffeomorphism is, obviously, a bijective local diffeomorphism Conversely, if b : M — N
is a bijective local diffeomorphism, then, owing to the Inverse Function Theorem, it is a smooth
mapping with an inverse mapping h~! : N — M which admits smooth restrictions {hil\ h(u)} to

suitably many open subsets {h(U)} to cover N (22), .

See 3.1.7(iii).
See Sec.1.2.
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3.3.5 Remark. Any injective local diffeomorphism & : M — N determines an open submanifold
h(M) C N diffeomorphic to M (for the induced mapping h : M — h(M) is a bijective local
diffeomorphism). "

Let h : M — N be a surjective smooth mapping such that, for each y € N, there exixts a connected
open neighbourhood V of y that is evenly covered by h — i.e., each connected component of h=1(V)
is mapped diffeomorphically onto V by h (23). We will call h a covering mapping. From the inverse
function theorem, one immediately draws that a covering mapping is a particular type of surjective
local diffeomorphism. It proves to be noticeable in dynamics, owing to the following

3.3.6 Lift theorem. Let h : M — N be a covering mapping. If v : I — N is a smooth curve,
then, for any xog € h=! (’y(to)), there exists a unique smooth curve ¢ : I — M that is a lift of v by
h,ie., hoc=r7,

M

e
1 5 N

with xq as initial point at tg, i.e., c(tg) = xg.

Proof. Decompose the open interval I into countably many subintervals {I;} such that

(i) to € Io;

(ii) only any two consecutive subintervals I;, I;11 have non-empty intersection;

(iii) for any index i, sub-orbit v(I;) is contained in an evenly covered, connected, open subset
V; C N.

Consider the smooth lift of 7|z,

- —1
co 1= <h|uo) o1,

with initial point zo. If t; € Iy N I;, repeat the above uniquely determined construction replacing
xo by x1 = co(t1) € h™'(7(t1)), so as to have a smooth lift ¢; of y|;, with initial point 1. Then,
continue by induction on integers i’s. Now, any two consecutive lifts ¢;, ¢;11 agree on I; N [;41, in
fact, notice that c;(I;N1;11) is a connected subset of h~!(V;11) containing z; 1 and then contained
in U;11. As a consequence, we can evaluate

(ﬁ Z/{i+1> O ¢y I,;ﬂ[i+1 - h’ O ¢y Iiﬁ1i+1 - 'Y Iiﬂli+1 - (B ui+1) o C’i+1 L‘,ﬁ]i+1
whence
C; IiNIi4q = C’i—‘,—l I,;ﬂ[i+1 .
Therefore ¢ : I — M , defined by ¢|;, = ¢; , is the unique lift we were searching for. .
Recall, e.g., the classical mapping
27 2w
0 eR — (6086 0, smT 9) S (6 >0)

of R onto the unit circle S; of Euclidean plane R2.
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4 Vector bundles

4.1 Fibre bundles

Let 7 : M — B be a submersion. As any submersion naturally turns into a surjective one 2%, we

directly assume 7 to be surjective. We will also assume dim M > dim B, in order to have — through
the fibres of m — a partition of M into embedded submanifolds (*®), whose collection bijectively
corresponds to B. In this case, M (fibred manifold) can be set-theoretically viewed as the union
of disjoint subsets (fibres) — each one endowed with a differential structure — whose collection B
(base or quotient manifold) carries a differential structure as well. From the differential structures
of the fibres and the base, one obtains the differential structure of M, containing charts which give
to any point its coordinates in the fibre where it lies, plus the coordinates of the fibre itself. With
this image in mind, 7 is said to be a (smooth) fibre bundle.

Let 7 : M — B and p: N — C be fibre bundles. A bundle morphism from m to p is a pair (f,g)
of smooth mappings which make the following diagram commutative

M f N
| I
B g C

Clearly, commutativity property, po f = gom, is completlely equivalent to the fibre correspondence
law, for any y € B,

fF(@ ) Cp ' (9(y)).

4.1.1 Proposition. A bundle morphism induces a smooth mapping between any two fibres which
correspond to each other.

Proof.  Just notice that, for any y € B, the restriction f, := f|-1(,) is a smooth mapping, with
values in p~'(g(y)) (embedded submanifold of V). Consequently, owing to Proposition 3.1.9., we
have that the induced mapping f; sl (y) — pt (g(y)) is smooth. "

A bundle isomorphism from 7 to p is a bundle morphism (f,g) set up by diffeomorphisms. From
the above proposition, one immediately draws that

4.1.2 Corollary. A bundle isomorphism induces a diffeomorphism between any two fibres which
correspond to each other. "

Now let m: M — B, p: N — C be fibre bundles such that

(i) M is a submanifold of N

(ii) B is a submanifold of C

(iii) the pair of immersions is a bundle morphism from 7 to p.

In such a case, 7 is said to be a subbundle of p over B. The name is due to the following

See Corollary 3.2.4.
See Implicit Functions Thorem 3.2.5.
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I 4.1 Fibre bundles

4.1.3 Proposition. If 7 : M — B is a subbundle of p : N — C, then, for each y € B, 7~ 1(y) is
a submanifold of p~1(y).

Proof. First we notice that 7= 1(y) — as well as p~!(y) — is a submanifold of N and 7= 1(y) C
p~(y). Then, from commutative diagram

My ———* . N
p~(y)

(where 1, j are immersions and 7 is smooth) we draw that
rank ¢ = rank (y017) = rank g,
that is, 7 is an immersion. "

4.1.4 Remark. It is easy to check — through simple set-theoretical considerations on subspace
topologies — that, if M is embedded into N, so is 7~ *(y) into p~1(y). .

Let m : M — B be a fibre bundle, V an open subset of B and 7~!()) the corresponding open subset
of M. The induced mapping 7|,-1(yy is a subbundle of 7 over V, whose fibres are the same as 7’s
over V. Let us now consider a product bundle pri : B X F — B, whose fibres are all canonically
diffeomorphic to a given type fibre F. For any open subset V C B, the above procedure yields a
product subbundle of pry over V, prilyxr : V x F — V. If there exixts a bundle isomorphism

(fa idV)a

) T yxF
7~T|7r1(v>l lﬁﬁvw
Y o v

then all the fibres of 7 over V are diffeomorphic — through f — to the type fibre F. In such a case,
f is called a local trivialization of w. Most of the fibre bundles we will be dealing with, are locally
trivial (i.e., each of them admits a local trivialization around each point of its base).

We shall now introduce a particular type of bundle morphism. Let N be a smooth manifold,
7m: M — B a fibre bundle and (f, g) a bundle morphism from idy to 7. The diagram

M

! lﬁ

N g B

is then commutative, 7o f = g, and then, for any x € N,

fl@) € nH(g(x))

(i.e. f(x) belongs to the fibre of m over g(z)). In such a case, f is said to be a section of 7 along g.
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Remarkable examples of sections are the following.
(i) Let I CR be an open interval and v : I — B a smooth curve in B. A section of 7 along ~ is
then a smooth curve ¢ : I — M, which projects onto v by =, i.e.,

M

c lﬁ

1 5 B

m(c(t)) = ~(t) viel.

In this case, c is called a lift of v by 7.
(ii) Let j: S < B be the immersion of a submanifold S into B. A section of 7 along j is then a
smooth mapping o : S — M, such that

M

o lﬂ
S ¢ , B
J

o(z) € 7 () Ve e S

In this case, o is called a section of w over S C B. If S is an open submanifold of B, then o is a
local section of 7 (20),

Lastly we introduce the following, structurally enriched type of fibre bundle. Let 7 : M — B be a
fibre bundle such that, for each y € B,

(i) 7 Y(y) is a real vector space;

(i) the embedded submanifold structure of 7~ 1(y) coincides with the differential structure deter-
mined by the vector space structure.

We will call (M, m, B) a vector bundle. A vector bundle morphism (between two vector bundles)
is a bundle morphism that induces a linear mapping between any two fibres which correspond to
each other. A wvector bundle isomorphism is a vector bundle morphism set up by diffeomorphisms
(it induces a linear isomorphism between any two fibres which correspond to each other). A vector
(resp., affine) subbundle of a vector bundle 7, is a subbundle of 7 whose fibres are vector (resp.,
affine) subspaces of the corresponding fibres of . A vector bundle is locally trivial if, around each
point of its base, it admits a local trivialization (onto a product vector bundle) defined by a vector
bundle isomorphism.

4.2 Tangent bundle

Let M be an m-dimensional smooth manifold. Recall that, owing to Proposition 2.1.3 and Theorem
2.1.4, for any x € M, the tangent space T, M, is an m-dimensional vector space and, if ¢ =
(2")i=1,...,m is an admissible chart at x, then the coordinate vectors (% £) form a basis of T, M.

The corresponding isomorphism &, : T, M —R™ is given, for each v € T, M, by

§x(v) = (U(xi))izl,...,m :

See 3.2.2.
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I 4.2 Tangent bundle

Now let T'M be the union of all the tangent spaces of M and
v TM — M

its natural projection onto M, defined by
o (@) == T M,

for any © € M. Any admissible chart (U,£) on M, determines a 2m-dimensional natural chart
(U, €Y) on TM defined on
Uu' =1 U

and given by

€U — EU)E™ v = v | ) = (€(), G 0).

Natural charts set up a 2m-dimensional atlas on T'M, whose C'*°-differentiability is shown in the
following

4.2.1 Lemma. The atlas of natural charts on T M is C*°.

Proof. Let & = (z1,...,2™) : U —R™ and n = (z',...,2™) : ¥V -R™ be admissible charts on
M, with U NV # Q. If (UL, €L and (V1 nt) are the corresponding natural charts on T'M, each
transition function, say

0o (€)1 EUNV)XR™ — qUNV)XR™ : (2,0) = (2, 0)) = (27, 07)

51($)>

has smooth projections, given (for any j' = 1,...,m) by

v v _ v . a
) =prl onlo(fl) I(Eﬂ):prj onoTy <v’

ozt
=27 (¢71(z))
and
’ — .7 . a
v =pr™t oo (¢ 1(57,1}) =pr! oy (vz pr )
g1
.0 Y
- (vz e ) (27
Tle@)
ie.,
-/ . Ox?
] K3
! Y o
1@
(contravariant transformation law of the components of a vector). .

The atlas of natural charts then determines a natural differential structure on T'M.
4.2.2 Proposition. If M be a Hausdorff and second-countable, differential manifold, then T M
is Hausdorff and second-countable too.

Proof. First notice that

(i) any two points of TM can be separated by two disjoint coordinate domains;

(ii) TM admit a countable atlas of natural charts.

The thesis then easily follows. "

We will call 757, or TM endowed with its natural differential structure, the tangent bundle of M.
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I 4.2 Tangent bundle

4.2.3 Theorem. 7 : TM — M is a locally trivial vector bundle, with type fibre R™.

Proof. Foreach z € M, let (U, &) be an admissible chart on M at x and (U*, £1) the corresponding
natural chart on T M.

(i) On the one hand, from the very definition of ¢!, it follows that 7y is a submersion and then
a fibre bundle.

(ii) On the other hand, the embedded submanifold structure of fibre 7' (z), is the one containing
the global chart ¢/ subordinate to £!. Also the differential structure determined by the vector
structure of 75, (z) is the one containing the global chart ¢, defined by the coordinate vectors. So
Ty 1s a vector bundle.

(iii) Lastly, check that (Tas|y1, &%) : Ut — UXR™ is a local trivialization of T/ at . .

424 Example. If M =R™ and ¢ = idgm, then ¢! = (7,¢') is a canonical, global trivialization
of TR™ . .

Let ® : M — N be a smooth mapping. We will collect all the tangent maps of ® at the different
points of M, into one vector bundle morphism. Define

T :TM — TN
by putting, for each x € M (27,
T®|p, 0 =T ® : T,M — To(y)N.
We call T® the tangent map of ®.
4.2.5 Proposition. (T'®,®) is a vector bundle morphism from Ty to Tn.
Proof. From the very definition of T'®, it follows that the diagram

TMT—(I)> TN

TMl lm

B
M > N
is commutative and the induced mapping T,®P, between any two fibres which correspond to each
other, is linear. So we only have to prove that T'® is a smooth mapping. To this end, for any
x € M, let (U, &) and (V,n) be admissible charts at x and ®(x), with &) C V. In the natural
charts (U, £Y) and (W1, n'), the coordinate expression of T'®

nl oTd o (51)71 . E(Z/{)XRm . n(V)XRn . (i‘,ﬁ) _ (xi,’Ui) — (yo‘,wa)

is well defined and has smooth projections, given (for any e = 1,...,n) by
" TP .
Sll lﬁl
EUXRT —— 5 p(V)xR 3 ge
(T®),1¢1
pri,
n(V)

(27) See Sec.2.3.
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El(fb)>

- .0
y* =pr@oprion' o T®o (¢) Nz,0) = pronory o T® (v’a -
X

o,
:yaO‘POTM<U’31- )
Tle1@)
=y (@ (@),
and
_ .0
W =pr®opryon o T®o (§1> 1(@@) =preo ’7:1>(x) <T5_1(w)(1) v ot >
Tle1@)
.0
=T ® ' 55 )(y“)
( 02" |e=1 ()
; Oy~ o @) ’
=0 T
T le@
The smoothness of all the above functions implies the smoothness of T'®. "

Notice that, if ® is a diffeomorphism, then T'® is a diffeomorphism too (for it admits of a smooth
inverse mapping) and therefore (T'®, ®) is a vector bundle isomorphism.

Let X be a differentiable section of tangent bundle 75, over M, i.e., a smooth mapping
X M—TM :z— X,,

such that

v 0 X = idyy.
The section X is called a wvector field on M.
4.2.6 Coordinate expression.

Let (U, €) be an admissible chart on M, and (U, £') the corresponding natural chart on TM. The
coordinate expression of the vector field X

gloX o™l 1 EU) — EU)XR™

has projections given (for any i = 1,...,m) by
priogto X o 1 (z) =priofomn(Xe1(s)
=priogot ! (z) (1)
= pr'(z)
and , )
prtiotlo X ot Hz) =prio 52*1(:2) o X ot Hz) @)
— Xiot\(3)

where

XU —R:z2— Xi(z):= X! = X, ()

are the components of X in €. The first block (1) of projections reduces to (pri|f(u)), which are
smooth. The second block (2) of projections reduces to (X?o&~1), which are the coordinate expres-
sions of components (X?%). Therefore, the smoothness of X implies the smothness of components

27



(28)

I 4.2 Tangent bundle

(X%) — in any admissible chart. Conversely, the smoothness of components (X*) — in suitably many
admissible charts — ensures the smoothness of X. =

We will denote the set of all the vector fields on M by x(M). For any X,Y € x(M) and f €
C°° (M), the sum X +Y and the multiplication fX (pointwise defined) are both in x (M) and give
X (M) the structure of a C*°(M)-module. Let W be an open submanifold of M. Owing to the
canonical isomorphism T,W = T, M (for each z € W), a vector field on W can be viewed as a
local vector field on M, i.e., a local section of 757, and vice versa. For instance, if ¢/ is the domain
of an admissible chart & = (xi)izl’m,m on M, on the one hand, by putting

0
- — T
py% xEL{—>axzw€ U

we have % € x(U), and on the other hand, from any X € x(M), we obtain X|y; € x(U), related

to the previous coordinate vector fields by the local decomposition law

0
ozt

Xy =X'

The directional derivative of a function f € C°°(M) along each value of a vector field X € x(M),
defines the Lie derivative of f along X, given by (2%)
Xf:zeM— X,f €R.

On the domain U of any admissible chart, we have

0
ox?

) flu = Xi% € C>®(U)

(X Ol = Xuflu = (Xi

and then X f € C*°(M). A local example of Lie derivative is
Xzt = X1

The Lie bracket of X,Y € x(M), is the vector field

X,Y]:z2 €M [X,Y], € LM CTM
defined, for any f € C*°(M), by

(X, Y]ef = Xa(YS) = Yo (X [).
The Lie derivative along [X,Y] is the commutator of Lie derivatives
(X, Y]f = X(Y[) = Y(XS).

On the domain U of any admissible chart, we have

[;<>) ]l = [‘(7} ]qui = ‘<\u() uxi) —Y u(‘c\uxi) = ;ilu() i) —Y u(‘(i)
oY X1
= J —YJ Rl
X 97 Y 57 e C>™(U)

If W ia an open subset of M, then the Lie derivative along X € x(M) can obviously act on C*°(W)
by putting, for any g € C*(W), Xg:= (X|w)g.
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and then
[X,Y] e x(M).
One can check that Lie bracket
[, ] x(M) x x(M) — x(M)

is an R-bilinear and skew-symmetric operation, satisfying (for any X,Y,Z € x(M)) the Jacobi
identity
(X, [V, Z]] + [V, 12, X]] + [2,[X, Y]] = 0.

Then x(M), as a real vector space endowed with the Lie bracket, is a real Lie algebra.

Finally, let ® : M — N be a smooth mapping and X € x(M) , Y € x(N). The vector fields X
and Y are said to be ®-related to each other, X r%Y, if the diagram

TMT—CI)> TN

x| [v

e
M > N

is commutative, i.e.,
TOPoX =Y oo.

4.2.7 Lemma. The vector fields X and Y are ®-related to each other if, and only if, X (go ®) =
Ygo®, for all g € C*(N).

Proof. For all x € M and g € C**(N), it is

XEY = Tho X =YV 0d = T8 - X, = Yo(u) <= (To® - X,)g = Yoa)g
= X,(go®) = Yoy <= (X(go®))(z) = (Ygo®)(x)
< X(go®)=Ygood.

4.2.8 Proposition. Ile:ng and XQS}/Q7 then [Xl,Xg]:g[Yl,Yz].
Proof. For any g € C*°(N), we have
[X1, X2](g0 @) = X1(Xa2(go®)) — X2(X1(go ®@)) = X1(Yogo ®) — Xa(Yigo D)
=Y1(Yag) 0 ® — Y2(Y1g) 0 @ = [Y7,Y3]g 0 ®.

4.2.9 Distributions. A k-dimensional distribution (%) on M is a vector subbundle V of T M over
M, with k-dimensional fibres V, C T, M. An example is given by the collection of vector subspaces
spanned by the values of k R-linearly independent vector fields on M. An integral manifold of V
is any k-dimensional, connected submanifold L — M s.t., for each z € L, T,j(T,L) = V,. The
distribution V' is said to be integrable if, for each x € M, there exists one, and only one, maximal
integral manifold, leaf, containing x. In this case, any integral manifold is contained in one leaf
and is an open subset of it. The set of all leaves is a k-dimensional foliation of M. A vector field
X € x(M) belongs to V if X, € V,, for each x € M. The dfistribution V is said to be involutive if,
for any two nowhere-vanishing vector fields X, Y belonging to V', the commutator [X, Y] belongs to
V too. Involutiveness is a necessary and sufficient condition of integrability (Frobenius theorem).

(29) See Brickell and R.S.Clark, Differentiable Manifolds, (1970), ch.11.
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4.3 Cotangent bundle

Let us consider, at any point € M, the cotangent space T;; M, dual of T, M, whose elements will
be called covectors at x. Let & = (2*);=1,...m be an admissible chart at . From Remark 2.2.5, it
follows that

dyxt-v=v(z") , YveT,M.

As a consequence, the coordinate covectors {d,z'} form the dual basis in T M of basis {2, } in
T, M which corresponds to the isomorphism

& To M —R™

given, for each a € T M, by
~ 0
&x(a) i=(oy) = <a~ pyes

J)

Let T*M be the (disjoint) union of all the cotangent spaces of M and mp; : T*M — M its natural
projection onto M, defined by

Ty (x) == Ti M Vee M

Any m-dimensional admissible chart (U,£) on M, determines a 2m-dimensional natural chart
(U, &) on T*M defined on
Uy =1y (U),

and given by 4 .
& U — EU)XR™ = id,a’ — & (a) = (E(2), &(a)).

Natural charts set up a 2m-dimensional atlas on 7% M, whose C'*°-differentiability is shown in the
following

4.3.1 Lemma. The atlas of natural charts on T*M is C°.

Proof. Let &€ = (2,...,2™) : U —R™ and n = (y*',...,y4™) : V —=R™, be admissible charts on
M, withU NV # 0. If (Uy,£&1) and (V1,1m1) are the corresponding natural charts on T*M, each
transition function, say

mo (&) EUNV)XR™ — gUNV)XR™ @ (z,a) = (2',05) = (47, @)
has smooth projections 49 given (for any j' = 1,...,m) by

v =pri om0 (fl)fl(f,d) =pri omomy (Ckidg—l(@)l'i)
= yj/(g_l(d))a

and
-1, _ B p
ajr = proy omo (&) (T, &) = prj o fe-1(z) (ide-1(z)2")

8 )
(@)

= (cidg-1z)2") (ayj
As for the smoothness, see the proof of Lemma 4.2.1.
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ie.,
ox'
o =0 ——
0y e a)
(covariant transformation law of the components of a covector). .

The atlas of natural charts then determines a natural differential structure on 7*M (with a Haus-
dorff and second-countable topology (31)). Endowed with its natural differential structure, T M
is called the cotangent bundle of M.

4.3.2 Theorem. my; : T*M — M is a locally trivial vector bundle, with type fibre R™ (32), =
Let 6 be a differentiable section of the cotangent bundle my; over M, i.e., a smooth mapping

0: M —T*M : x—0,,

such that
w06 =idy.

The section € is called a covector field on M.
4.3.3 Coordinate expression.

Let (U,€) be an admissible chart on M, and (U1,&) the corresponding natural chart on T*M.
The coordinate expression of the covector field 0,

§r000& 1 EU) — EU)XR™,
has projections given (for any i =1,...,m) by

prio€iofotH(z) =pr'o€omn(be-1(x)

=pr'ofot (z) (3)
= pr'(z)
and -
Prmsi0€100o0& N (T) =priofofot (z)
1, (4)
=0;0& (T)
where
O, U —R : z— 0;(x) :=(0,); =0, %

T

are the components of 6 in £ The first block (3) of projections reduces to (pri|5(u)), which
are smooth. The second block (4) of projections reduces to (6; o £~1), which are the coordinate
expressions of components (0;). Therefore, the smoothness of 6 implies the smothness of the
components (6;) — in any admissible chart. Conversely, the smoothness of the components (6;) —
in suitably many admissible charts — ensures the smoothness of 6. .

(31) See Proposition 4.2.2.
(32) See the proof of Theorem 4.2.3.
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4.3.4 Example. Let f € C(M). The differential df %) is the covector field
df ;e e M — dy,feTyM CT"M,

whose smoothness is ensured by the smoothness of its components in any admissible chart (U, ),

given by
: . 9 _of
(df)id —R : x—dyf (éhi I) = ol
that is of

We will denote the set of all the covector fields on M by x*(M) . For any 6,0’ € x*(M) and
f € C®(M), the sum 0 + 6" and the multiplication [0 (pointwise defined) are both in x*(M) and
give x*(M) the structure of a C*°(M)-module. Let W be an open submanifold of M. Owing to
the canonical isomorphism TXW = T*M (for each x € W), a covector field on W can be viewed
as a local covector field on M, i.e., a local section of 7j;, and vice versa. For instance, if U is the
domain of an admissible chart £ = (azi)i:lwﬁm on M, on the one hand, by putting

de' iz el — dyat € T*U

we have dx® € x*(U), and on the other hand, from any 6 € x*(M), we obtain 8y, € x*(U), related
to the previous coordinate covector fields by the local decomposition law

9|z,{ = Gldxl .
The pointwise interaction between a covector field § € x*(M) and a vector field X € x (M), defines

the pairing
X :zeM —0,X, eR.

On the domain U of an admissible chart £, we have
OX )| = 0l X | = (0;dx*) xi9) = 0; X7 dmii =60;X76¢
’ oxi ! Oxi B
=0, X" € C™WU)

and then
0X € C*(M).

An example of pairing is the Lie derivative
Xf=dfX.

Local examples of pairings are the components of a vector or covector field

Xi = da?iX‘u
0
0i =0l 5 -

See Remark 2.2.5(i).
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4.4 Tensor bundles

In this section we will embody tangent vectors and covectors in the general context of tensor
calculus.

Let z € M and let r, s be non-negative integers. For r = s = 0, put
(Tg M), = {z} xR
and, in any other case, let (T7 M), denote the set of all the R-multilinear forms of the following

type
A:TiM X ... xToMxT, M x...xT,M —R.

rtimes s times

Notice that, for » = 0 and s = 1, we have, up to a canonical isomorphism,
(TYM), = T; M
and , for r =1 and s = 0, we have
(Toy M), =T;*M =T, M.

In any case, (TTM), is called the (:)—tensor space at x, its elements being called (r times con-
travariant and s times covariant) tensors at . Sum and multiplication by real numbers are natural
operations in (77 M),, which is so given the structure of a vector space. Another useful operation
on tensors is the tensor product, which acts on a pair A € (T*M), , B € (TST,/M)QJ and yields

A®B e (T:L’“,’M)z given by ordinary multiplication AB if r = s =0 or ' = ¢/ = 0, and, in any

other case, by

’

A®B(a1,...ar,ﬂl,...ﬂrl,ul,...us,vl,...vs/) ::A(al,...ar,ul,...uS)B(ﬁl,...ﬂr/,vl,...vs)

In particular, if £ = ()1, ,, is an admissible chart at , then the system of m"** coordinate

tensor products

,,,,,

g ®
oxh |,

is a basis of (T7 M),, as is shown in the following

L®

5| © d2' ®...® dmxjs) (5)

4.4.1 Proposition. Any tensor A € (T M), can be uniquely expressed as a linear combination

4 42117-
J1---Js 11
Oz |,

®...Q

oxir

@dpa @ ... Qdyate

)

(.. a"ut, . uf) €TIM x ... x TiM x Ty M x ... x T,M

rtimes s times

with components

0

Oxit

0

7...,7.
J
- OxJs

e i i
Alltr = (dmxl,...,dmzr

Ji---Js

Proof. (i) For each
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we have
A, amut, . uf) =
=A <a1 dyah ol dyxtt,ult uls 0 )
- i1 YT 9y Y Y s Y1 ; 7y U i
Oxdn | Oxs |,

Afpeie 1 roJ1 Js
=ALTT oo gt

o P P ) .
Aty ] T J1 Js
= AL« ((,mil SR v dgx?* (uy) ... dpa?® (us)

x x

®...0

) . _
= (Aﬁz; e Rdzx’' ®...® dxzjs> (ab,...a"ut, .. uf),
x T
whence the required decomposition of A.

(i) The uniqueness of the above decomposition is due to the linear independence of the coordinate
tensor products. This can be checked by evaluating a vanishing linear combination

Ox'r

o o _ _
1.l s _
Ajlln'js (8$i1 ®...® D7 Qdyr’ @ ... d 7’ > =0
xr xT
on 5 5
L L .
< II b b Ix b 8l‘k1 I’ b al‘kb I)
We obtain
i1...ir sh hy j Js
A;lllj 61-11 ...6Z-T 6k11 ...6ks =0
that is
A =0
for all the values of the indexes. =

Owing to the above proposiition, dim (T7 M) = m"** and basis (5) of (T7 M) _ corresponds to
the isomorphism
+s

& (TIM), —R™

given, for any A € (T;M)x, by

0
OxJt

0

ey
Js
» ox

Ex(A) = <A (dzxil, ooy dyxtt

))
(for r = s = 0, just put &, := idg).
Now let T7 M be the (disjoint) union of all the (7)-tensor spaces of M. Notice that

TOM = MxR , ToM=TM , TYM =T*M.

Let
Top :TaM — M

be the natural projection of T, M onto M, defined by

(7 a) " @) = (TTM), Vre M.
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Any admissible chart (U, &) on M, determines a (m + m"%)-natural chart on TT M defined on
U = (15 y) " (U)
and given by

ivin [ O
A=A7TT (8xi1 N

Natural charts set up a (m-+m"**)-dimensional atlas on T7 M, whose C*°-differentiability is shown
in the following

€U — EUXR™

...®axir

Y dzmj5> e €1(A) = (6,60 (4).

4.4.2 Lemma. The atlas of natural charts on Tt M is C*°.

Proof. Let &€ = («',...,2™) : U —R™ and n = (y',...,y™) : V =R™ be admissible charts on
M, withid NV #£ 0. It (UF,£7) and (V7,17 are the corresponding natural charts on 77 M, each
transition function, say

n o (€)1 HEUNVIXR™ T — @ N V)R s (3, 4) = (o, A ) (b7 AR

J1---Js 1o ds

has smooth projections 4| given (for any j' = 1,...,m) by

y' = oprionlo (&) (z, A)
, o ) . ,
— J 1 "'/L’!‘ _7 .]S
=u’ onoo (Ajll...js <6xi1 I®'“®7ax” x®d1x '®...®@dyr ))
= yj/ (fil(i')) )
and (for any ¢} ...i,, 41 ...j.=1,...,m)
il il r R
A;?Z = UEI{ZZ Oprg ofg © (59) (SC, A)
= U o ey | Al 9 ®... , @ de-1(3) 2" @ ... @ de—1 ()2’
]1"'].2 3 (17) J1---Js ax’n f_l(i) axlr f_l(i) € (:E) € (I)
= | At 0 ®R...R® - ®d§71(—)xj1 ®...®d§—1(f)xjs
J1---Js 81.11 gfl(j) 895“ 571(5) x T
. y 0 0
d—liyj1®...®d—liyjs®7., ®®7,
< E-1(x) £-1(z) dyih —10x) dyir PR
_ fi1eir 8in1 ayi; da %
Tl 8x“ £-1(z) " £-1(z) 3y]1 E1(x) ayjr £ 1(z)

(r-times contravariant and s-times covariant transformation law of the components of a tensor). m

The atlas of natural charts then determines a natural differential structure on 77 M (with a Haus-
dorff and second-countable topology (35)). Endowed with its natural differential structure, 7. ,,,
or Tr' M, is called the (7)- tensor bundle of M.

(34) As for the smoothness, see the proof of Lemma 4.2.1.
(35) See Proposition 4.2.2.
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I 4.4 Tensor bundles

443 Theorem. 77, : TTM — M is a locally trivial vector bundle, with type fibre R (36) o

Let A be a differentiable section of the (g)—tensor bundle 77 ,, over M, i.e., a smooth mapping
A:M—-T:/M

such that
T:M 0 A= 1dM .

The section A is called a (g)—tensor field on M.

4.44 Coordinate expression.

Let (U,&) be an admissible chart on M, and (U7, £7) the corresponding natural chart on 77 M.
The coordinate expression of a tensor field A,

EloAo ™ EU) — EUXR™T,
has projections given (for any i = 1,...,m) by

utoprio€loAct T (z) =u'0€oo(Ae1(n))
=u'ofof () (6)

= u'(7)
and (for any i1,...,%,j1,...,5s = 1,...,m) by

ufi oy opra o€l o Ao (T) = ujyy 0fo Aot (1)

= Aj o7 (3)
where

A U R o AT (@)= ()5

0

> i

0

7...77,
J‘
- OxJs

=A, <dgcaci17 cdpatt

)

are the components of A in £. The first block (6) of projections reduces to (ui|§(u)), which are

smooth. The second block (7) of projections reduces to (A;lly o ¢71), which are the coordinate
expressions of A’s components. Therefore, the smoothness of A implies the smothness of its
components — in any admissible chart. Conversely, the smoothness of A’s components — in suitably

many admissible charts — ensures the smoothness of A. "

See the proof of Theorem 4.2.3.
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I 4.4 Tensor bundles

4.4.5 Example. Let A, B be tensor fields of type (g) and (g:) respectively. Their tensor product

A®B:M—>T;':,/M cx€e€M— A, ®B, € (T;I;//M)x

is an (Zig:)—tensor field, whose smoothness is ensured by the smoothness of its components, given
(in any admissible chart) by

(A® B)il"'iTiT+1"'i7‘+T’ o 1.l iT+1"'ir+r’
J1-Jsds+1--Jsys! " J1-Js ™ Js+1--Jsts!

We will denote the set of all the (7)-tensor fields on M by x7(M).
Notice the following identifications:

XO(M) =C®(M) , xo(M) = x(M), XJ(M) = x*(M) .

For any A, A’ € x7(M) and f € C*°(M), the sum A + A’ and the multiplication fA (pointwise
defined) are both in x% (M) and give x%5(M) the structure of a C°°(M)-module.

Let W be an open submanifold of M. Owing to the canonical isomorphism (T/W), = (TX M),
(for each z € W), a tensor field on W can be viewed as a local tensor field on M, i.e., a local section
of 7',,, and vice versa. For instance, if I/ is the domain of an admissible chart { = (x")i=1,...m on
M, on the one hand, we have

K] , o
5 ®"'®8xir Rdz" ® ... dx" € xL(U)

and, on the other hand, from any A € x4 (M), we obtain Al € x%5(U), related to the previous
coordinate tensor fields by the local decomposition law

) A .
Ay = A% ®...0 Rdz" ® ... da’".

J1Js Qi Hxir

The pointwise action of a tensor field A € x, M on covector and vector fields defines the pairing

A:x* (M) x ... x X" (M) x x(M) x ... x x(M) — C®(M) (8)

7 times s times

given by
A, .07 X, X)) () = A (0,00, Xy, X))

sV

Notice that A is well defined since on the domain of any admissible chart (U, ), we have

ABY, .. 0" Xy, X = ALl

J1eegs i1t

0T X X e O°(U)

and then
A@BY,...,07, X1,...,X,) € C™(M).

Moreover A is easily checked to be C°°(M)-multilinear. Let us denote by x%(M) the C>(M)-
module of all the C°°(M)-multilinear mappings of type (8).
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4.4.6 Theorem. The mapping

(M) — (M) s A A

is an isomorphism.

Proof. For the sake of notational simplicity, we shall put r = 0 and s = 1 and then we shall prove
the bijectivity of the mapping
(M) — (M)

given by
0(X):=0X.

Let 6: x(M) — C°°(M) be an C>(M)-linear mapping. )
(o) Let X € xM be such that X, = 0. We shall show that (§X), = 0. To this purpose, let
(U, €) be an admissible chart at @, where X[y = X'5%;, and 3 € C>(M) a bump function at

x with support in 4. As is known ®7) we can ‘extend’ both X? € C®(U) and -2, € x(U) to

~ GrS
X e C®(M) and % € x(M) by putting

X'y =BuX" , X'|mv-u=0

d B) d
dorle = Mgy il =0
From R
~. 0
2 _ 7
Fx=X ozt
we draw

- - (i 0\ oifz0
B20X) =0(3*X) =16 (X M) =X ((Jaxi) .

Evaluating the left and right hand side at = (where 8(z) = 1 and X*(z) = X'(z) = 0), we have
(0X)(x) = 0. As a consequence, if X,Y € x(M) are such that X, =Y, i.e.,

(X =Y)(z) =0,

we have

0= (60X —Y)) () = (6X — 0Y)(x) = (6X)(x) — (6Y)(x)

that is (§X)(z) = (AY)(x). So the value of X at z only depends on the value of X at z.
(i) Owing to (o), we can define
0. M —T'M

by putting, for any x € M and v € T, M,

See 1.3.
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I 4.4 Tensor bundles

where X € x(M) is any vector field such that X, = v 38, Clearly 6, : T,M —R is linear, i.e.,
0, € Ty M. The smoothness of 8 is ensured by smoothness ot its components (;) in any admissible
chart (U, &), for (if V C U denotes an open neighbourhood of a = € U where §|y = 1)

01 _py= (@?)‘ € C=(v).
v ox?
1%

Oy —
v ort

So 0 € x*(M). Since
0X =0X , VX ex(M), (9)
0 is the image of # under ~. This shows that ~ is surjective.

(ii) 6 is the image of just one § € x*(M) under ~. Indeed, owing to (9), there is no choice as to
the value 0, of 8 at any x € M, 0, is to be the linear form acting on each v € T, M as follows:

0,0 = 0, X, = (0X)(z) = (6X)(z),

where, X € x(M) is any vector field such that X, = v. This shows that ™ is injective. .

Owing to Theorem 4.4.6, a tensor field A € x5(M) will now be meant as an C°°(M )-multilinear
mapping
A:x" (M) x...x x" (M) x x(M) x ... x x(M) — C*(M).

7 times s times

Restriction of A to any s-tuple X,..., X € x(M), is a C°°(M)-multilinear mapping

A( Xy, LX) X (M) x oo x (M) — C%°(M)

r times

and then
A( . 5 Xy, X)) € xo(M).
The consequent mapping
A x (M) x .o x x (M) — xj(M) (10)
s times
defined by
AXy, . X)) =A(... ; X1,...,X,) (11)

is easily checked to be C°°(M)-multilinear.
Let us denote by X% (M) the C*°(M)-module of all the C°°(M)-multilinear mappings of type (10).

For example, if (U4,&) is an admissible chart at x, consider Y € x(U) characterized by constant
components Y = v’ in &; then ‘extend’ Y to an X € x(M) by means of am bump function 3 at
z with support in U.
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4.4,7 Theorem. The mapping
MxG(M) — XG(M) - A A

is an isomorphism.

Proof. Let A be an C°°(M)-multilinear mapping of type (10).
(i) We obtain an A € x%(M), by putting, for each 6',...,0" € x*(M) and Xi,...,Xs € x(M),

A0, ... 0", X1, .., X)) = A(Xy, ..., X0, ...,07), (12)

and A is the image of A under . This shows that ” is surjective.

(i) A is the image of just one A € x%(M) under . Indeed, owing to (11), there is no choice as to
the value of A at any 6',...,0" € x*(M) and Xi,..., X, € x(M); this value is to be (12). This
shows that " is injective. .

Owing to Theorem 4.4.7, a tensor field A € x7(M) can also be meant as an C°°(M)-multilinear
mapping

A:x(M) x...xx(M) — x((M)

s times

4.4.8 Remark. On the domain of any admissible chart (U, £), from the local decomposition

i, O 9 ; 2
A|M :Ajlljsale ®®%®d:cjl ®®d$'] ,
we draw
0 8 9 8\ o 0
A T . ae e - = A T . e e e 3 B e -
u (3le Y &Ws) [ u (8x31 T Qade )} oz & ® B
4 - 0 0 0 0
= A o datr — ... . . .
[ u (dm e 42T Oxir’ " 6‘zﬂs>} Oz 98 Ozir
_ pieiy O 9
T ds 9pia ®...Q Oxir
and then the above local decomposition reads
0 o . .
— J Js
A|M—A|M(6le7...,axjs)®dx1®...®d$ . n
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5 External forms and derivations

5.1 External forms

Let M be an m-dimensional smooth manifold and s be an integer. If s < 0, let A;M be the null
C>(M)-module. If s =0, let
AoM = x)M = C>®(M)

be the C*°(M)-module of (8)—tensor fields, i.e., real smooth functions, on M. If s =1, let
MM :=x"M =x*M
be the C*°(M)-module of (?)—tensor fields. If s > 1, let
A M C XM

be the C°°(M)-module of skew-symmetric, (2)—tensor fields on M. Any such field, as a C>°(M)-
multilinear mapping
wixMx...xxM — C®(M),
—_—

s times

satisfies, for all Xi,..., X5 € xM and i,j = 1,...,s, the skew-symmetry condition
W(X17~-~aXi7-~-an;-~-aXs>:_W(Xla---7Xja-~-aXia~--;Xs)~

Notice that, for any skew-symmetric w € A;M, the restriction w|y to the domain of any admissible

chart (U,§), is skew-symmetric too and then, if s > m, wy (81%,...,%) = 0. From the

decomposition law of w|y, it follows that w|y = 0 and then, from the arbitrariness of £, we have

w = 0. So, also for s > m, A;M = {0}.

For any integer s, the elements of A;M are called exterior s-differential forms. In the set AM of

all the exterior forms on M, called Grassman or exterior algebra of M, the exterior product
AN:AM x AM — AM

is an (associative, C°°(M)-bilinear) operation that maps each 7 € A, M and w € A;M onto an

image 7 Aw € Agy,.M given by
TAw=0

if either r or s is negative, and, in any other case, by
1 .
TA w(Xl, . 7XSJFT) == Z (signo)T ® w(Xg(l), e ,XU(H_S))
1 :
= W Z (Slgn O‘)T(Xg(l), ce ,XU(7.))W(XJ(7.+1), o 7Xo'(r+s))

(the sum being extended to all the permutations o of {1,...,s+ r}). Hence

TAw=(-1)"wAT.
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5.1.1 Examples. Check that
(i) if f e AoM and w € A;M with s > 0, then

fAw=fuw;

(ii) if 7,w € Ay M, then
TAW=TROW—-—wW&T.

5.1.2 Coordinate expression.
In any admissible chart (U, €), the components of 7 Aw € Asy M are

(TAW)j1 s = (T/\W)|u< o . 8)

Qxir’ "7 Jarts
1 .
= gl E (Slgn U)Tja(1)~~~jo(r)wja(r+1)-~~ja(r+s)
g

In particular, for r =s=1, (T A w)ij = TWwj — Tjw;.

5.1.3 Remark. The local decomposition law of any w € AgM, with s > 1, in an admissible
chart (U, §), reads
wly = Z Wy ode?t AL A dae
J1<...<Js

Proof. For the sake of simplicity, we shall put s = 2. The local decomposition law of w € A;M in
U,§), is

wly = wijdz' ® dr?

g 0
win =l Gor g7 )

Owing to the skew-symmetry of w|y, we have

—wji 1F]
wij =

with

0 i=y
and then
wly = Z(Wijdl‘i ® do! + wjidr? ® da') = Zwij(dﬂﬁi ® de? — da? ® da)
i<j i<j
= Zwijd:ri Ada? .
i<j

Let ® : M — N be a smooth mapping. The pull-back by ® is the additive operator
O AN — AM
which maps w € AgN onto ®*w € A;M given by

0 s<0
O w = {
wod s=0
and for s > 0,
(P*"w)y = Wa(z) © (To® x ... x T, ®)
s times
for all x € M.

42
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5.1.4 Coordinate expression.

Let £ = (29)j=1, . m : U —=R™ and n = (y*)a=1,...n : ¥V —=R", with &) C V, be admissible charts
on M and N, respectively. Recall 39 that, at any = € U, the relation w = T,® - v is expressed in

§ and n by w = w® 85(, (o) with w® = %ﬁ? . v® (where ® := y® o ®/). As a consequence,
x
R 0
T oxd|,  0xd |, Oy~ B(x)
Now let w € A;N, with s > 0. At any x € U, we have
((p w)j1-~~js (l’) = ((I) w)ij“js = ((I) w)ﬂc <8$L‘j1 N PRI % 1)
0 0
o 0P* 0 0P 0
PN | Oy la T 0, Oy g
09 0P*s " 0 0
Pl z - Oad x e Oy~ () T Oy ()
0P 0P
~ Ozh . Oxds | Wao(z) ar.as
OLRE 0P*s
= G R Way...a. (P(2)).
So ®*w has components
0P oP*s

(" W)irse = 5 i W © Plur)

(whose smoothness ensures the smoothness of ®*w).

5.1.5 Proposition. The pull back operator ®* preserves the exterior product, i.e.,
O (T Aw) = D*T AP w,
for any 7, w € AN.

Proof. For the sake of notational simplicity, we shall put 7, w € A;N.
On the one hand, we have

09> 99 0D 9P

(@"(r /\W))m = ﬁ@“ Aw)ap o Ply = W@(Tawﬁ — Tpwa) © Pl -

On the other hand, from

0P
((I)*T)z = 73951 (Ta o (I)|LI)
. 09°
((I) w)j = O (Wﬁ O(I)|Z/l)’

(39) See 2.2.4.
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it follows that

(DT AP W) = (P77)i(P*'w); — (7 7);(P*w);

0D 0P? 0P? 9o
= B a7 8 0 P = G g (790 0 Blu)
09” 99°

—— (Tawg — TaWa) © Py -

T Qat Ot

Hence the statement. =

5.1.6 Remark. The action of ®* — as above defined between AN and AM — naturally extends
to the action between AV and AU where V is any open submanifold of N and U := ®~1(V) its
open inverse image in M. From this extension of ®*, it follows that, for any w € AN,

O (wly) = (P*w)lur -

5.2 Derivations

Let k& be an integer. A derivation of degree k on the exterior algebra AM, after Frolicher and
Nijenhuis (9 is an operator
D:AM — AM

that maps each w € A;M onto an image Dw € Agy M, satisfying (for each 7, w € AM and a,
b €R)
(i) R-linearity
D(at + bw) = aD7 + bDw

(in every AsM);
(ii) Leibniz rule

D(t Aw) = D1 Aw+ (=1)"%1 A Dw
(where r is the degree of 7).
The local character of a derivation is pointed out in the following

5.2.1 Proposition. If o, 7 € A, M coincide on an open subset U C M,
olu="Tlu,

then
(Do)fu = (D7)lu -

Proof. If we put w := 0 — 7, we have w|yy = 0. Then, if x € U and ( is a bump function at  with
support in U, we also have w = (1 — f)w both on U (where w vanishes) and on M — U (where

vanishes). Now, on the one hand, Leibniz rule implies

Dw=D(1-p)Aw+ (1-p)Dw

See A.Frolicher and A.Nijenhuis, Theory of vector-valued differential forms, Ind.Math., 18 (1956),
p-338-385.
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and then
(Dw), =0

since w; = 0 and B(z) = 1. On the other hand, R-linearity implies

Dw = Do — Dt
and then
(Do) = (D7), -
Hence, owing to the arbitrariness of € U, the statement follows. "

A consequence of the ‘locality’ of a derivation D on AM, is the possibility of extending the action
of D to the exterior algebra AW of any open submanifold W C M. To this end, let « € AW. If
o,7 € AM are equal to a around a point x € W, i.e.,

olv, =aly, Ty =aly,
on the open neighbourhoods Vi, Vo, C W of x, then
alvinv, = alyiav, = Tlviny,
and, owing to the above proposition,
(Do)y = (D7), .
Therefore the action of D can be extended to « by putting, at each x € W,
(Da), := (Do),
with any 0 € AM equal to « around = (the smoothness of Da is ensured by the smoothness of its
components, which, in a suitably small coordinate neighbourhood of z, are the components of Do).
Clearly this action of D on AW still satisfies R-linearity and Leibniz rule, i.e., D is a derivation

on AW too. The above extension clearly implies that, for any open submanifold W C M and any
weAM,

522 Lemma. Let D and D’ be derivations on AM. If for each f € C°°(M),

Df=D'f
Ddf = D'df ,
then
D=D".
Proof.

(i) Let us first show that, if W is an open submanifold of M, then, for each ¢ € C*(W),

Dp=D'v , Ddp=Ddp.
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I 5.2 Derivations

To this purpose, let x € W. If f € C*°(M) is equal to ¢ around z, i.e., fly = ¢|y on an open
neighbourhood V C W of x, then df is equal to dy on V, and consequently

(D@)z :=(Df)e = (D'f)e =: (D'¢)a

(Ddp)y := (Ddf)y = (D'df )y =: (D'dp)s -

(ii) Let us now prove the main statement, i.e.,
Dw=Dw , YwecAM.

For the sake of simplicity, as usual, we shall only check the result for w € A; M. On the domain of
any admissible chart (U, £) on M, we have

(Dw)|y = D(wly) = D(widz’) = Dw; A da* + w; Ddx’
Then, owing to (i),
(Dw)|y = D'w; Adx' + w;D'dx’ = D' (widz") = D'(w|y) = (D'w)|u
whence the statement. .
Let D; and D5 be derivations on AM of degree k; and ko, respectively. The operator
[D1,Ds] : AM — AM

defined by
[Dl, DQ] = D1D2 — (71)k1k2D2D1

is called the commutator of D1 and Ds.

5.2.3 Remark. Notice that

—(=1)k*2 Dy, Dy] = —(=1)"*2 D, Dy + Dy D, = [Dy, Dy]. .

5.2.4 Proposition. The operator [Dy, Ds] is a derivation of degree ki + ko.

Proof. From the definition of commutator, one can directly draw that [D;, Ds] takes, R-linearly,
any AgM into Agy(x,4r,)M. Then we only have to prove Leibniz rule

[Dl, DQ](O’ AN T) = ([Dl,DQ]O') ANT+ (—1)(k1+k2)80' N ([Dl,DQ]T)
1) (2)

for any 0 € A;M, 7 € AM. As to right hand side (2), we have

(2) = (D1 D20 — (=) Dy Dy0) A 7
+ (—1)(k1+k2)80' A\ (DlDQT — (—1)k1k2D2D17’)
= (D1D30o) A T—(=1)kk2 (DeDyo) AT

1 2
+ (1) *BatR)s g A (Dy Dor) —(=1)RatR)s (—1)kik2 g A (DyDy 7).

3 4
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I 5.3 Cartan calculus

As to left hand side (1), we have
(1) = DiDy(o A7) — (=1)"*2 Dy Dy (0 A T)
where the first term of the sum is
D, (Dga AT+ (=1)**20 A DQT) =Dy (DQU A 7') + (=1)%*2 D, (0 A DQT)
= (D1D20) AT+ (—1)Hk Dy A Dy 7

1 a
+ (=1)**2Dy0 A Dot + (—1)*7**15 A (D1 Dyr)

b 3

and the second term (which can be obtained from the first one via permutation of {1,2} and
multiplication by —(—1)k1#2) is

—(=1)*k2(DyDyo) A T—(—1)Frket(sThOR D, 6 A Dy

2 —b
7(71)k1k2+8k1D20' A\ Dle(fl)klk2+Skl+Sk2CT A (DngT) .

_a M
So (with the above numeration) we have

(MH=AQ+a+b+3)+(2-b—a+4)=1+2+3+4=(2)

that is the statement. n
5.3 Cartan calculus

A classical derivation on AM, which extends the ordinary differentiation on C°°(M) (and is at the
foundation of the so called Cartan calculus), is given in the following

5.3.1 Theorem. There exists a unique derivation d of degree 1 on AM, called exterior derivative,
such that, for any f € C*(M),
(i) df is the differential of f,
(ii) d(df) = 0.
(iii) The action of d vanishes on A;M for s < 0, is given by (i) on AgM, and, on each w € A;M
with s > 0, is given by
dw(Xo, X1,..., X) 1= (-1)'Xw(Xo,...,X;,..., X,)
=0 o R K (13)
+) (-)Mw((X:, X1, Xo, - X XL X)
i<j
(where Xo, X1, ...,Xs € xM and symbol ~ denotes omission of the term where it is placed).

Proof. Existence. One should prove that operator d, defined by (13) is a derivation which satisfies
condition (ii). We shall only check (ii). If w € A1 M, then, for any Xg = X, X7 =Y € xM, we
have
dw(X,Y) = X(wY) - Y(wX) —w[X,Y].

If w =df (with f € C®(M)),

ddf(X,Y) = X(Yf) = Y(Xf) — [X,Y]f =0.
Hence the statement.
The uniqueness follows from the above Lemma 5.2.2. "
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5.32 Remark. If you want to be led to find out action (13) of exterior derivative d (i.e., of
a derivation of degree 1 satisfying (i), (ii)), you can follow these directions. First, check that d
satisfies (i), (ii) on any open submanifold & C M too. Then, let U be the domain of an admissible
chart. On U, for any w € AM, e.g. w € Ay M, we have

()l = () = dleogda?) = oy A o = 52 0o o

oz’
g‘”j (dz' ® dz’ — da’ ® dz')
or, equivalently,
Ow;  Ow; j
(dw)|u (E)xl = 5 )d ® da’ .
As a consequence, for any X, Y € yM, it is
- - 8wj &ui i Zawj GwZ
(dw(X, Y))‘u —d(wh,{)(X‘u,Yk,{) = (8@" - 6$3> Xiyi=X i lyi — Yja JX
.0 . .0 . QY7 X’
_ i VI _vi Y (. xi) _ xi kel
X Bxi(wjy) v 8xj(sz) X Y g
, 0 0 : Y 0X
J J T ) 7
(Y) YB (@iXT) = <X8x Y(?ﬂ)

= (X(Y) ~Y(wX) - w[X,Y])|u-
On M then we have

dLU(Xo, X1> = Xo(wX1> — Xl(u)X()) — w[X(),Xl]
(with Xo = X and X; =Y), that is

1
d(U(X(),Xl) = Z(_l)iXiw(X%Xi—i-l) + Z(—l)i+jw([Xi7Xj],Xi,Xj). [ ]

i=0 i<j

5.3.3 Property. The exterior derivative is nilpotent, i.e.,
d* =0.
Proof. The proof is based on the following remark: Leibniz rule and condition (ii) imply that
ddpr N ... ANdps) =0

for any ¢1,...,ps € C®°(U) and any open submanifold & C M. With this remark, we evaluate d
on w € A;M in the domain U of an admissible chart, where

wly = Z wjy . (dxT A LA dae);

J1<...<Js
we have
(dw)lu = d(wlu)
= Z (dwjy.j, ANda?* A A da? +wj o god(da? AL A dze))
J1<...<Js
Z dwij, . Ndx? AL A dade
J1<...<Js
With the same remark, we now evaluate d on dw in U4. We have
(dw)|y = (ddw)ly = d(dwly) = Y d(dwj,..j, Ada?* A Ada?*) = 0.
J1<...<Js
So, for any w € A, M, d?w = 0. "
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5.3.4 Property. The exterior derivative commutes with pull-back, i.e., if ® : M — N is a smooth
mapping, then
d*d = dd*.

Proof. (i) Let V be an open submanifold of N and ¢ € C*°(V). At any point 2 of open submanifold
U:=d (V) C M, we have

(2%dep)e = da(z)p 0 To® = du(p 0 Ply) = do (2" ).
Then on U,
P*dp = dd*

and, consequently,
d(®*dyp) = d(dP*¢) = 0.

1

(ii) Now let V be the domain of an admissible chart n = (y*,...,y™) on N, where, for any w € AN,

wly = Z Wiy (dy?t A A dyTe)

j1<-“<js
and ‘ A
(@o)ly = dhy) = 3 dwy,g Ady? A Ady).

J1<...<js

On U, we have

(®*w)|y = ®*(wly) = Z O*wj, . (PFdyTt AL A Dyl

J1<...<Js

and

(P dw)ly = D (dwly) = > P dwj, j, A (D dy’ A... A D dy)

j1<...<Js

Owing to (i), we also have

(dP*w)|y = d(P*w) |y
= Z (d*wj, .. N(D¥dy™t AL AD*dy's) + O wj, 5 (D dy’t A A DFdy?))
j1<-~~<js
J1<-<Js
So
(@ dw)|yr = (dD*w)|ur.

As {Ud = (V)| V coordinate domain onN} is a covering of M,

P*dw = dP*w. .
The theory of deRham is the study of closed and ezxact forms. Any w € AM such that dw = 0,
is said to be a closed form. Any w € AM such that w = dr for some 7 € AM, is said to be an

exact form. More generally, if for each © € M there exists an open neighboourhood U of & where
wly = dmy for some 7y € AU, w is said to be a locally exact form.
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I 5.3 Cartan calculus

5.3.5 Theorem. Let w € AM. Then w is locally exact iff it is closed.

Proof. We will only prove the theorem in A1 M (union of all the A;M’s with s > 0).
(i) Let w be a locally exact form. From w|y, = dry, we draw

(dw)|z,{ = d(w|u) = d(dTu) =0

and then dw = 0.

(ii) Let w be a closed form. For any x € M, let U be the domain of a spherical chart at z,
i.e., B, := £(U) is an open ball with center in the origin of R™ (1), In order to show that w is
locally exact, it will suffice to prove that any closed form w, € Ay B, is exact. Indeed, if we put
wo := (£ Y)*wly € AB,, then

dwo = (1) d(wly) = (€71 (dw)|u = 0,

whence
w, = dT,

for some 7, € AB,, and finally
W‘L{ = g*wo = d(g*'ro) =dmy

with
Ty =&, € AU.

In order to prove that any closed form w, € A, B, is exact, one has to use the following

5.3.6 Poincaré Lemma. (*?) There exists a mapping

h:AyB, — AB,

such that
hd + dh = id.
Indeed, if
dw, =0,
then
wo = (hd + dh)w, = dhw, = dr,
with

Ty = hw, . =

Let X € x(M). The interior product ix is another classical derivation (of degree —1) of Cartan
calculus, whose action, on any w € A;M with s > 0, is given by

) 1 .
ixw(Xa,...,Xs) = m z:(szgna)w(X7 Xo@)s- s Xo(s))

:w(X7X2,...,XS)

See footnote 4.
For the proof, see Y. Choquet-Bruhat and C. De Witt-Morette, Analysis, Manifolds and Physics,
Part I, (1982) p.224.
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I 5.3 Cartan calculus

that is
ixw=w(X,...,")
——

S

The components of the(s — 1)-form ixw in the domain U of an admissible chart &, consequently

are
(IxW)js,....5, = (ixw)] 0 0 = ixw| o -
X J2,eends — \UX U 8xj2a..., 63@# — IXwW\u 8xj2,...1 63:3*
9 9 i, 0 0 0
= wly <X|M’8xj2"“’axjs> =wly (XJ ale’axh""’al‘ﬁ)
. 0 0 0
:X]1 " n . )
(.U|U (a.’L’jl’B(EJQ, ’8$J3>
that is

Also notice that, for any f € C*°(M),

ixdf =df X = X .

The Lie derivation dx is the last classical derivation (of degree zero) of Cartan calculus, given by
dx =ixd+dix.
Tts action, e.g. on w € A; M, is given (for any Y € yM) by

(dxw)Y = (ixdw)Y + (dixw)Y = dw(X,Y) + (dwX))Y
XWY)-Y(wX)—wlX,Y]+Y(wX)
X(wY) —w[X,Y]

The components of 1-form dxw in the domain ¢ of an admissible chart £, consequently are

0 0 0 0
(dxw)i = (dxw)ht% = (dxw|u)@ = Xlu (wuazi> — Wy [X|u7 M]

.0 o o
= (X7 2w —wy | X
(X 6xj> Wi {X Ozh’ 8xi]

_ j&ui n (9ij'
T 9ad 0 oxt

Also notice that, for any f € C*°(M),
dx f=ixdf =Xf

is the Lie derivative of f along X, already introduced in 4.2.
A useful identity is the following
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I 5.3 Cartan calculus

5.3.7 Property. For any X,Y € x(M), it is
i[X’y] =ixdy —dyix.

Proof. Owing to the local character of derivations, it will suffice to check that the left and right
hand sides take the same value on both f and df (for each f € C*°(M)). To this purpose, we have

(ixdy —dyix)f =ix(dyf) —dy(ixf) =0
since both f and dy f are in C*° (M) and then
ix,y1f = (ixdy —dyix)f.
Moreover

(ixdy — dyix)df =ix/(dydf) — dy (ixdf) = ix(iyd+ diy)df — dy (dx f) = ixdiydf — dy (X f)
=ixd(Yf)-Y(Xf)=X(Y[)-Y(Xf)=[X,Y]f
= ’L[X,y]df
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Hamiltonian systems

1 Dynamical systems

1.1 Dynamical systems

Let M be an m-dimensional smooth manifold and
c: I —M
any motion in M, defined in an open time interval I CR. The tangent lift
¢: I —TM : t¢t) € TyyM
is a section of tangent bundle 75, : TM — M over c, i.e., Tp; o ¢ = ¢. The composition
Xoc: I —TM : t’_’Xc(t) ETC(t)M

is another section of 7p; over ¢, Tpy 0 (X oc¢) = ¢. If

¢=Xoc (14)
then c is called an integral curve of X in M. It is called a maximal integral curve if there does not
exist any integral curve k : J — M, such that IS J and k|; = c. We will call equation (14) a first-
order differential equation on M, associated with X. From a dynamical point of view, equation
(14) expresses the problem of searching for the motions in M whose velocity (at each time) equals
the value prescribed by X. Therefore, it will be read as the equation of the motion of dynamical

system
D= (M, X).
The manifold M is called the phase space and X the (velocity) field of D. Any (maximal) solution

of the equation of the motion is called a (maximal) motion and its image a (maximal) orbit of D.
The collection of all the maximal orbits is called the phase portrait of D.

1.1.1 Lemma. Let D = (M, X) and £ = (N,Y) be dynamical systems, whose fields are related
to each other by a smooth mapping ® : M — N (i.e, TPoX =Y o®). If¢c: I — M is a motion
of D, then k :=®oc: I — N is a motion of £.

Proof. Owing to hypothesis ¢ = X o ¢, from k = ® o ¢ we draw
k=T®oé=TdoXoc=Yodoc=Yok. .

The above lemma (with its possible enrichments for special ®’s) will often prove to be useful in
the study of the motions of a given dynamical system. A first example is the following.

Let D = (M, X) be a dynamical system. Consider an open submanifold W of M and denote by
Xw € x(W) the vector field on W defined by Tj o Xy = X o j with j : W < M *3), Then
consider the restricted system Dy = (W, Xw ), j-related to D

For any z € W, (Xw), = X, in the canonical isomorphism T,W 2T, M (see I. Remark 2.1.7).
As to the smoothness of Xy, i.e., of its components in admissible charts, see the next Coordinate
expression.
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1.1.2 Proposition.

(i) (The image under j of) every motion of Dy, is a motion of D.

(ii)) Every motion of D whose orbit meets W, is a prolongation of (the image under j of) a motion
of DW

Proof. (i) The statement is a direct consequence of the above lemma.
(ii) Let ¢ : I — M be a motion of D such that ¢(tg) € W fro some to € I. By continuity, ¢(J) C W
for a suitable J C I with ty € J. As a consequence, we can consider the induced motion v : J — W.
From ¢|; = j o7, we draw

(cls) =Tjor.

From ¢ = X o ¢, we draw
¢ly=Xocy=Xojoy=TjoXwon.
Then, as (¢|;)" = ¢|; and T is an isomorphism at any point of W, we have
¥=Xwon

i.e., v (which, from a set-theoretical point of view, does not differ from c|;) is a motion of Dy . =

The above proposition implies that a local analysis of D, i.e., the study of its motions within an
open submanifold W, reduces to the study of restricted system Dyy. Typical case of local analysis
is the following

1.1.3 Coordinate expression. (4%

Let U be the domain of an admissible chart £ = (xi)izlm’m in Mand j: U — M. Let v: J —-U
be a motion in U, with coordinate expression in £ given by

Coy=(2zton,...,2m07) = (¥},...,4™).

From the decompositions

0
oz’

Xy = X!

we draw

a _ ) 1 m 6
(Q)xlo’y) _(Xfo(’y yeees Y )) <6m107>

where (X{ := X" 0 ¢™!) are the coordinate expression of components (X*) of X in . Then v is a
motion of Dy, if, and only if,

Xu OVZ(XiOV)<

)

dy
du

=Xio (v 9™ (15)

This shows that the coordinate local analysis of a dynamical system D, reduces to the study of
a system (15) of m ordinary, first-order, normal, differential equations in m unknown real-valued
functions (y1,...,4™). .

See also the coordinate expression of a smooth curve in I 2.3.1 and the local decomposition law of
a vector field in I 4.2.
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II 1.2 Determinism

1.1.4 Note. If x € M is a non-singular point, i.e. X, # 0, then there exists an admissible chart
(U,€) on M at x, such that, X, is one of the coordinate vector fields, say

0
dxt
(straightening theorem (45)). The equation of the motion of Dy = (Z/{, %) is ‘integrable by
quadratures’, for its expression in £ is

Xy =

dy? - )

o =4 (i=1,...,m),
and then its solutions correspond in £(U) to motions which take place, with velocity %, on straight
lines of direction &; = (d%). .

1.2 Determinism

Let D = (M, X) be a dynamical system and (tp,z) €R x M arbitrarily chosen Cauchy data. Any
motion ¢ : I — M, starting at time ¢y € I from c(t9) = z, and (maximal) solution of differential
equation

¢c=Xoc,
will be said to be a (maximal) solution of Cauchy problem (M, X,tg, ). We shall conventionally
choose to = 0 as initial instant, and we shall denote a Cauchy problem by (M, X, z). From the
local analysis of a dynamical system, we draw the following

1.2.1 Local determinism theorem. For each x € M, there exist solutions of (M, X,x). Any
two of them locally agree (49).

Proof. This is basically a result of the theory of ordinary differential equations. On the domain
U of an admissible chart £ at z, consider Cauchy problem (U, Xy, x), i.e.,

¥=Xyony
(16)
V(0) ==
whose coordinate expression in & is (47)
d’Yi vy 1 m

7(0) = 2* ().
From the theory of ordinary differential equations, it is known that problem (17) admits solutions
in £(U) and that any two of them

(Y, oo ™) I, — EU) (a=1,2)
locally agree. Consequently, curves
Yo =& to(Wh, oooy™) Iy — U (a=1,2)

are solutions to problem (11) and locally agree. Hence, since solutions of (U, Xy, z) are solutions
of (M, X,x) too (48 the statement follows. "

See Brickell and R.S.Clark, Differential Manifolds, (1970), p.140.

This amounts to saing that, if ¢; : I; — M and ¢y : Is — M are solutions of (M, X, z), then there
exists an open interval Iy, with 0 € Iy C I} N I3, where ¢, = ¢c2|1,-

See 1T 1.1.3.

See II 1.1.2(3).

55
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1.2.2 Lemma. Let ¢ : I — M be a smooth curve through xq := c(t), with to # 0. By means of
the translation
Tty ‘R —R 1t — 1t 4+t

which maps the open interval
I—to=1"(I)={t eR|t+ty € I}
onto I, define a re-parametrization of c,
co:=comyy I —tg — M : t— c(t+tg),

with ¢o(0) = xg. The curve c is a solution of (M, X, t, xo) iff cg is a solution of (M, X, zg).

Proof. From ¢ := comy,, it follows that
co:=Tcot, =Tco 2 C T = CO Ty -

Soé=Xociff coryy =X ocom, iff ¢g =X ocy. .

The intermediate passage is the following.

1.2.3 Proposition. If ¢, : I} — M and ¢y : Iy — M are solutions of Cauchy problem (M, X, z),
then they agree on the whole intersection 11 N I5:

CllflﬁIQ = 62|11012'

Proof. Let
Iy := {t elNi, ‘ Cl(t) = CQ(t)}‘

Notice that 0 € Iy C I1N15 and that I;N 15, being an open interval, is a connected space. So one can
prove the statement Iy = I; N I by showing that I is both a closed and an open subset of I; N Is.
Define a smooth mapping A : I1 NIy — M x M by putting, for any ¢t € Iy NIz, A\(t) = (cl(t), cz(t)).
Clearly, we have Iy = A71(A), where A := {(z,7) € M x M} is the diagonal of M x M. The
diagonal A is a closed subset of M x M, for M is a Hausdorff space. As a consequence, its inverse
image Iy by continous mapping A\ is a closed subset of I; N I5. Let now ty € Iy. Consider the
re-parametrization c;,, ca, of ¢i, c2 as in the previous lemma. The same lemma ensures that ¢,
and cg, are both solutions of Cauchy problem (M, X, xo) with g := ¢1(tg) = ca2(to). Owing to local
determinism theorem, there exists a suitably small open interval (—e, €) such that., ¢1,(t) = ca, (%)
for allt € (—e, €), ie., c1(t+to) = ca(t+to) for all t+tg € (to—¢, to+€) and then (to—¢,to+¢€) C Lo.
So Iy, as union of open intervals, is an open subset of Iy N I5. "

1.2.4 Global Determinism Theorem. For cach x € M, there exists a unique maximal motion
of D starting from .

Proof. Let {cq : Io — M} be the collection of all the solutions of (M, X, ),
¢o = X oc,
ca(0) = z.

I, :=U,1l,

Put
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and note that I, is an open interval containing zero. Owing to the previous proposition, all of the
Co’s are restrictions of the smooth curve

O, I, — M
defined by
D1, i=cq-
First ®, is a solution of (M, X, z), since for all ¢t € I, we have
Do (t) = éalt) = X 0ca(t) = X o @, (t)
and
®,(0) = co(0) = 2.

Moreover @, is a maximal solution, for any solution is one of its restrictions and, finally, ®, is the
unique maximal solution, for the same reason. "

A consequence of global determinism is the following globalization of II 1.2.1, in the case of a

covering map.

1.2.5 Corollary. Let D = (M, X) and £ = (N,Y) be dynamical systems, related to each other
by a covering map h: M — N. If, for anyy € N and x € h™*(y), ¥, : J, —» N and ®, : [, - M
are the maximal solutions of £ and D starting from y and x respectively, then

VUV, =hod®,.

Proof. On the one hand, ho ®, : I, — N is a motion of £ (owing to Lemma 1.2.1) and starts
from h o ®,(0) = h(z) = y. Global determinism then ensures that it is a restriction of ¥,, i.e.,

I, CJy, (18)
and
ho®, =T,|,. (19)

On the other hand, the lift theorem (%) ensures that there exixts a unique lift ¢ : Jy — M of ¥,
by h,
hoc=1,, (20)

starting from ¢(0) = x. Notice that ¢ is a motion of D, for the time derivative of (20) yields

Thot=V¥y,=Y oW, =Yohoc=ThoXoc

whence, Th being an isomorphism at any point of M, ¢ = X oc. If ¢ is a motion of D starting
from x, it must be a restriction of ®,, and then

Jy C 1. (21)
Owing to (18) and (21), one has
I, =Jy,
and then equality (19) reads
hod, =W, .

(49) See I 3.3.6.
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1.2.6 Lemma. Let ®, : I, — M be the maximal solution of (M, X, z). For any
zo = P, (to)
(with 0 # to € 1), the maximal solution of (M, X, z¢) is given by

(I)xo = (I)z O Tty -

Proof. Put
co:=PpoTm9: [, —tg — M.

Owing to Lemma 1.2.2, ¢¢ is a solution of (M, X, (). Consequently, it is a restriction of ®,,, i.e.,
Iy —to C Iy, (22)

and
Co = (I)$O|Iz*t0 : (23)

Now, evaluating (23) in —to € I, — o, we have
D, (—to) = co(—to) = u(—to +to) = ®.(0) = 2.
As above, x = @, (—tg) implies I, D I, + to, i.e.,
Iy —to D Iy, - (24)
Owing to (22) and (24), we have I,, = I, — to and then (23) reads
b, =co. .
1.2.7 Remark. It is useful to explicitly remark that, during the proof of the above lemma, we
have obtained the following ‘time reversibility’ law
zo = Dy(ty) = = Dy (—to). .
With the aid of the above lemma, we shall now show that, in the phase space of D, maximal orbits
are separated.

1.2.8 Orbital Determinism Theorem. For each x € M, there exists a unique maximal orbit
of D containing x.

Proof. On one hand,
zel :=0,(1,)

for x = ®,(0). On the other hand, if
x €Ty =Py (Iy) s

then z = ®,,(—tp), for some —ty € I,, or equivalently xg = ®,(¢o), whence owing to Lemma
1.2.6, I, = I, —tp and ®,, = &, o 7;,. As a consequence

Do = @uy(Iny) = Pu (1, (In — o)) = Pu(ly) =T. "
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1.3 Flow of a dynamical system

We shall now collect all the maximal motions {®, ; z € M} of a dynamical system D = (M, X)
into one mapping
®:D—M

defined on
D:= | (I x {«})
zeM
by putting, for any (¢,z) € D,
D(t,x) := Py(2).

The mapping @ is called the flow of D. Firstly, we have the following

1.3.1 Theorem. The set D is an open submanifold of R x M, and ® is a smooth mapping.

Proof. We shall only sketch the proof, whose spirit is to show that, for any (¢,z) € D,

(o) there exists an open interval I ¢ and an open neighbourhood W > z, such that I x W C D
and ®|;xw is smooth.

(i) First, one proves that the above condition holds true at any (0,z) € D (this is basically a
result from the theory of ordinary differential equations, taken back to M by an admissible chart
at ).

(ii) Then one proves that, for any x € M, non-void subset

K, :={t € I | condition (o) is satisfied at (¢, x)}
is both (obviously) open and closed in I, (the latter result follows °®) from (i) above and a

forthcoming pseudo-group property of ®) and then, owing to the connectedness of I, K, = I,.
This shows that condition (o) holds true at any (¢,z) € D. .

1.3.2 Remark. It is useful to explicitly remark that, owing to conditon (o), for any € M and
t € I, there exixts a real number ¢ > 0 and an open neighbourhood W of z such that, for all
reW,

(t—et+e) Cl,. .

For any t €R, define
q)t : Dt — M

on
Di:={zxeM|tel,}

by putting, for any = € Dy,
Dy () := D(t,x) = Dy(2).

1.3.3 Corollary. D; is an open submanifold of M, and ®; is a smooth mapping.

Proof.  First notice that the above Remark 1.3.2 implies that, for any « € D;, there exists an
open neighbourhood W of = such that t € I, for all x € W, i.e., W C D;. This shows that D; is
open in M. Moreover

O, = Do pylp,
where
or: M —Rx M : z— ¢o(x) = (¢ ).
So ®;, composition of smooth mappings, is smooth. "

(50) See S.Lang, Differential Manifolds, (1972), p.86.

59



II 1.3 Flow of a dynamical system

1.3.4 Pseudo group property.
(i) ®o = idys
(ii) For any t1,t2 €R, on Dy, 1+, N Dy,, it is

Pyt = Pty 0 Py,

Proof. (i) Trivial.
(ii) Let us first check that
P4, (D, 44, N Dey) C Dy,

To this end, let * € Dy, N Dy, 44, , i.€., t2,t1 + 12 € I,,. Then put
X9 = Py, (z) = Dy(ta)

and note that
t1 Elw—t2:I$2

whence
X9 € Dt1 .

So both the left and the right hand side of (ii) are defined on Dy, 4+, N Dy, (if non-empty), where
they agree, for
(I)tl ((I)t2 (I)) = q)tl (IQ) = (I)m2 (tl) = (I)E(tl + t2)

= (I)t1+t2 (l‘)

1.3.5 Corollary. For any t €R, ®, induces a diffeomorphism of D; onto D_;.

Proof. Let us first check that ®,(D;) C D_;. To this end, let x € Dy, i.e., t € I,. Then put
xy = Py(x) = D,(t) and recall that I, = I, — ¢ > —t, whence x; € D_;. Consequently, since D_;
is an open and then smoothness preserving submanifold of M, the smooth mapping ®; : D; — M
induces a smooth mapping ®; : Dy — D_;. Now let us notice that, owing to Theorem 1.3.4, such
induced mappings satisfy

(I)—t o (Dt = (DO‘Dt = ith 5

(I)t o @,t = (I)O‘th = idD,t .

Then ®; : D; — D_; is a smooth mapping which admits of a smooth inverse ®_; : D_; — Dy, and
then is a diffeomorphism. .

Any diffeomorphism between open subsets of M is called a local transformation in M. So Theorem
1.3.4 and Corollary 1.3.5 can be rephrased by saying that ® defines a one-parameter pseudogroup
{®;;t €R} of local transformations in M. A special case is the one of a complete vector field X on
M (or complete dynamical system), characterized by

I, =R
for all x € M, or equivalently
Dy=M
for all ¢ €R, or
D =R x M.
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In this case, the flow is a one-parameter group of transformations of M, i.e., a smooth mapping
P RxM-—M

such that
Py :=Pop,: M — M

satisfy
Dy = idyy
Py, = Pty 0Dy,

The family of transformations {®;; t €R} form an Abelian group of diffeomorphisms of M onto
itself. The trajectories
¢, =bop, R— M |, ze€M

(with ¢ : t €R — (¢, 2) €R x M) are the maximal motions of the system.

This result can be inverted. Let ® be a one-parameter group of transformations of a manifold M.

Define the infinitesimal generator of ® as the vector field X € x(M) given, for any = € M, by
X, = d,(0)

As to the smoothness of X see the following coordinate expression.

1.3.6 Proposition. The infinitesimal generator X of a one-parameter group ® of transformations
of M, is a complete vector field on M whose flow is ® itself.

Proof. We have to prove that, for any z € M,

To this end, let tg €R, zo := P, (to), Pu, = P 0 74, then
X 0®,(tg) = Xy = Py (0) = &, 073, (0) = D (t0) - .
1.3.7 Coordinate expression. Let & = (z!,...,2™) : U —R™ be an admissible chart on M.

For any x € U, the coordinate expression of ®, — restricted to a suitably small open interval I 5 0
so that ®,(I) CU —is

Ol =2l od, ;=" 0Poy,|; , (i=1,...,m).
Then
o= Tl (a7 0 9) (£20)) = dioy (a0 @) (at ) = Dwtoa)
0 (Oﬂj) (07w)
whence 5
Xt = %(ajZ o ®) o wply
Notice that the smoothness of components (X*) ensures that X € y(M). =
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We will now find an intrinsic link between the action of the flow ® of a given dynamical system
(M, X) on the exterior algebra AM and the Lie derivative dx. Indeed each local transformation

&, :D,— M , teR
acts on AM by pull-back (°V)
O tweAM — pjw e ADy ~ AM .
So, if w € A, M (in the non trivial case 7 > 0) %),
(Pjw)e = wa,(z) © (ToPe)"
for any t €R and = € D; or, equivalently, for any x € M and t € I,,. Notice that, for any z € M,
the mapping
te I, — (Pjw), € (ST°M),

takes its values in the vector subspace (STOM), C (T°M), of skew-symmetric (S)—tensors at z.
Tts (ordinary) derivative at any tg € I, is

d % T 1 * * 0
@(@twh e tlg% ra— (Pjw)e — (P w)s) € (STYM), .

If, in particular, we put

N P
= lim n (Pjw)e — wa)

t—>t0

d o
(Lxw)e = %(q)tw):r

t=0

we have

1.3.8 Lemma. If 2y := ®,(to), for some ty € I, then

d *
%((I)tw)z

= (LXW)ZO © (Tzq)to)r

t=to

Proof. From xg = ®.(tp), it follows that
Tr = q)lo(—to)
and then, for any ¢ € I,
D, (t) = Dy (t —to)

that is
Qi(z) = Prt,(w0)

and, on Dy N Dy, > z,
o, = (I)tfto o ‘I)to

See I 5.1.
(Ty®y)" : =T, Dy x ... x TP is absent if r = 0.

r times
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II 1.3 Flow of a dynamical system

whence
qu)t = T:vo(btfto o Tzq)tg .

AS a consequence,
((I)Iw)w = Wo,(z) © (T, 4)" = Wo, 4 (z0) © (Twoq)t—to)r © (qu)to)r = ((I)I—tow)xo © (Tzq)to)r

and then

i . d. . . ,
%(q}tw)w = %(q)t—tow)wo © (qu)to) = (LXW)wo © (qu)to) =
t=to t—to=0

If we put
Lxw:x € M (Lxw), € ST'M

we obtain a scalar form Lxw € A, M.

1.3.9 Coordinate expression. Let, e.g., w € A{M. Let £ = (2%);=1,..,» be an admissible chart
at x. For suitably small ¢ € I, also ®,(t) = ®;(z) € U and then (Pjw), has components in &,
given by (%)

od7

_ %] oe!
oz’

(@fw)i(x) = Gt | wi(@w) =

x

wj (<I>(t, 1’))
(t,2)

where ® = 17 0 ®| (®| stands for a suitable restriction of ®). Then (5%

d 0PI ObI Ow;| OD"
L i = —(Dfw); = - ; —_— =
(Exw)il@) = Z(@iw)ilw) o ot wil@) + Fa 0 0|, Ot |
0X7 ; Ow; A
— ) J
= (8wi w; + aij ) (x)
The smoothness of components (Lxw); ensures that Lxw € Ay M. =

Now consider
Ly :weAMw— Lxwe AM

1.3.10 Lemma.
Lx =dx.

Proof. Let, e.g., w € A{M. The statement Ly = dx, simply follows from the above coordinate
expression, which shows that, in any admissible chart, (Lxw); = (dxw); ®. "
The interest of the above point of view about Lie derivative dx, stays in the following result. An
exterior form w € AM is said to be ®-invariant if for all t €R,

®jw = wlp,

(53) See I 5.1.4.
(54) See 1.3.6.
(35) See I 5.3.
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II 1.3 Flow of a dynamical system

that is
(Pfw)z = wy

for all t €R and z € Dy (or for all x € M and ¢ € I,), or equivalently

%(@Iw)m =0 , VeeM
As a consequence, owing to Lemmas 1.3.8 and 1.3.9,
1.3.11 Theorem. An exterior form w € AM is ®-invariant if, and only if

dxw = 0. =
Now a similar reasoning on the action of ® on vector fields, will lead us to extend the action of
Lx on xM. Let Y € x(M). For any x € (M), put

((I)—t *Y)m = (T(I)_t oY o (I)t)m = T‘I’—t(cht(a:))-

Consider the mapping
tel, — (®_4.Y), e T,M

and its ordinary derivative at t =0

d
(LxY)e = 2 (@_0.Y),

1.3.12 Lemma. If g := ®,(tg), for some tg € I, then

d
*((I)ft *Y)x

7 =TP 4, (LxY )y, -

t=to

Proof. 'The same considerations as in the proof of Lemma 1.3.8, yield ®;(x) = ®;_, (z¢) for any
tel,,and @, =®_; 0P _4ys on D_; N D_s1y, D Pi(x). As a consequence,

(Pt4Y)e =TPt, 0 TP t14,(Yo, , (20)) = TPty (Ptpto+Y )
and then

d
*((I)—t *Y)a:

dt dt

d
=TP 4, <(‘1>—t+to +Y)ao
t=to

) =Td_, (LxY)a, .

t—to=0

If we now put
LxY:zeMw— (LxY), €eTM

we obtain a vector field LxY € x(M).
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II 1.3 Flow of a dynamical system

1.3.13 Coordinate expression. In a chart ¢ as in 1.3.9., (®_;.Y"), has components given by

(56)
: ; 0P’
(D4 Y)L = YI(D4()) 52 (—t,®(2))
and then .
; ; 02! oYi| o oP!
(LxY)(z) = -Y"(v) == —| —= :
ooz |y 0|, Ot |4 07|
0D CEG) S
=|-Y — - X7
( Ox7 * oxJ ) (z)
The smoothness of components (LxY)* ensures that of LxY € x(M). .

Consider now
Lx:Y e X(M) — LxY € X(M)

1.3.14 Lemma. Lx = [X,].

Proof. LetY € x(M). The statement LxY = [X,Y], simply follows from the above coordinate
expression, which shows that, in any admissible chart, (LxY)’ = [X,Y]* 7).

1.3.15 Remark. A simple calculation of components, also shows that Lx : x(M) — x(M) is a
derivation on the C°°(M)-module x(M), i.e., R-linear

Lyx(aaY®) = an(LxY™)
(with a, €R, Y* € x(M)) and Leibniz
Lx(fY) = f(LxY)+ (Lx )Y
(with f € C®(M), Y € x(M)). .

The interest of the above view of Lie bracket [X, -] as a Lie derivative on (M), lies in the following
result. A vector field Y € x(M) is said to be ®-invariant if for any t €R,

®_,Y =Y|p,

that is, for all t €R and x € Dy, or for all x € M and € I,

((I)ft *Y)w =Y,
or, equivalently,

d

—(®_+.Y), =0

S(@,.Y)

for all x € M. Owing to Lemmas 1.3.12 and 1.3.14, we have

(56) See 1 2.3.4.7
(7 See I 4.4.7
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II 1.3 Flow of a dynamical system

1.3.16 Theorem. A vector filed Y is ®-invariant iff

[X,Y]=0. .

An interesting consequence of the above theorem, is the following

1.3.17 Corollary. Let X,Y € x(M) be complete vector fields. Their flows ®, ¥ commute,
P, 0V, =T, 0P, Vt,s €R
if, and only if, X, Y commute,
[X,Y] =0. .

The proof can be drawn from the following

1.3.18 Remark. LetY € x(M) be a complete vector field, and h : M — M a transformation
of M. As is known, Y is the infinitesimal generator of a one-parameter group {¥s,s €R} of
transformations of M, and then, for any = € M, Y, is tangent at x to the trajectory

s ER— U, (x) € M.
As a consequence, the push-forward of Y by h:
h,Y :==ThoY oh™t € x(M)

turns out to be the infinitesimal generator of the one-parameter group {ys,s €R} given by xs =
hoWsoh™! since, for any y € M, (h.Y), = T,h(Y,) (with z := h™!(y)) is tangent at y to the
trajectory

sER— hoWy(z) =xs(y) € M.

Therefore, Y is h-invariant:
MY =Y

(i.e., Y is h-related to itself: ThoY =Y o h), iff
Xs = Uy Vs €R

(i.e., U; commutes with h: ho W, = W o h, for any s €ER). "

Let P be the phase portrait of dynamical system D. It splits into two disjoint parts
P=PyUPy,

where Py is the set of all 0-dimensional orbits (singular points), and P; is the set of all 1-dimensional
orbits (singularity-free). We shall here be dealing with the global geometric structure of P;. To
this purpose, first notice that, on the one hand, any I' € P; is a subset of the carrier of X

carrX ;= M — P,

(which clearly is an open submanifold of M ),and being connected in its own manifold topology,
I is connected in its (coarser) subspace topology too. On the other hand, owing to the Orbital
Determinism Theorem, singulatity-free maximal orbits are mutually disjoint and cover carrX. So
P, is a partition of carrX into connected subsets. More than that,
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II 2.1 Invariant manifolds

1.3.19 Theorem. P; is a foliation of carrX.

Proof. P; is the phase portrait of singularity-free system Dy = (N, Xy) with N := carrX. Let
V be the 1-dimensional distribution ®® on N spanned by Xx. It is involutive, since for any
nowhere-vanishing Y, Z € x (V) belonging to V', we have Z = fY with f € C°°(N) and then the
commutator

Y, Z] =Y, fY] =Y )Y + [V, Y] = (Y )Y
belongs to V' as well. Owing to the consequent integrability of V', we can consider the 1-dimensional
foliation F on N given by the maximal integral manifolds (leaves) of V. We shall prove the theorem
by showing that

P =F.

To this end, let us compare — for any © € N — the unique leaf £ € F and the unique orbit I' € P
containing x. Recall that I' carries a submanifold structure which ensures the smoothness of the
mapping P, : I, — I induced by maximal motion ®, : I, — N of Dy. Then, from ¢, = jo o,
(with j: T — N) we draw

T.j(9,(0)) = $,(0) = X, .
Since X, # 0, i)z(()) turns out to be a basis of T,I" and then, as X, € V.,
T,5(T,T) =V, .

So I' is an integral manifold of V. As a consequence I' is an open subset of £ and £ is then union of
such open subsets — there is one of them for each point of £ — which either coincide or are disjoint.
Since L is connected, £L =T. "

2 Reduction

2.1 Invariant manifolds

Let D = (M, X) be a dynamical system. A submanifold £ of M such that, for any « € £, the
maximal orbit I" through z lies in L, is called an invariant manifold of D.

2.1.1 Remark. The above invariance condition on £ does correspond to the invariance of £
under the action of the flow

q)t(ﬁth) cL Vvt eR. [ ]
Let £ be a smoothness preserving 9 invariant manifold. In this case, for any = € £, the maximal
motion ®, : I, — M induces a smooth curve in L, o, : I, — L, characterized by &, = jo CiDm,
where j is the immersion of £ into M. Smoothness allows time derivation of ®,, and then

$,(0) = T,j(2.(0)),
that is .
with .
®,(0) e T,.L.
Hence it follows that
(%8) See T 4.2.9.
(59) See I 3.1.
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II 2.1 Invariant manifolds

2.1.2 Lemma. If L is a smoothness preserving, invariant manifold, then X is tangent to L, i.e.,

X, € T,j(T.L)  Vz e L. .

The above tangency condition ammounts to say that there exists, for any x € £, a unique vector
(Xr)z € TL, such that

TJL] (Xﬁ)x = Agx,
i.e., a vector field X, € x(L), j-related to X:

TjoXy=Xoj.
Owing to the canonical isomorphism T, L ~ T,j(T. L), for any z € L, we will put

Xe=X|¢
and will call X, the restriction of X on L.
2.1.3 Coordinate expression. Let & = (z!,...,2%) and n = (z!,..., 2% ¢, ... ¢™) be charts
on £ and M, distinguished by immersion j. It is easy to check that the components of X, in &
satisfy _ '
XZ = XZ o j|u

and their smoothness ensures that of X . n

Then consider restricted system Dy = (£, X ), j-related to D.

2.1.4 Theorem. The flow of Dy is {®,;x € L}.
Proof. Let {7, : J; — L;x € L} denote the flow of Dz. On the one hand, for any = € L, it is

Tjo&)w:<i>w:XoCI)w:Xojo<i>w:TjoXEofi)x

and then, T'j being injective at any point of L,
(IN)Q; = X£ o (i)x

i.e., ®, is a motion of D, (starting from x). Global determinism then ensures that
I, C J, (25)

and R

(I)x = ’YI‘II . (26)
On the other hand, j-relatedness of D, and D implies that jo~, : J, — M is a motion of D
(starting from z), and then a restriction of ®,, whence

Jp C 1. (27)
Owing to (25), (27):

I, = J, ’
equality (26) finally reads )

o, = YV
for all x € L. .

The above theorem shows that, if £ is a smoothness-preserving, invariant manifold, the problem of
determining the partial flow {®,;x € L} of D through L, reduces to the problem of determining the
flow of Dy, i.e., to integrating a differential equation on a (generally) lower dimensional manifold.
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2.1.5 Remark. Notice that N := carr X is a trivial example of smoothness preserving, invariant
manifold of D. So the partial flow {®,;2 € N} of D through N is (the image under j : N — M
of) the flow of Dy.

2.2 Reductions and constants of the motion

Let
T: M — B

be a submersion (9) from the phase space M to a smooth manifold B, which projects the velocity
field X onto a vector field Y € x(N) on the quotient manifold N := 7(M) C B, i.e.,

TroX =Y om.

In such a case, the submersione 7 is called a reduction of D = (M, X).
Now consider reduced system D, := (N,Y), m-related to D. If P, denotes the phase portrait of
D, its lift by 7 is

7*(Py) := {£L C M| Lisaconnected component of 7~ ('), withT'; €P,}.
The main result of reduction theory is the following

2.2.1 Theorem. 7*(P;) is a partition of M into smoothness preserving, invariant manifolds.

Proof. Recall that P, is a partition of N. Moreover, it is disjoint union of sub-portraits P,
and P, made of maximal orbits which meet or do not meet carrY’, respectively; as is well known,
Pr, is a set of singletons and Py, is a 1-dimensional foliation of the open submanifold carrY C N
(61). As a consequence, 7*(P,) is a partition of M. Moreover, it is the disjoint union of 7* (Pﬂl)
and 7 (Pr,). As to 7*(Py,), each one of its elements is an open subset of a fibre of 7, and then
an (m — n)-dimensional embedded submanifold of M (2. As to 7*(Py,), it is an (m —n + 1)-
dimensional foliation of the open submanifold 7~ (carrY’) C M, and then each one of its elements
is an (m — n + 1)-dimensional, smoothness preserving submanifold of M (63) " So, what is left, is
to prove that each manifold of 7*(P,) is invariant. To this end, let us denote the flows of D and
D, by
{®,: I, = M;2e M} and {¥,:J,— N;ye N}

respectively. Now let £ € 7*(P,) be a connected component of 7=(I';), with T'; € P,. For any
x € L, m-relatedness of D and D, implies that m o ®, : I, — N is a motion of D, starting from
y:=n(z) €y =V, (Jy). Then I, C J, and

WO(I)Jc:\Ifyhz

whence

®,(t) e (T, (t) ca M (Ty) VtEL
See I 3.2.
See 11 1.3.19.
See Implicit Function Theorem I 3.2.5. Recall that n = dim N = dim B.
See I 3.2.7.
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that is
rel :=d,(I,) Ccr YTy)

or, owing to the connectedness of I'
rckc. n

As a consequence, in view of the theorem of the previous section, the flow of D turns out to be the
union of the disjoiunt flows of systems

{DL: = (,C,XL:) L€ W*(Pﬂ—)}

This shows that a reduction 7 just splits up the problem of ‘integrating’ D into two problems (both
on lower dimensional manifolds):
(i) first, to integrate reduced system D, — at least at the level of phase potrait;
(ii) then, to integrate systems D.’s — which will consequently be called the residuals of 7.
A fortunate case is one in which the reduced system or the residuals are ‘integrable’. A simple
example of integrable reduced system is the following.
Let
k:M—B

be a smooth mapping from the phase space M to a smooth manifold B, which projects the velocity
field X onto the null vector field Y =0 of B, i.e.,

TkoX =0.
The mapping k is called a constant of the motion of D = (M, X).

2.2.2 Proposition. A smooth mapping k : M — B is a constant of the motion of D = (M, X)
if, and only if,
k o ®, = const. Vr e M.

Proof. Just notice that, for any x € M,

d .
a(kofbm):Tkoq)I:TkoXo@x.

So, if k o ®, = const., then %(k o ®,) = 0 identically and, in particular,

ko ®,)(0) = 0.

TkoX), = —
(ThoX)a=—

d
Conversely, if Tko X = 0, then %(k o®,) = 0 and consequently (owing to the global determinism

of first-order equations)
ko ®, = k(z) = const. .

The case of a constant of the motion k, of constant maximal rank given by
rank k = dim M

is trivial since the existence of such a constant of the motion obviously amounts to say that X =0
and then D is trivially integrable (all of its maximal motions reducing to rest).
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The case of a constant of the motion k, of constant maximal rank given by
rank k = dim B

is, on the contrary, remarkable. Indeed in this case, k is a submersion which projects X onto the
null vector field Y = 0 on quotient manifold N := k(M) C B, i.e., a reduction of D whose reduced
system D = (N,Y) — trivially integrable — has a phase portrait

P = Pro = NV.

Lift k*(Pg) is then the foliation of M determined by submersion k (6. Residuals of k are then
the restrictions of D to the leaves of k — called (connected) level manifolds of k. The problem of
integrating D directly reduces to the problem of integrating the residuals on the (m-n)-dimensional
level manifolds of the constant of the motion.

2.3 First integrals

Let f € C*°(M) be a real-valued smooth function on phase space M, whose Lie derivative along
velocity field X identically vanishes:
Xf=0.

Such a function f is called a first-integral of D = (M, X). More generally, consider a system of
functions f1,..., f* € C°°(M) or, equivalently, a smooth mapping

F=(fY....f"): M —R"

2.3.1 Proposition. Functions f!,...,f* € C°(M) are first integrals, if and only if F =
(fY,..., f™) is a constant of the motion.

Proof. Recall that
dF o X = (df' o X,...,df" o X) = (X f, ..., Xf")
and that, at any « € M, T, F and d,F are related to each other by a linear isomorphism (%), So
TFoX =0 <= dFoX =0 < (Xf',...,Xf") =0. .

The n-tuple (f!,...,f") is said to be an independent system of functions, if, for any = € M,
(doft,...,df™) is a linearly independent system of covectors.

2.3.2 Lemma. The family (f',...,f") is an independent system of functions, if and only if
F=(f...,f") is a submersion.

Proof. Recall that, in an admissible chart £ at x € M,

(rank F'), = rank <8f°‘)

ozt

(64) See 1 3.2.7.
(65) See I 2.2.5.
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a @
and that the rows of matrix fl) are the m-tuples of components in £ of covectors (d,f®).

or

Hence, it follows that F' is a submersion at x iff

(rank F), =n <= rank (ZL)JC:?%

= (df",...,dyf™) islinearly independent.
u

So, n independent first integrals (£, ..., ") yield a constant of the motion F of constant, maximal
rank n, and then they reduce the problem of integrating D to the integration of the residuals on
the (m —n)-dimensional level manifolds of F'. Then, the more independent first integrals one finds,
the lower dimensional residuals will be left to integrate. An extreme example is the following

2.3.3 Example. Check that, if D admits m = dim M independent first integrals, it is trivially
integrable (i.e., all of its maximal motions reduce to rest). .

A more meaningful example is given in the following

2.3.4 Theorem. If D admits m-1 independent first integrals, it is integrable (by a quadrature).

Proof. Owing to the hypothesis, the problem of integrating D reduces to the integration of 1-
dimensional residuals. Let Dy = (£, X) be a residual. Since £ is a 1-dimensional connected
manifold, it is diffeomorphic to R or S; (%9). In any case, one can find a covering map

h:R— L
and then a vector field A € x(R), h-related to X,
ThoA=X;oh.

As is known, the flow of D, is the h-image of the flow of (R, A) (67) and this one can be worked
out by a quadrature. "

2.3.5 Note. The global integtration of (R, A) is an exercise of both calculus and dynamics.
We will be concerned with the maximal solution of Cauchy problem (R, A, x), where vector field
A will be regarded as a smooth function A € C*°(R), and initial point zy will be assumed to be
non-singular: g € carr A, say A(xg) > 0. Let W be the connected component (open interval) of
carr A containing xg. As the maximal orbits which meet W are all singularity-free and connected,
they lie in W. This means that W is an invariant manifold. So we are led to consider restricted
problem (W, Ay, z¢), where Ay, only takes positive values. We shall work out its maximal solution
by means of the following quadrature:

xr
1
c:xEWb—>t::/ ——dz €R.
xo AW
This method defines a smooth function ¢ on W, whose derivative is

dc 1

o 0
dxr AW> ’

See J.Milnor, Topology from the differential viewpoint, (1965).
See 1T 1.2.5.
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which shows that ¢ is an injective local diffeomorphism. As a consequence the image I := ¢(W) CR
is a connected open subset (open interval), containing ¢(xo) = 0. The induced mapping é: W — I
is a bijective local diffeomorphism, and then a diffeomorphism. Consider inverse diffeomorphism

yi=¢t Tl — W

-1
(] N (e
. dzx +() dx

¥=Awoy

For any t € I,

30 = 5

= v(t)> = Aw (7(1))

ie.,

and
~(0) = xo.
So v is a solution of (W, Aw, o). Now, maximal solution 7, of this problem still defines (owing

to its detivative Ay > 0) a diffeomorphism — extension of v — of an open interval onto the same
image W as «’s. This implies v, = 7. So 7 is the maximal solution of (W, Ay, z). .

3 Hamiltonian Systems

3.1 Symplectic geometry

Let M be an m-dimensional smooth manifold. An exterior 2-form w € Ay(M) defines a vector
bundle musical morphism

" TM — T*M

, (27)
XeT,Mv— X" :=w,(X,)eTiM
and then induces a C°°(M)-linear mapping (6%)
> xM — "M (28)
Xr— X' =w(X,)=ixw
If, for each x € M,
rank’, = m, (29)

then the mapping (27) is a vector bundle isomorphism, and the induced mapping (28) is a C*°(M)-
linear isomorphism. In this case, w is said to be non-degenerate.

(68) See I 4.4.6.
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3.1.1 Coordinate expression. Evaluate the coordinate expression of the musical morphism in
natural charts £',&, on TM and T*M induced by an admissible chart & on M, and check that it
is smooth. Also check that the action

a=X’

(on both vectors and vector fields), is expressed, in terms of components, by
Q; = ijji = —winj
whence one draws that w is non-degenerate if, and only if, the matrix (w;;) is non-singular. .

A non-degenerate exterior 2-form w € Ay(M), is said to be an almost-symplectic structure on M,
and (M, w) is called an almost-symplectic manifold.

3.1.2 Remark. If w is an almost-symplectic structure on M, so is its restriction w|y on any
open submanifold W C M. "

3.1.3 Lemma. An almost-symplectic manifold M is even-dimesional.
Proof. This is an algebraic result. For any x € M, consider the skew-symmetric, bilinear form

wg  TuM x T, M —R.

Condition (29) implies that w, # 0. Then we can find two linearly independent vectors uy,v; €
T, M such that w, (u1,v1) # 0 or, multiplying one of the vectors by a suitable factor,

we(ug,v1) = 1.

Let P; be the plane spanned by (u1,v1) and Fy := {z € T, M |ws(z,u1) = wy(2,v1) = 0} the w,-
orthogonal complement of P;. Notice that Py N Ey; = {0} (because Auy + pv; € By = A= pu=0)
and T,M = Py + Ey (because, for any z € T,M, z — [wo(z,01)u1 — wa(2,u1)v1] € Ey), ie.,
T,M = P, ® E;. As we can repeat the process on E;, we choose (ug,vs) € E7 such that

w(ug,v9) =1

and we obtain T, M = P, & P, ® Fs, where P; is the plane spanned by (ug,vs) and Es the w,-
orthogonal complement of P, in Ey. If we continue inductively, we finally obtain T, M as direct
sum of a number, say n, of planes

T.M=P,&P,&...0P,

whence

dim T, M = 2n. n
3.1.4 Remark. If we order the above couples (u1,v1),...,(un,v,) into one system
(U1y...,Up; V1,...,0,), We obtain an w,-orthonormal basis of T, M, where w, has a matrix of

components given by
0 1
-1 0
(0 being the null element of R™ and 1 the identity of GL(n,R)). .

On R?" we have a canonical example of non-degenerate exterior 2-form, globally characterized (in
& = idgen) by the above constant matrix of components.
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3.1.5 Example. In R?" let us denote by (¢", pn)n=1.....» the natural coordinate functions defined

by € = idgen. Put

© = prdq"

and
Q:=—dO =d¢" Ndpy, .

From the definition of exterior product we draw

Q = dq" @ dpy, — dp, @ dg" = 6} (dq" ® dpi.) — 5} (dpn ® dq")

or
Q = Q(dg" © dg*) + Qi (dg" ® dpx) + i (dpn @ dg") + Q" (dpn @ dpy,)

then

0 1

(€;) =

-1 0

whence
det (Q”) ==+l

according to whether n is even or odd. "

Another classical example of a non-degenerate exterior 2-form, locally characterized (in suitable
charts) by the above constant matrix of components, is the following

3.1.6 Example. Let T*Q be the cotangent bundle of an n-dimensional smooth manifold Q.
Denote by 8¢ the Liouville 1-form on T*Q), given, for any a € T*(Q, by

Oo(a) =aoT,mg : TQT*QTCXL?TﬁQ(a)Q&R

and let
wQ = —dQQ

be (up to the sign) its exterior differential . If &€ = (¢") : U —R™ is an admissible chart on @, and
& = (¢", pn) : Uy —R"xR™ the corresponding natural chart on 7*Q, for any « € U, we have

O (a) = On(@)dag" + 0" (a)dapn

it (] ) = (e ()
and

oot (] ) o (e (5] )
Check that

_ 0
o) Og"

)eo

mQ(a)
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As a consequence,

or,equivalently,
and then
Hence we draw

or 0 1
(wij) = ( ) -
-1 0

Now let (M,wys) and (N,wy) be almost-symplectic manifolds. A smooth mapping
v:M—N

such that
Wy = \IJ*(UN

is said to be a morphism (or isomorphism, if it is a diffeomorphism) from (M,wps) to (N,wy). An
example of isomorphism is the following.

3.1.7 Example. Let X be a vector field on an almost-symplectic manifold (M,w), such that
dxw=20.
The above condition is equivalent to the ®-invariance of w (where ® is the flow of X) (69 i.e.
w|p, = ®jwlp_, vt eR

which means that, for each ¢ €R, the local transformation ®; : D; — D_; is an isomorphism of
(D¢, w|p,) onto (D_¢,w|p_,).
Such a vector field is called an infinitesimal automorphism of (M,w). .

(M, wyr) is said to be locally isomorphic to (N,wy) if, for any « € M, there exists an isomorphism
of an open neighbourhood (U, was i) of x onto an open submanifold (V,wn|y) of N.

3.1.8 Example. Consider (T*Q,wq). Each a € T*Q belongs to the domain of a natural chart
&1 which is an isomorphism of (U; , wgly, ) onto (£(U)XR" , Q|E(M)XR7L). Then (T*Q,wq) is locally
isomorphic to (R?",Q). =

The above example introduces the study of ‘integrability’. An almost-symplectic structure w on a
manifold M is said to be integrable, if (M, w) is locally isomorphic to (R?",§2). This amounts to
saying that there exists an atlas of admissible charts on M — the ‘local’ isomorphisms — where w
is characterized by the same constant matrix of components as Q’s. In this case, (M,w) is said a
symplectic manifold, with symplectic structure w and symplectic charts which (locally) map w onto
Q. An integrability condition is given in the following

See IT 1.3.11.
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3.1.9 Darboux theorem. An almost-symplectic structure w on a manifold M is integrable if,
and only if, it is closed.

Proof.
(i) If w is integrable, then for any symplectic chart (i, &), we have
wlu = & (Qew)

whence (70)

(dw)lu = dwly = d&* (ew) = £ dQey =0

(since 2 is exact) and then
dw = 0.

(ii) If w is closed, for any spherical chart & with suitably small domain & C M, one can find (71)
a diffeomorphism k of the open ball £(14) CR?" onto an open subset A CR?" such that

() wlu = k*Qla

whence wly = §*k*(Q)a) = (ko &)*Qa, ie, ko & : U — A is an isomorphism of (U, w|y) onto
(A, Qla). =

3.2 Hamiltonian systems

On an almost-symplectic manifold (Mw), let us consider the musical isomorphism
5 X (M) — (M)

and its inverse
(M) — x(M).

They transform exact (and closed) 1-forms onto the following special kinds of vector fields. Let
X € x(M) be such that
X' =df  (feC™(M)

or, equivalently,

X =dff  (feCe(M)).

The vector field X is called a Hamiltonian field, and f is said to be a Hamiltonian function of X.
We will put

df* = Xy .
More generally, let X € x(M) be such that
dX* =0
or, equivalently,
Xl = dfy (fueC=WU))
Xl = dff (fu € C™WU))

on each subset U of an open covering of M. In this case, X is called a locally Hamiltonian field.

(70) See I 5.3.4.
(71) See R.Abraham and J.E.Marsden, Foundations of Mechanics, (1978), p.175.
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3.2.1 Proposition. Any (locally or globally) Hamiltonian field on a symplectic manifold (M,w),
is an infinitesimal automorphism of (M,w), and viceversa.

Proof. Just notice that condition
dX’ =0

ie.,
din = 0,

is equivalent, owing to dw = 0, to
(dix +ixd)w =0

ie.,
de =0. n

On an almost-symplectic manifold (M, w), it is possible to give C°° (M) an algebra structure defined
by skew-symmetric Poisson brackets

{fi9} =w(Xy, Xy) Vg€ C™(M).
For any g € C°°(M), Poisson brackets
{g}:feC™(M)—{f g} €C>M)

act as a Lie derivative, owing to the following
3.2.2 Proposition. For any f,g € C*°(M),
{f,9}=X,f.
Proof. Just notice that
{f.9} = w(Xy, Xy) =ix, (ix,w) = ix,df =dx, f. .

As a consequence the Hamiltonian fields, on a symplectic manifold (M, w), form a Lie subalgebra
of x(M).

3.2.3 Corollary. On a symplectic manifold (M, w),

dx> =0 )
= [X,Y] = —d(w(X,Y))
dY’ =0
whence
[vaXg] = _X{f,g}'

Proof. Just recall that (72)
(XY =ixyjw = (ixdy — dyix)w
=ix(iyd+ diy)w — (iyd + diy)ixw
—ixdiyw —iydixw — diyixw
=ixdY’ —iydX’ — d(w(X,Y))
= —d(w(X,Y))

(72) See I 5.3.7.
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3.2.4 Coordinate expression. If (M,w) is a symplectic manifold, in a symplectic chart &
we have the following specialization of coordinate expression concerning the musical morphisms.
Denote the 2n-tuples of components of a vector and a covector (field) by

XM X"
X @ X

(@), aq2)) = (ah,ah) (h=1,...,n)

and recall that w has a matrix of components
<W(11) w(12)> B < 0 1)
We1) W(22) S \-1 0
So o = X’ or X = of, iff, in any symplectic chart,

Q1) = *W(M)X(l) — W(12)X(2) =_x®
Q2) = —w(21)X(1) - w(gg)X@) =X

that is
XW=ag , X®=-aq
or
Xh = ah , Xh = —Qp .
In particular, Xy = drt iff
of 0
xh ==L Xep=——".
P~ opn fh dal

As a consequence

_x ¢_9f 99 9f 99
gk =Xaf = dq" dpy,  Opp Og"

Symplectic manifolds and Hamiltonian fields are the ingredients of Hamiltonian dynamics.
A Hamiltonian system is a triplet
H=(M,w,H)

formed by a symplectic manifold (M,w) and a ‘Hamiltonian function’” H € C*°(M). Any vector
field X € x(M) whose flow leaves w and H invariant, i.e.,

de:O 5 dxH:(]

is said to be an infinitesimal automorphism of H. Among the infinitesimal automorphisms of H,
there is the Hamiltonian field Xz = dH*, characterized by Hamilton field equation

iXHw =dH.

The dynamical system

is said to be the dynamical system associated with H. The (maximal) solutions of the Hamilton
equation of motion
¢c=Xgoc

are called the (maximal) motions of H.
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3.25 Coordinate expression. Let ¢ = (¢",pn) : U —R?*" be a symplectic chart on M. A
motion 7 : I — U is a solution of the Hamilton equation of motion, iff

d, OH
%(q 0y) = @O’Y
d

= (pn o )__Bio
gPre) =—gm°7

A function f € C*°(M) is a first integral of the Hamiltonian system H = (M,w, H), i.e., of the
associated dynamical system D(H), iff (73)

Xuf=0. (30)
Owing to the characterization of Poisson brackets as a Lie derivative ("), condition (30) reads

{f,H}=0 31)

which is usually expressed by saying that functions f and H are in involution. Owing to skew-
symmetry of Poisson brackets, condition (31) also reads

X;H =0 (32)

which means that X is an infinitesimal automorphism of H. Any Hamiltonian field X satisfying
condition (32) will be called a Noether automorphism of H, and f its momentum. The above
conditions show that

3.2.6 Noether Theorem. A function f € C*°(M) is a first integral of H, iff it is the momentum
of a Noether automorphism of H. "

3.3 Hamiltonian reduction

Let H = (M,w, H) be a Hamiltonian system (with dim M = 2n). Let F := (f',..., f*): M —RF
(with & < n) be a submersion, satisfying

{re, f’r =0
for all o, 3 =1,...,k,k+ 1 — where f**! = H, ie., F is an involution set of k independent first
integrals of H.

(i) The above involution condition says that any f° is a first integral of each dynamical system
(M, X o). This amounts to saying that F' is a constant of the motion of (M, Xya), for all a =
1,...,k+ 1. As a consequence, any leaf S of F' is an invariant manifold of each (M, X o). This
implies that each Hamiltonian field X« on M is tangent to S, and then its restriction X« o j to

S, M defines a vector field X x(S) through

TjOXa:Xfa Oj.

See 1T 2.3.
See 1T 3.2.2.
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As is known, the flow of (M, X g ) through S — {®,; 2 € S} —is (the image under j of) the flow of the
restricted system Dg := (S, X), with X := X*+1. Remaining systems (S, X%), with o = 1,..., k,
will give a contribution — under a suitably hypothesis — to a reduction of Dg.

(ii) We shall now study some geometry on S. First we recall that S (connected component — and
then open submanifold — of a fibre of F') is an embedded submanifold of M, whose dimension is

dmS=2n—k=n+n—-%k)>n>k.
For any x € S, the tangent space TS will be identified (through T}, j) to vector subspace (75
ker T, F = ker d, F = ker(d, f*,...,d,f*) € T, M.
Therefore, we will put
X% = Xja0j.

When we consider
py— -k
wg =] Ww,

at any x € S we shall also put
WSz = We|T,5xT, 8

and the musical morphism > : T'S — T*S of wg will be thought of as acting on each v € T,,S by

Ubs = ’Ub|Tms.

3.3.1 Proposition. The characteristic distribution ker®s is a k-dimensional, integrable distribu-
tion on S.

Proof. For any x € S, we have
ker’s, := {v € T,S |v** = 0} = T,,S Northy, (T,5) (33)
where
orth,, (T,S) := {v € TuM |v"|1,s = 0}
is the w,-orthogonal complement of 7,5 in T, M, whose dimension is (76)
dimorth,,, (7:S) =2n — (2n — k) = k.
Consider now the vector subspace
Ve C TS (34)

spanned by (X2,..., X¥)in T,M. As (X1,..., X¥) —like (d.f!,...,d. f*) —is a linearly indepen-
dent system, we have
dimV, = k.

We easily see that
Ve = orth,, (T,.9). (35)

(75) See T 3.2.6.
(76) See C.Godbillon, Géométrie différentielle et Mécanique Analytique, (1969), p.19 (Proposition 1.9).
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To this end, owing to the equality of dimensions, it sufficies to check that any
v=a;X €V,

belongs to orth,,, (T,.5), i.e.,

Plrs = (@ X s = a;(X)lr,s = ;(daf|r,5) = 0
(for T,,S = ker(d.f!,...,d,f*)). From (33), (34) and (35) we draw, for any z € S,
ker’s, =V,
which proves that ker”s = V is a k-dimensional distribution on S (""). Now notice that
dws = d(j*w) = j*(dw) =0

and then, for any two vector fields A, B on S belonging to kers

Abs =0 = B’s,

we have (78)

ifa,Bws = (iadp — dpia)ws = iadpws,

since i qwg = A’ = 0. As a consequence,
’L'[A,B]ws = iA(in+ d’iB)wS =0

for ipwg = B’ =0 and dwg = 0. In conclusion

[A, B =0
which means that
[A, B] € ker”s.
This proves that the distribution ker”’s is involutive, and then integrable. "

As a consequence, ker”s admits maximal integral manifolds which set up a foliation of S, called
characteristic foliation of wg.

(iii) Let us assume that the characteristic foliation of wg is a fibration. This amounts to saying
that there exists a submersion with connected fibres

p:S— N

such that,
ker T'p = ker bs

Notice that the fibres of p are k-dimensional, and then
dim N = (2n — k) — k =2(n — k).

Moreover the exterior forms
wg:=j'w , Hg:=j*H

turn out to be projectable on N, in view of the following

See I 4.2.9.
See 15.3.7.
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3.3.2 Lemma. There exist a unique symplectic structure wy and a unique Hamiltonian function
Hpy on N such that

ws = pTwN

. (36)
HS =p HN.

Proof. With the aid of admissible charts on S and N, distinguished by p, one can see that the
existence on N of an almost symplectic structure wy and a Hamiltonian function Hpy satisfying
(36), follows from the invariance of wg and Hg under the action of all vector fields belonging to
ker T'p (i.e., tangent to the fibres of p):

dZwS =0

dzHg =0
for all Z € x(S) such that Tpo Z = 0. The uniqueness of such wy and Hy is then ensured by
condition (36) itself, and the integrability property dwy = 0 follows from p*(dwy) = d(p*wn) =

dws = 0. In order to prove the above invariance properties, first notice that, from ker Tp = ker”s,
one draws

TpoZ =0 <= izws =0

and then

dzwg = izdwg + dizwg = 0.
Now notice that, from ker Tp = ker’s =V, one draws
TpoZ =0 <— Z=a;X"
with a; € C>*(S5),i=1,...,k, and then
dzHs = dH® 0 Z = a;(dHs o X*) = a;(dH o Tj o X*)

= ai(dH o Xgi 0 j) = a;{H, f'} o j
=0

Now we come to the main result

3.3.3 Theorem. p is a Hamiltonian reduction, which projects Dg onto the dynamical system
associated with H, .= (N,wn, Hn).

Proof. We have to prove
TpoX =Xpyop

(recall that X € x(S) is characterized by Tjo X = Xp o j, with j : S < M). To this end, we just

83



(79)

II 3.3 Hamiltonian reduction

start — at each € S — from Hamiltonian equation:

wy (Xp(2),) =dH

we (Xp(2),-) 0 Tpj = dp H 0 Ty j

wa (T2j(X2), Tej(-)) = du(H © j)
(J*w)a(Xz, ) = du(5°H)

wsz(Xg, ) =dsHg

(P*wn)z(Xz, ) = du(p"Hn)

W p(o) (Tep(X2)), Top(-)) = do(Hy 0 p)
(Top - X3)"™ 0 Top = dpiuyHn 0 Tup
(Top- Xo)'N = dpyHy

Top(Xe) = Xy (p(x))

(Tpo X)(x) = (Xuy o p)(x).

So, by means of k independent first integrals in involution, not only we have a restriction from H
to Dg (with a dimensional decrease of k units); we also have a Hamiltonian reduction from Dg to
H, (with a further dimensional decrease of another k units), whose residuals will now be studied.

Let P, be the phase portrait of H,, and p*P, its lift by p — whose leaves are the phase spaces of
the residuals Dg = (S, X) (™). Let £ be any one of these leaves.

(i) First we shall prove that

3.3.4 Lemma. Each vector field X*, (a« = 1,...,k, k+ 1), is tangent to L.

Proof. For a = k + 1, we have X**t!1 = X and the result follows from the fact that £ is a
smoothness preserving submanifold of S, invariant for Dg. For a # k + 1, notice that, on the
one hand, for any z € £, the fibre p=1(q) over q := p(z) is a connected subset of p~(T') — with
q € T' € P, — containing x; on the other hand, £ is the connected component of p~!(I') containg
x; then p~1(q) C L. As a consequence, the embedding

vip g = S
whose image is contained in £, induces a smooth mapping
r:pHg) = L
such that ¢ =i o, where i : £L — S. Owing to ker T,p = V., we have
XO € ker Top = Tt (Top~ ' (q)) = Tﬂ(TzZ(szl(q))) C Tui(TuL)

which is our claim. n

So each vector field X, restricted to L, yields — through 7% — a vector field Y* on £

TioY*=X%o1.

See 1T 2.2.
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As is known, the flow of Dg through £ is (the image under 4 of) the flow of residual D, := (L,Y),
with Y := Y**1 Remaining systems (L,Y?), with « = 1,...,k, will give a contribution — under
a suitable hypothesis — to the integration of D,.

(i) Now we shall study some geometry on £. Put
£ :=dim L.
If £ € p*(Pyy),
L=02n—k)—2(n—k)=k.

IfLep Py,
l=02n—k)—2n—k)+1=Fk+1

In any case

3.3.5 Lemma. The vector fields (Y',...,Y!) are a parallelization of L, i.e., for any x € L,
(Y.},... Y} is a linearly independent system.

Proof. Let ¢ =k. For any x € £, (Y},...,YF) is a linearly independent system, because of linear
independence of X = T,i(Y>), a =1,...,k. Let { =k + 1. For any z € L, put p(z) €' € P,.
On the one hand, from hypothesis £ € p*(P,,, ), it follows that

rep,.

On the other hand, from hypothesis per absurdum Y} *! = a,Y,® (with a, €R and a = 1,..., k),
it would follow that
X =T,1(Yz) = anT2i(Y,Y) = an X € ker T,p

and then
(Xiny 00) () = (Tpo X)(x) = Tup(X,) = 0
that is
rep,.
This is in contrast with P,, NP, = 0. Then (Y;,..., Y Y 1) still is a linearly independent
system. u

3.3.6 Lemma. Vector fields (Y',...,Y!) commute with each other, i.., for all o, =1,...,1,
[Ye, YA =o0.

Proof. 'We shall make use of relations chsdm relating vector fields (Y*), (X®) and (Xja),
and their Lie brackets too (8%, We have

T(joi)o[Y*, Y] =TjoTio[Y*, Y] =Tjo[X XPoi
= [Xya, Xyps]ojoi=—X(ja psy0(joi)=0

As j o4 is an immersion, we draw [Y, Y#] = 0. "

The existence of a parallelization on £ set up by commuting vector fields (Y'¢), is a very peculiar
geometrical feature, which strongly recalls the situation of a Euclidean space RY with its natu-
ral parallelization defined by commuting vector fields ( azam) corresponding to natural coordinate
function (y*). The only difference is that natural coordinate fields on R? are complete.

From now on we shall assume vector fields (Y, ..., Y") to be complete as well. In this hypothesis,

we have

(80) See I 4.2.8 and 1II 3.2.3.
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3.3.7 Theorem. There exists a covering map
h:Rf— L

such that
Tho

= Ya
5y oh (37)

foralla =1,...,1.

Proof.  We shall first prove that there exists a smooth mapping (local diffeomorphism) satisfying
(37). To this end, let ¥ be the flow of Y* (for all o = 1,...,¢). As Y* is complete, U* is a
one-parameter group of transformations of £. As [Y*,Y?] = 0, ¥ and ¥# commute with each
other 1), As a consequence, if — for any y = (y',...,y") €R’ and 2 € £ — we put

U(y,x) =0,

yl O...O‘I’ie($),

we defene an action
URXL— L

of additive Lie group R on L.
Now, choose a point « € £ and consider the corresponding trajectory

h: =V, R — L.

For any y €R’, the tangent map Tyh: TyRe — Th(y) L acts on ayia as follows. Notice that %
Y Y

is the time derivative at t = 0 of
v :t €R — y(t) := y + t6, R’

(where d,, is the a-th vector of the canonical basis of RY). Therefore its image
0
oy~ |,

ho~v:teR— h(’y(t)) =U,(y+td,) € L.

is the time derivative at t = 0 of

It is
Vo (y +t6a) = Vytrs, (x) = ¥y 0 Vs, (x) = ¥y 0 U (2) = Wy 0 UT(2)

0
T .
?Jh ( 5‘y°‘

Recall that, owing to [V, Y#] = 0, Y is invariant under each action W7,

and then

x

) = (hov)'(0) =T, ¥, 0 U3(0) = T, U, (¥5(0)) = T, T, (V) (38)

TV, oY =Y*0 WP,
Yy Yy

See I 1.3.17.
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and then it is invariant under action ¥
TV, 0Y*=Y%o W,

whence

From (38) and (39) it follows — for any y €R* —

0
T,h| — =Y
Y (aya y) h(y)
i.e., the statement.

Now we shall only list the main steps that complete the proof (82). What is left, is to prove that
trajectory h is a covering map. To this end, one first check that h(R’) is a non-void, open and
closed subset of connected manifold £, whence

h(RY) = L.

As a consequence, if
G = {y eR’| h(y) = 2} CR*

is the isotropy group of 2 (Lie subgroup of Rf), h induces a bijection h of quotient R\ G onto £
through the commutative diagram

R* L

>

R\ G

(where 7 is the canonical projection). The mapping h turns out to be a diffeomorphism. Hence
we draw that dimR’\ G = ¢ and then dim G = 0, i.e., G is a discrete subgroup of R?. It is known
that the only discrete subgroups of R? are — up to isomorphisms — of the type

(0,...,0)xz""
N——

7 times

with 0 <7 < ¢. Without loss of generality we put

G=1(0,...,0)xz"
N—_——

T times
and then we have the generalized cylinder

R\ G = (R\0)" x (R\ 2)"" =R x T

(82) For details, see R.Abraham and J.E.Marsden, Foundations of Mechanics, (1978), p.393-394.
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where
T =8 x ... xS
—_——

{—r times

is the (¢ — r)-dimensional torus. So
hR— L
is the composition of the diffeomorphism

AR xTC"™ — L

with the canonical projection
7RSSR x T

which is a classical covering map (®3). Therefore h is a covering map.
Finally we come to the problem of integrating Dy = (£,Y). Let
aq 1 L —R (a=1,...,0)

be the smooth component of Y with respect to parallelization (Y!,...,Y?), ie.,
Y =a,Y“.
3.3.8 Lemma. Y is a parallel vector field, i.e., a, = const. for allaa=1,... L.

Proof. From Lemma 3.3.2, which holds true also for Y:

YA Y]=0 (V8=1,...,0)

we draw (34
0=LysY = aa(Lys YY) + (Lysaa)Y® = (YPa,)Y*
or, (Y) being linearly independent at each point,
0 =Y a, = (day)Y" (Ve B)

that is

dao =0 (Vo)
which, £ being connected, proves our claim.

As a consequence, we can consider a simple dynamical system:

D := (R, A)
with 5
A=a,—
Y™
and, making use of covering map h, we see that, for any y €R,
9 o
Tyh(Ay) = aaTyh Tya = aaYh(y) = Yh(y)
Yy
or equivalently
ThoA=Yoh

that is

See footnote (23).

See IT 1.3.14 and 1.3.15.
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IT 3.4 Conjugate momenta

3.3.9 Generalized Arnold-Liouville Theorem.
The dynamical systems D and D, are h-related to each other. =

We can summarize the Hamiltonian reduction in the following diagram

Th

TR TC TS T™
Y
(o 50w a.Y* =Y TN X Xy
T XHN
R h L | r RF
m = / /
\ / N —f— R
R¢/G

The above theorem is the main result of this section. Owing to it, the flow of D, comes out
to be the image under A of the flow of D, which is trivially known by quadratures. If we put
L =R" x T*~" from the translational flow of D

(t R at +y €R’; y €RY)

1, we draw the helicoidal flow of Dg:

(t eR > m(at +y) €ER" x T 5 w(y) €ER” x T7")

where
m(at +y) = (art +y1,. .-, art + Yyrs apat + yrpa(mod 1), ap + ye(mod 1))

The above result then claims that the residuals of reduction p of Dg are integrable by quadratures.
This is a generalization of a famous Jacobi-Liouville theorem, which is concerned with the case of
k=n= %dimM independent first integrals in involution F = (f!,..., f™). In this case, on the

one hand, for any level manifold S <y M of F, dim S = 2n —n = n; on the other hand ker’s is an
n-dimensional distribution on S, spanned by the R-linearly independent vector fields (X ) induced
by (Xfeo0j)a=1,...,n. So ker?s = T'S. Now, TS is a trivially integrable distribution on S,
which admits only one maximal integral manifold, actually S itself; therefore, the zero-dimensional
space N of all the leaves of characteristic foliation, reduces to a singleton, and then p is a trivial
reduction from which only one residual arises: D, = kDg. As a consequence, if vector fields
(X1 ..., X") are complete, Theorem 3.3.9 directly shows that Dg is integrable by quadratures
(Jacobi-Liouville theorem).

3.4 Conjugate momenta

Let us turn back to the canonical example of Hamiltonian system H:

M:R2n ) w :dqh/\dph ) H:H(qﬂ|pa>pﬁ)
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with ignorable coordinates (¢%), a = 1,...,k (1), Tt is already known that conjugate momenta

F = (p,) are independent first integrals of H — whose Hamiltonian fields d*p,,) are the complete,
coordinate vector fields (%). It is easy to check (e.g., through the coordinate expression of

Poisson brackets in a symplectic chart) that conjugate momenta are in involution too. So, if Xy is
complete as well, we are in a position like the one assumed in secs 3.1, 3.2. Therefore the problem
of integrating H first reduces to the level manifolds of F' — each of which is an affine subspace
S = {(¢*,¢?; pta,pp)} for any choice of constants j, €R), naturally diffeomorphic to R?"~* =

{(¢*,4%;ps)}. In S, the characteristic foliation spanned by vector fields X* = aia is the
" 1s

fibration of submersion p: S — N (with N =R?"~2¥ = {(¢”;ps)} given by (¢%,¢%;ps) — (¢°;ps).
So the problem of integrating (S, X ir|s) furtherly reduces to the integration of Hamiltonian system
H,:

N={(%pp)} » wN=dd’Adps . HY(¢";ps) = H(¢"; ptar Ps)

where unknown functions (qa (t)) do not appear at all (ignorability). To an orbit I' € P,y there
corresponds a residual D, whose phase space £ = p~(I') is a fibre of p and then diffeomorphic to

OH ) To an orbit I' € P,

Opa

R*, and whose velocity field Xy |, has constant components

~1
p—+(I)
there corresponds a residual D, whose phase space H = p~!(I') is diffeomorphic to R¥xR or

R* x Sy, and whose velocity field Xp|s can be lifted to the vector field % on RF*! by a
suitable covering map h :R¥*1 — L.

3.5 Time-dependent systems

A time-dependent vector field on a manifold M is a smooth mapping
X RxM-—TM

such that the diagram

Rx M X TM
pri ™
M M

is commutative, i.e.,
(t,x) ERX M — X(t,z) e T,M CTM.

X will be identified with the vector field on R x M given by

X:(t,x) ERx M — (04, X (t,z)) € R x T,M
~ Tir.0)(R x M) C T(R x M)

Now, let t the time vector field on R x M given by

t:(t,z) ER x M +— t(t,x) := (jt

7035) € T(R x M)

t

See DS III 2.3.
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IT 3.5 Time-dependent systems

The suspension of X is the vector field X on R x M given by
X:=t+X ,

i.e., for any (t,x) €ER x M,

If p, : I, CR — M is a solution of

P (t) = X (t, (1)

{ ( ) (29)
‘pr(o) =T

then ¢, is said to be a integral curve of X through .

3.5.1 Proposition. 9 ) : I CR —R x M is an integral curve of X through (0,z) if, an only is,
pri oY,y = tr and pra o g ) Is an integral curve of X through x

Proof. Let

Y0, (t) = (a(t), b(t))

be an integral curve of X through (0,2), i.e., for any t € I,

¢(0,x) (t) =

As a consequence, from

it follows that
a(t) = a(0) + t.

Owing to the initial condition a(0) = 0, it must be a(t) =t and then, for all t € I,
w(O,x)(t) = (ta b(t))
b(t) = X (t,b(t))

ie.,
Pr1oY(o,e) = LI

91



IT 3.6 Time-dependent Hamiltonian systems

and b(t) = pra oo,z is a solution of (23). Conversely, if (o, (t) = (¢, ¢z (t)) With ¢, (t) solution

of (23), then
dan® = (55| 20)) = (G| - Ccoew)

= X (t,p.(t)) = (X 090 ()

[ ]
From the above Proposition, one can easily infer an analogous relation between maximal integral
curves of X and X.
The flow of a complete, time-dipendent vector field X will then be defined by

Y :Rx M —Rx M
(t, ) — ¥(t,2) = Yo,2)(t)

If X =0, ie., X =t, then P(t,x) = (t,x), e, Y =idrxar-
Let
F R x M1 —R x M2

be a fiber bundle isomorphism over R, such that
X, =F*X,.
For m € My, put F(0,7) = (0,2). Then, as is well known,

F oo ) = Yo
Hence
Foq/zl(t,ﬂ) = wz(t,m).

If Y = idryary
F(t,m) = *(t, x).

3.6 Time-dependent Hamiltonian systems

A contact manifold is a pair (M, ®) consisting of a (2n + 1)-dimensional manifold M and a closed
2-form @ of (maximal) rank 2n on M. The characteristic bundle

Ry =4{veTM :i,w=0}
is a line bundle (i.e., has 1-dimensional fibres).

3.6.1 Proposition. If (M,w) is a symplectic manifold, then (R x M,®), with @ = priw, is a
contact manifold. The bundle R is generated by t, i.e., itxw = 0. If w = df, then w = df with
0 = pri6.

Proof. Since w is closed, @ is closed too. For any (t,z) €ER x P,

d
r—
du

4
du

,vz) €ERs(t,z) = 0= O ,q) (T
t

avz> = Wy (vm) o T(t,a:)pTQ
t

— 0=w,(vy)
= v, =0
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IT 3.6 Time-dependent Hamiltonian systems

Ro(t,z) = {(7’ %

rank O gy = 2n+1—dimRg(t,z) = 2n =

,Ox> T ER} = spant(t, x).
¢

As a consequence,

A time-dependent Hamiltonian system is a triple (M,w, H) where (M,w) is a symplectic manifold
and H € C*(R x M). For each t €R, put

H,: M —R
x+— Hy(x):= H(t, )
(note that H, € C*°(M)) and
Xy, := dH! € x(M).

Then put
XgRxM—TM

(t,x) — X, ()
Xy — or its suspension Xy € X(R x M) — is called a time-dependent Hamiltonian vector field on
(M, w).
3.6.2 Remark. For any t €R, let
MM —RxM
x— M(x) = (¢, )
Tm)\t : TIM e TtR X T:EM

Vg — (Ot7 Ux)

so that
TxAt : TmM — T(t,:r) (R X M)
Owing to
Ht =Ho )‘t )
we have
deHy = diy gy H o ToNi = dig 2y H 10,310 M (3)

As a consequence, being X g (t,z) = (0, Xp, ()), one has, owing to (3),
XpH(t, x) = (dt,0) H| Xu(t, ) = (do Hi| Xn, (2))
= Wy (XHt (x), X, (m)) =0.

3.6.3 Remark.
iXHCD(t7 SC) = Wy (T(t,x)p’rQ (XH (ta m)>7 ) o T(t,m)pTQ

= Wy (XHt, (1‘), ) °© T(t@)pTQ

=dyHy o T4 )pra (5)
(3)

= d(t,z)H o T(t,x)()\t 9 p?"g).

d(t,m)H o Tx>\t o T(t,a;)pTg
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3.6.4 Theorem. Let (M,w, H) be a time-dependent Hamiltonian system.
(i) (R x M,wp), with
wyg =w+dH Adt

is a contact manifold. (If w = df, then wy = dfy with 0y = 0+ Hdt).
(ii)) Xp is the unique vector field on R x M satisfying

{iXHwH =0
ig,dt=1

where t := pri :R x M —R. (Xy generates R, ).

(iii) It is

dg, H= aa—It{
where

aa—jj =d¢H.
Proof.

(i)
dwg =dw+ d(dH A dt = do = pry(dw) =0

So wy is closed. Let (t,2) €R x M and consider (1)

wrr(t,2) 10, <1, p| ¢ {0} X TP — ({0} x T, P)".

Let w: V — V* be a linear mapping and S C V a vector subspace. Two more linear mappings

can be obtained via restriction:

wlg: S — V" u— w(u)

and
wig) 28— S tu - w(u)s .
Obviously
kerw|s C kerwgy,
hence

dim ker w|s < dim ker wyg
—dimker w|s > —dimker wyg,
dim S — dim ker w|s > dim S — dim ker wyg
rankw|s > rankwg
On the other hand
rank w = dimw(V) > dimw(S) = rank w|g

So
rank w > rank wg.
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IT 3.6 Time-dependent Hamiltonian systems

We have

wr (t,2) {0,y x 1, P| (06, V) = @(t, 2)(0¢, v2) [0, 3 x 1o s + (d(t,0)6 (04, 02)) die,ay H (0,3 <7, P
— (d(2,2)t(08,v2)) de,o) H |10,y it

—~

t,2)(0¢, ve) |10,y x 10 M

w
= wy (T(t,2)pr2(04,v2)) © T(t,0)Pr2l (0,1 x T, M
w

where ¢ : {0:} x T,M — T, M. Hence

rank wg(t,z) > rank wy(t, )| 10,3 x1, M| = rank w(z) = 2n.

(ii)
ix,wn =iz, (0+dH Adt) »
=iz, 0+ (ig,dH)dt — (i, dt) dH
Let us consider one term at a time
iXHL:J = Z'(t_,_XH)tZJ = W+ = ix,w
ita)(tv 33) + wy (T(t,:p)pTQ : t(ta Jf)) © T(t,:r)pTQ =0
and, owing to (5)
ixp@ = dg)H o Ty ) (A 0 pra)
so, we have
i, @t x) =dt o) H o Tt ) (A 0 pra) (a)
ZXHdH = i(t+XH)dH = thH + iXHdH = thH = dtH and then
(ig,dH)dt = deHdt (b)
ix, dt =it+x)dt =i¢dt +ix,dt =1 and then
(i)?H dt) dH = dH. (c)

As a consequence (1)
i3, wWH(t,T) = dg 2y H o T(; o) (At 0 pra) + (d(s.0)H[t(t, 7)) dt — d(t 0 dH = 0.

The second condition in (ii) is just (7). Since the characteristic bundle is one dimensional, X is
unique.
(iii) Owing to (6) it is

dg, H=ig, dH = dyH.

Notice that
<d(t’m)H‘t(t, a?)>dt = d(t’z)H o T(t,a:) ()\t o p?"1>

and that
T,y (At 0 pra) + T4 2) (A 0 pr1) = idr,rxT, M.
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II 3.7 Canonical transformations

3.7 Canonical fransformations
Let (My,wq) and (Ms,ws) be symplectic manifolds. Let

R x M, F

RXMQ

tl t2

R R

with t; = F'*t5, be a fibre bundle isomorphism over R. Put, for any ¢t €R,
Fy:=prooFo) : M — M,.
3.7.1 Theorem. The following statements are equivalent
(i) For any t €R, F, is a symplectic diffeomorphism and, for any H € C*(R x M,), there is a

K € C%(R x M) s.t. o
F* Xy = X,

(ii) There exists a Krp € C*°(R x M) such that
F*®y — &1 — dKp Ndtp =0,
ie., if &1 = —df, and @y = —dbs,
a(F*6: — 1 + Kpdty ) = 0.
(iii) There exists a Kp € C*°(R x M) such that, for all H € C*°(R x M),
F'Xy=Xgk,

with
K:=F'H+Kp.

F' is said to be a canonical transformation if it satisfies one of the above statements.

3.7.2 Remark. Let F = (idg, f), with f : M; — M. Then F is a canonical transformation iff
f is a symplectic diffeomorphism.

Proof. From the commutativity of the diagram

F = (idg,
R x M, (idz, /) R x M,
pra pra
M1 f M2
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IT 3.8 Hamilton-Jacobi theory

ie., proo F' = f opry, it follows that
Fy=prooF o) = foprao) = f.

So, if F'is a canonical transformation, then f is a symplectic diffeomorphism. Conversely, let f be
a symplectic diffeomorphism, i.e.,
[fwe = w1,

then, again from the commutativity of the above diagram, we have
F*®y = F*priws = (pro o F)*we = (f o pra)*we = pry ffwe = prowy = @1
and then (ii) is satisfied with Kr = 0. .
Let (M;,w1, H) be a time-dependent Hamiltonian system. A canonical transformation F' reduces
H to equilibrium if, and only if, K =0, i.e.,
HoF+ Kr=0.
In that case, as Xx = 0 (i.e. Xi = t1), one has
U = tdrxm,

and then F gives the flow of Xpg:
\I/H(t,xo) = F(t,ﬂ'o),

with mg = F(;l(xo), Fy =pryo FoAg. A method for obtaining such an F' is the Hamilton-Jacobi
theory, that we are going to discuss in the following, where we will specialize to the case of a
nonautonomous Hamiltonian vector field Xy on a cotangent bundle My := T*Qs.

3.8 Hamilton-Jacobi theory

Let dim Q1 = dim Q2
My :=T"Qq, with coordinates (", m,)
My :=T"Q, with coordinates (¢",ps)

Let
VIRXQ1XQ2—>R

(t,r,q) — V(t,z,q).

Put
f RXxQ1 x Qs —R xT*Q:

(t,z,q) — (t,x,m),
mi= —dpVirq) € T;Qu,

with coordinate expression

Put
gZRXQ1XQ2—>RXT*Q2

(t,z,q) — (t,q,p),
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II 3.8 Hamilton-Jacobi theory

D= dq‘/(t,.r) € T;QQ )
with coordinate expression
(t, 2", ¢") — (t, 4", pn)

oV
ph = ah(tw,q)

Assume that f and g be fibre bundle isomorphisms over R and put
F:=gof ' Rx M, —R x M,.

3.8.1 Theorem. F is a canonical transformation.

Proof. We shall show that 5.3.1 (ii) holds. Firstly, we have
F*0, = (f71)" (9" (pndg™)) = ()" (9"pn A g"dg")

U (regndtt 0 0) = ) (o ).

Secondly, we put

ov
Kp = e
Then _ ~
F*0y — 0, + Kpdt = (f~")*dV =d ((f~")*V),
hence our claim. n

Now consider a (time-dependent) Hamiltonian system (T*Q2, H). Owing to 5.3.1 (iii), one has
F*Xy =Xk,
with
K=F'H+Kp,

F being the canonical transformation generated by V, and

oV
Kp=(f"H*—.
P
F reduces H to equilibrium, i.e., K = 0, if, and only if
Hogof™! + of'=0,
i.e., V is a solution of the Hamilton-Jacobi equatzon associated with H:
aVv
H =0
o g + at )
namely,
oV
H (ta Q7qut,x) + E(ta ‘Tvq) = Oa

with coordinate expression

ot
A solution V' of the H-J equation, satisfying the above conditions on f and g, is called a complete
integral. As is known, the flow ¥ of Xy is the transformed by F' of the flow ® o f of Xg. As

Xk =0 (ie. X =t ), the flow of Xk is idrxar,. As a consequence, the flow of Xy is given by
F itself. Therefore

H(t h,g‘2>+av_0.
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3.8.2 Theorem. If the H-J equation associated with H admits a complete integral V, the
canonical transformation F generated by V gives the flow of (T*Q, H). "

If H € C*(T*Q2), Poincaré’s method suggests to look for a complete integral with separate
variables (g, t), i.e.,
V(t,z,q) = W(x,q) — tE(z).
As
dqVii ) = dy Wy — tE(2)) = dW,
and

ov
E(t,ax,q) = —E(z),

the H-J equation reduces to
H(Qa danc) = E(CC),

or

HodW, = E(x),

whose coordinate expression is - for all z € @ -
ow
H(d",— ) =E.
(q ’3qh>

3.8.3 Coordinate expression.

One has to be aware that in general, generating functions are defined only locally, and indeed, the
global theory of generating functions and the associated global Hamilton-Jacobi theory is more
sophisticated. Since our goal is to give an introductory presentation of the theory, we will do many
of the calculations in coordinates. Recall that in local coordinates, the conditions for a generating
function are written as follows. We seek a complete integral of the H-J equation, i.e., a solution of
the nonlinear partial differential equation

N oS
H (t7Qa W‘(t’q’x)) + E(t7q7x) =0

for the function S relative to the variables (¢, ¢) in an open domain of R"*! depending parametri-
cally on z in some open domain of R™. Moreover, we require that

%8
det | ——— 0
(aqhaxk) 7
in the above-mentioned domains. By the implicit function theorem, this condition is equivalent to
local invertibility of the canonical transformation generated by S. Indeed,

oS
DPh :ph(t7Q7x) = W(tvqax)7

oS

_W(tqu‘r)

Th = 7Th(t7 q, ‘T) =

The condition on the Jacobian determinant is equivalent to

PS \ . (o
det <8qhaxk> = det <8xk) 7é 0,
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which assures that the first equation can be (locally) inverted with respect to x, namely,
F =2t q,p).
By plugging this equation in the second equation, one gets

T = 7?-.Ic(t-)qap) = Wh(tvqax(t7q7p))'

The last two equations are the local representatives of the canonical transformation (t,q,p) —
(t,z, 7). Again, the condition on the Jacobian determinant assures its invertibility (prove it!).

3.8.4 Remarks.

(i) In general, the function S develops singularities, or caustics, as time increases, so it must be
used with care. This process is, however, fundamental in geometric optics and in quantization.
Moreover, one has to be careful with the sense in which S generates the identity at ¢ = 0, as it
might have singular behavior in ¢. For example, it is very easy to verify that

1

generates a canonical transformation that is the identity at ¢t = 0.
(ii) Here is another link between the Lagrangian and Hamiltonian view of the Hamilton-Jacobi
theory. Define S for ¢ close to a fixed time tg by the action integral

sw%w=[L@maamw,

where ¢(s) is the solution of the Euler-Lagrange equation equaling x at time ¢y and equaling ¢ at
time ¢. One can show that S satisfies the Hamilton-Jacobi equation. See Arnold [1989, Section
4.6] and Abraham and Marsden [1978, Section 5.2] for more information.

(iii) If H is time-independent and W satisfies the time-independent Hamilton-Jacobi equation

(4.5 00)) = B(@),

then S(t, q, ) = W(q, z)—tE(x) satisfies the time-dependent Hamilton-Jacobi equation, as is easily
checked. When using this remark, it is important to remember that E is not really a constant, but
it equals H(z,7), the energy evaluated at (x,7), which will eventually be the initial conditions.
We emphasize that one must generate the time t-map using S rather than W. The coordinate
expression of the canonical transformation F' generated by W reads

qh = qh(t7xk7 7Tk?) )

bn = %(xkvqk)'
The first equation is obtained by solving

__aiw h _h h
T = amk(xvq)—'_tamk(m)
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with respect to ¢", while the second equation is evaluated at the same value of ¢* of the first one.
The flow \I/g p)(t) = F(t,x,7) has the same expression, where (z,7) := F; (g, h) expressed by

2 =" (¢", pn),
ow , . .
ﬂ-k:_aitk(x’q )7
where the first equation is obtained by solving
oW, v &
T = —F (2,

with respect to z*, while the second equation is evaluated at the same value of z" of the first one.
(iv) The Hamilton-Jacobi equation is crucial in the study of the quantum-classical relationship.

(v) The action function S is a key tool used in the proof of the Arnold-Liouville theorem, which
gives the existence of action angle coordinates for systems with integrals in involution; see Arnold
[1989] and Abraham and Marsden [1978] for details. n

3.9 The method of separation of variables.

It is sometimes possible to simplify and even solve the Hamilton-Jacobi equation by what is often
called the method of separation of variables. Assume that in the Hamilton-Jacobi equation the
coordinate ¢! and the term 95/0q' appear jointly in some expression f(q',3S/0q') that does not
involve ¢2,...,q", t. That is, we can write H in the form

H(t’qlaQQa"'aqnaplap2a" 7pn) = FI (taf(qlapl)ana"'aqnap2a"'7pn)

for some smooth functions f and H. Then one seeks a solution of the Hamilton-Jacobi equation
in the form
S(t,q,z) = Si(q",2") + 5(t,¢% ... q" 2t 2").

We then note that if S; solves
as
1 1Y) 1
(o 5) = o6
for an arbitrary function C' and if S solves

ﬁ(t,C(xl),q2,... " 0,

A
7q78q27"'7aqn

5 =

then S solves the original Hamilton-Jacobi equation. In this way, one of the variables is eliminated,
and one tries to repeat the procedure. Note that the first equation is an ordinary first order
differential equation for S7 and can be solved by a quadrature. The second equation is again of
the H-J form, but with one variable less. When the above procedure can be iterated n + 1 times,
by separating out all space and time variables, the evaluation of a complete integral of the H-J
equation reduces to n + 1 quadratures. In such a case the Hamiltonian system is called separable.
In fact, a closely related situation occurs when H is independent of time and one seeks a solution
of the form
S(t,q,x) = W(q,x)+ S1(t).
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II 3.9 The method of separation of variables.

The resulting equation for S; has the solution S;(t) = —Ft, and the remaining equation for W is
the time-independent Hamilton-Jacobi equation. If ¢! is a cyclic variable, that is, if H does not
depend explicitly on ¢!, then we can choose f(q',p1) = p1, and correspondingly, we can choose
S1(¢t, z%) = C(2')q'. In general, if there are k cyclic coordinates ¢!, ¢2, ..., ¢", we seek a solution
to the Hamilton-Jacobi equation of the form

S(t’ q) l‘) = ZC](’T;])Q] + S (qk+1’ b "qn’x17 AR 7xn) )

j=1

with p; = C;(z%), i = 1,..., k, being the momenta conjugate to the cyclic variables. We note that
in order to obtain a separable H-J equation one should choose an appropriate coordinate chart,
adapted to the symmetries of the Hamiltonian system under consideration.

3.9.1 Example: free particle.
From the Hamiltonian

1
H= %(p? +p3 +p3),

L8752+8752+8732+875_0
2m | \ Oq1 0qa 0qs ot

It is natural to use the method of separation of variables and seek a solution of the form

one gets

S(t,q1,92,q3) = X(q1) + Y(q2) + Z(q3) + T'(2).

The H-J equation reads

1 [/dx\* [dy\* [dz\?| dT
— Il +|l5—) +|5 — =0,
2m dqy dqs dqs dt
whence
dX dYy dz dT 3 + 23 + 2%
- = 1, - = T2, - = I3, 7
dqy dqs dqs dt 2m

whose integration yields

x%+x§+x§t

S(t,q1,q2,q3,71,T2,23) = T1q1 + T2q2 + T3q3 — o

S satisfies the condition of invertibility and generates the canonical transformation
T

Ti = Di, = —q; + —t, (1=1,2,3).
m

Thus, x; are the conserved momenta and —m; the initial positions.
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IT 3.9 The method of separation of variables.

3.9.2 Example: harmonic oscillator.
The Hamiltonian of a one dimensional harmonic oscillator is

1
H= —(p2 2 22
(P + M),

whence the H-J equation reads

1 [/8S\> 5 5, 08
2771[((%) +qu +a—0
By setting
S(LQaE):W(an)*EL
we get
% [<&1> + mw q —E,
whence

q 27,2
W(q, E) = V2mE / 1- m;’E” du.
0

Now, W(q, E) is the generating function of a canonical transformation from (g, p) to (E,7) where

ow ow
p =

B¢ T eE

From the second equation we get

1 /2m [9 du 1 . mw?
T=—-—-4/—= | ——— = ——arcsin —
2V E Jo [1_ meu w o 1)°
V 2B

whose inverse is
2F
2

q=- sin(w).

mw
The first equation defining the canonical transformation reads

2,2
p=V2mE4\/1— m;JEq = V2mE cos(wm).

We recall that in the new coordinates the Hamiltonian reads

K(EJT) = H(Q(E77)7P(Eﬂﬂ—)) =FE

and thus F is conserved, while
7(t) = mo — t,

whence the equations of motion in the original coordinates follow

q(t) =1/ Tifz sin(w(t — 7)), p(t) = V2mE cos(w(t — mo)).

We note that (E,m) is the image of the initial point (go, po), namely
1
E= %(pg +miw?ed) 7o = — arctan(mwqg /po),

thus confirming that F is nothing but the conserved energy of the oscillator.
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II 3.9 The method of separation of variables.

3.9.3 Example: separable systems in spherical coordinates.
Consider a mass point m in R? subjected to conservative forces derived by a potential energy V.
The representative of the Hamiltonian function in the cartesian coordinate system reads

1
H = (p; + 0y +02) + V(2,9,2).
By introducing spherical coordinates
x = 7sind cos g, y = rsindsin g, z =rcost,
with r > 0, 0 < ¢ < 27 and 0 < ¥ < 7, the representative of the Hamiltonian becomes
1 P p?
H=—(p2+=2+ "2~ | +V(r9,¢).
2m (pr+ 72 * r2sin ¥ +Vird,0)

Suppose that in spherical coordinates the potential has the form

bO) , ele)

V(r,9,¢) = .
(9.0) = alr) + 25 + - Lo

Then, the H-J equation
(S L (98N, _1 (0SY
2m or r2 \ 0U r2gin? 9 \ Oy

is separable by setting
S(t7 T, 197 @5 0, Ay, as&) = Wl (907 atp) + W2(’l97 Qay, 044/;) + W3(T; Qp, 0y, a(p) - E(aT7 Qy, acp)t-

oS
+V(r,9,¢) + g =0

Indeed, by plugging the above Ansatz into the H-J equation one gets

NEUAY ICIAS L[ (oW _
2m ( or > +alr)+ 2mer? {( oY ) +2mb(9) + sin? ¢ Oy +2me(p)| 0 = E,

which splits into a system of first order ordinary differential equations

oW\ >

(F2) +2meto) = erta),

oW\ er(a,)

< v > - 2mb(d) + sin? 9 _62(0619’0@)’

1 [owWs\? ey, o)

a () #a+ 25ese = Bansa,)

The integration of the system yields

Wy = /dtp\/el(aw) — 2me(yp),
Wy = /dﬁ\/eg(ag, ) — 2mb(V) — 61.(%0)

)
sin? 9

Wy = /dr\/2m (0, g, ) —a(r) — ealay, ap) .

2mir?

The above equations particularize in the very important situation of a particle in a central potential

V(r). In such a case one can set ¢(p) = b(¢) = 0 and obtain Wi(p) = p,¢. The coordinate ¢

is cyclic and p, = £,/e1, the z-component of the angular momentum, is conserved. Moreover,
= pfp / sin? 9 + p% is the square modulus of the angular momentum which is also conserved.
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II 4.1 Preliminaries

4 Introduction to canonical perturbation theory

4.1 Preliminaries

4.1.1 Definition. A Hamiltonian system is called quasi integrable if the Hamiltonian function is
given by
h(g, p.€) = ho(q,p) + €hi(q,p),

where (q,p) € U, 0 < e < 1 and hg is the Hamiltonian of a completely integrable system on a
time-invariant domain U C T*M. -

4.1.2 Remarks.

(i) Since hg is is the Hamiltonian of a completely integrable system, there exists a canonical
transformation to action-angle variables (q,p) — (¢, J), such that the transformed Hamiltonian
only depends on J, namely

H(QO, J7E) = HO(J) + EHl(SOa J)7
with (p,J) € T" x B, B CR™ open.
(ii) For e = 0 the system is integrable and the Hamilton equations read
J=0,  ¢=w()),
where
w(.]) = 8JHO(J)

The phase space T*M is foliated into invariant tori labeled by actions which are first integrals.
The motions are bounded and quasi periodic. Namely

<
—~
~
~
I
<
—~
(=}
~~
S
—~
~
~
Il

w(J(0))t + ¢(0).

(iii) When the perturbation is switched on, for € # 0, the action variables are no longer constants
of the motion and one gets

J = —ed,Hi(p,J).

Therefore,
|[J(t) = J(0)] < [|0,Hxll et,

where | f[| = SUP(p,J)eT™x B |f (0, J)I- -

4.1.3 Remark. The above is a very crude estimate. It is completely useless for time larger than
O(1). In fact it does not take into account the fact that 0,H; is a multiply periodic function of ¢
with zero mean. "
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IT 4.2 Perturbation theory

4.1.4 Example. The Hamiltonian H(yp,J,c) = J + ccosep, with (p,J) €R? produces the
Hamilton equations )
J =esinp, p=1,

whose solutions are
J(t) = J(0) 4+ & (cos p(0) — cos(p(0) + 1)), o(t) = p(0) +t.

Therefore
[J(t) — J(0)] < 2¢

for all ¢, and not only for ¢t = O(1). .

4.2 Perturbation theory

The aim of perturbation theory is to find a canonical transformation that shifts the dependence
on ¢ at order £2. Then iterate up to the desired order.

42,1 Remark. Suppose there exists a canonical transformation that reduces the perturbed
Hamiltonian into a completely integrable one. From its generating function W (¢, I,e) we would
get

J=0,W(p, 1), &=0W(p,1I),

that yield the canonical transformation (¢, J) — (¢, I). Therefore, one would obtain the Hamilton-
Jacobi equation

H(p,0,W,e) = Hy(0,W) 4+ eHy(p,0,W) = H(I,¢).

422 Remark. Our requirement is that
H(p,I,e) = Ho(I) + eH,(I) + €2 F (3, 1, €).
Therefore we seek for a canonical transformation e-near to the identity
W(p,I,e)=1-p+eWD(p, 1)
whence
Ho(I) + e0rHo(I) - 0,W W (0, 1) + eHy (¢, 1) + O(e?) = Ho(I) + eHy(I) + O(?).

At zero order in ¢

Ho(I) = Ho(I).
At first order we get

4.2.3 Definition. The fundamental equation of canonical perturbation theory is

W(I) aAPW(l)(QOvI) +H1(907[) = Hl(‘[)v

in the unknown functions W™ (p, I) and Hy(I). .
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IT 4.2 Perturbation theory

4.2.3 Remarks.

(i) The fundamental equation is a first order partial differential equation on the torus 7™, and
perturbation theory always yields equations of the above form.

(ii) Let us assume that the fundamental equation has a solution W) (¢, I) and Hy(I). Then, in
the new canonical variables we would get from

I=0(%, ¢=w{)+edH (I)+O(?),

whence for t € [0,e71]

Therefore
[J(t) = J(O)| = [J(t) = I(t)| + |L(t) — 1(0)] + [1(0) — J(0)[ = O(e),

since |J(t) — I(t)| = O(e) uniformly in ¢. .

4.2.4 Formal solution.
(i) Since H; depends periodically on ¢, it can be expanded in a Fourier series:

Hy(p,J) =Y Hp(J)e'*?,
kezn

where

H.(J) = / e e H (o, ) )

and analogously for W),
Wi, 1) = 3 W) e,
kezZn
with
d™e
(2m)

(ii) By taking the average of the fundamental equation over T™, one gets

W) = [ e ip.)

ﬁl(I) = I:IO(I)a
while the other Fourier components, with k£ # 0, satisfy the equation
ik - w(I) WO (I) + Hy(I) =0,

which is formally solved by

ik-@
Do) ==S = H.(D).
k0
(iii) Then 5 R
H(p,1,€) = Ho(I) + eHo(I) + £ F(p,1,¢),
where

F(p, 1) =& [Ho (1+20,W W) = Ho(I) — 2w 0,W)]

+et [H1 (@,I+56¢W(1)) - Hl(%])] :
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IT 4.2 Perturbation theory

425 Remark. The denominator of (*) vanishes whenever the frequencies are rationally de-
pendent. But, even when the ratios of the frequencies are irrational, the denominators k - w may
become arbitrarily small, and the convergence of the formal series (*) must be checked. This is the
problem of small denominators. "

4.2.6 Theorem. Let Hy be analytic on the domain |Imyp,| < p and |J;| <r, (j =1,...,n). If
there exist T > n — 1 and ¢ > 0 such that

kel = k™", Wk #0, (D)

where |k| = |ki|+ ...+ |kn|, kK € Z™, then the series (*) converges to an analytic function on the
same domain , and the following estimates holds:

IWOllposr <@ "[Hillpe,  0<6<p<2,

where || f(¢, J)p.r = SUD|1ng; <, SUP| 1, <o | £ (0, J)| and € = c712%" (27 /e)".

Proof. Since H; is periodic in ¢, we can shift the path of integration for ¢; so that Imy; = psignk;.
There results

HI:Ik”T = Sup
| Js|<r

[ e e ) d;"\ < o Moy |,

(2m

This means that
W5, < sup
[Im @, [<p—6 k£0

< S e MOk
k#£0

eik~<p—|k|p‘ C_1|]€|T||H1

o

In order to bound the sum over k, use the inequalities
- 27\ k1s/2
|k|” < %) ¢ , VT >0, Vo > 0,
e

and

2 8
—|kl6/2 _ 2 °
E e =1 o0/ 1<5, 0<d<2
keZ

Together these produce the inequality

27\"
(1) —-1 a0 —|kls/2
WOl < Nl (25) >

o

2 T
<l s () —a

The same bound for the sum also shows the analyticity. =
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IT 4.2 Perturbation theory

4.2.7 Remarks.
(i) By Cauchy’s theorem, the above estimate implies

<@ T YT Ho e
p—8,r—

o\ Pw
(a%‘) = (0) e <afz‘5¢j )

is invertible for small enough €, as it is required for the generating function of a canonical trans-
formation.

92w
H 8Ii8g0j

Therefore the matrix

(ii) The condition on the w’s means that they must be sufficiently rationally independent. When
they have rational ratios, resonance behavior occurs, which can amplify the effect of the perturba-
tion dramatically. However, this can happen also in the vicinity of a resonance.

(iii) It is possible to show that for 7 > n — 1 the measure of the set of frequencies that do not
satisfy the Diophantine condition (D),

M., = {w eR": 3k € Z™\{0} such that k- w < k|7 }
approaches zero as ¢ in any bounded set, that is
M., N{w eR": |w| < K} = O(c), VK >0,

although it contains all rational points, Z"™ C M, ,. Thus M, , is a strange example of an open,
dense set of small measure. Its complement, the set of Diophantine frequencies R™\ M, , is an
example of a Cantor set: a nowhere dense, closed set with no interior points, of large measure.

4.2.8 Outlook. A perturbed integrable system has been transformed into another integrable
system up to order 2. The question arises of whether this procedure can be repeated to eliminate
the perturbation completely. In fact, there is a fundamental obstruction to this procedure due to
a theorem by Poincaré: For a generic analytic Hamiltonian with an arbitrary small perturbation
all constants other than H are destroyed. Therefore, there has long been a wide-spread opinion
that it is sufficient a “speck of dust” for making the trajectory winding around densely through
the energy surface (ergodic system). Thanks to the work of Kolmogorov, Arnold, and Moser, the
famous KAM theory, it is now known that it is not so. If an integrable system is perturbed, many
of the invariant tori are completely destroyed, while others are only deformed. However, if the
perturbation is sufficiently small, the ones that are only deformed (named Cantori) fill up most
of the phase space. Therefore, even if there exist no constants other than H, for small €, enough
n-dimensional submanifolds exist so that in most cases the system acts virtually like an integrable
system.
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