
Chapter 2

Self-adjointness and
spectrum

2.1. Some quantum mechanics

In quantum mechanics, a single particle living in R3 is described by a
complex-valued function (the wave function)

ψ(x, t), (x, t) ∈ R3 × R, (2.1)

where x corresponds to a point in space and t corresponds to time. The
quantity ρt(x) = |ψ(x, t)|2 is interpreted as the probability density of the
particle at the time t. In particular, ψ must be normalized according to

�

R3
|ψ(x, t)|2d3x = 1, t ∈ R. (2.2)

The location x of the particle is a quantity which can be observed (i.e.,
measured) and is hence called observable. Due to our probabilistic inter-
pretation, it is also a random variable whose expectation is given by

Eψ(x) =
�

R3
x|ψ(x, t)|2d3x. (2.3)

In a real life setting, it will not be possible to measure x directly and one will
only be able to measure certain functions of x. For example, it is possible to
check whether the particle is inside a certain area Ω of space (e.g., inside a
detector). The corresponding observable is the characteristic function χΩ(x)
of this set. In particular, the number

Eψ(χΩ) =
�

R3
χΩ(x)|ψ(x, t)|2d3x =

�

Ω
|ψ(x, t)|2d3x (2.4)
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56 2. Self-adjointness and spectrum

corresponds to the probability of finding the particle inside Ω ⊆ R3
. An

important point to observe is that, in contradistinction to classical mechan-

ics, the particle is no longer localized at a certain point. In particular,

the mean-square deviation (or variance) ∆ψ(x)
2

= Eψ(x2
) − Eψ(x)

2
is

always nonzero.

In general, the configuration space (or phase space) of a quantum

system is a (complex) Hilbert space H and the possible states of this system

are represented by the elements ψ having norm one, �ψ� = 1.

An observable a corresponds to a linear operator A in this Hilbert space

and its expectation, if the system is in the state ψ, is given by the real

number

Eψ(A) = �ψ, Aψ� = �Aψ,ψ�, (2.5)

where �., ..� denotes the scalar product of H. Similarly, the mean-square

deviation is given by

∆ψ(A)
2

= Eψ(A2
)− Eψ(A)

2
= �(A− Eψ(A))ψ�2. (2.6)

Note that ∆ψ(A) vanishes if and only if ψ is an eigenstate corresponding to

the eigenvalue Eψ(A); that is, Aψ = Eψ(A)ψ.

From a physical point of view, (2.5) should make sense for any ψ ∈ H.

However, this is not in the cards as our simple example of one particle already

shows. In fact, the reader is invited to find a square integrable function ψ(x)

for which xψ(x) is no longer square integrable. The deeper reason behind

this nuisance is that Eψ(x) can attain arbitrarily large values if the particle

is not confined to a finite domain, which renders the corresponding opera-

tor unbounded. But unbounded operators cannot be defined on the entire

Hilbert space in a natural way by the closed graph theorem (Theorem 2.8

below).

Hence, A will only be defined on a subset D(A) ⊆ H called the domain
of A. Since we want A to be defined for at least most states, we require

D(A) to be dense.

However, it should be noted that there is no general prescription for how

to find the operator corresponding to a given observable.

Now let us turn to the time evolution of such a quantum mechanical

system. Given an initial state ψ(0) of the system, there should be a unique

ψ(t) representing the state of the system at time t ∈ R. We will write

ψ(t) = U(t)ψ(0). (2.7)

Moreover, it follows from physical experiments that superposition of states
holds; that is, U(t)(α1ψ1(0)+α2ψ2(0)) = α1ψ1(t)+α2ψ2(t) (|α1|2 + |α2|2 =

1). In other words, U(t) should be a linear operator. Moreover, since ψ(t)
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is a state (i.e., �ψ(t)� = 1), we have

�U(t)ψ� = �ψ�. (2.8)

Such operators are called unitary. Next, since we have assumed uniqueness

of solutions to the initial value problem, we must have

U(0) = I, U(t + s) = U(t)U(s). (2.9)

A family of unitary operators U(t) having this property is called a one-

parameter unitary group. In addition, it is natural to assume that this

group is strongly continuous; that is,

lim
t→t0

U(t)ψ = U(t0)ψ, ψ ∈ H. (2.10)

Each such group has an infinitesimal generator defined by

Hψ = lim
t→0

i

t
(U(t)ψ − ψ), D(H) = {ψ ∈ H| lim

t→0

1

t
(U(t)ψ − ψ) exists}.

(2.11)

This operator is called the Hamiltonian and corresponds to the energy of

the system. If ψ(0) ∈ D(H), then ψ(t) is a solution of the Schrödinger

equation (in suitable units)

i
d

dt
ψ(t) = Hψ(t). (2.12)

This equation will be the main subject of our course.

In summary, we have the following axioms of quantum mechanics.

Axiom 1. The configuration space of a quantum system is a complex

separable Hilbert space H and the possible states of this system are repre-

sented by the elements of H which have norm one.

Axiom 2. Each observable a corresponds to a linear operator A defined

maximally on a dense subset D(A). Moreover, the operator correspond-

ing to a polynomial Pn(a) =
�n

j=0 αja
j
, αj ∈ R, is Pn(A) =

�n
j=0 αjA

j
,

D(Pn(A)) = D(A
n
) = {ψ ∈ D(A)|Aψ ∈ D(A

n−1
)} (A

0
= I).

Axiom 3. The expectation value for a measurement of a, when the

system is in the state ψ ∈ D(A), is given by (2.5), which must be real for

all ψ ∈ D(A).

Axiom 4. The time evolution is given by a strongly continuous one-

parameter unitary group U(t). The generator of this group corresponds to

the energy of the system.

In the following sections we will try to draw some mathematical conse-

quences from these assumptions:

First we will see that Axioms 2 and 3 imply that observables corre-

spond to self-adjoint operators. Hence these operators play a central role
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in quantum mechanics and we will derive some of their basic properties.

Another crucial role is played by the set of all possible expectation values

for the measurement of a, which is connected with the spectrum σ(A) of the

corresponding operator A.

The problem of defining functions of an observable will lead us to the

spectral theorem (in the next chapter), which generalizes the diagonalization

of symmetric matrices.

Axiom 4 will be the topic of Chapter 5.

2.2. Self-adjoint operators

Let H be a (complex separable) Hilbert space. A linear operator is a linear

mapping

A : D(A) → H, (2.13)

where D(A) is a linear subspace of H, called the domain of A. It is called

bounded if the operator norm

�A� = sup

�ψ�=1
�Aψ� = sup

�ϕ�=�ψ�=1
|�ψ, Aϕ�| (2.14)

is finite. The second equality follows since equality in |�ψ, Aϕ�| ≤ �ψ� �Aϕ�
is attained when Aϕ = zψ for some z ∈ C. If A is bounded, it is no

restriction to assume D(A) = H and we will always do so. The Banach space

of all bounded linear operators is denoted by L(H). Products of (unbounded)

operators are defined naturally; that is, ABψ = A(Bψ) for ψ ∈ D(AB) =

{ψ ∈ D(B)|Bψ ∈ D(A)}.
The expression �ψ, Aψ� encountered in the previous section is called the

quadratic form,

qA(ψ) = �ψ, Aψ�, ψ ∈ D(A), (2.15)

associated to A. An operator can be reconstructed from its quadratic form

via the polarization identity

�ϕ, Aψ� =
1

4
(qA(ϕ + ψ)− qA(ϕ− ψ) + iqA(ϕ− iψ)− iqA(ϕ + iψ)) . (2.16)

A densely defined linear operator A is called symmetric (or hermitian) if

�ϕ, Aψ� = �Aϕ, ψ�, ψ,ϕ ∈ D(A). (2.17)

The justification for this definition is provided by the following

Lemma 2.1. A densely defined operator A is symmetric if and only if the
corresponding quadratic form is real-valued.
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Proof. Clearly (2.17) implies that Im(qA(ψ)) = 0. Conversely, taking the
imaginary part of the identity

qA(ψ + iϕ) = qA(ψ) + qA(ϕ) + i(�ψ, Aϕ� − �ϕ, Aψ�)

shows Re�Aϕ, ψ� = Re�ϕ, Aψ�. Replacing ϕ by iϕ in this last equation
shows Im�Aϕ, ψ� = Im�ϕ, Aψ� and finishes the proof. �

In other words, a densely defined operator A is symmetric if and only if

�ψ, Aψ� = �Aψ, ψ�, ψ ∈ D(A). (2.18)

This already narrows the class of admissible operators to the class of
symmetric operators by Axiom 3. Next, let us tackle the issue of the correct
domain.

By Axiom 2, A should be defined maximally; that is, if Ã is another
symmetric operator such that A ⊆ Ã, then A = Ã. Here we write A ⊆ Ã
if D(A) ⊆ D(Ã) and Aψ = Ãψ for all ψ ∈ D(A). The operator Ã is called
an extension of A in this case. In addition, we write A = Ã if both Ã ⊆ A
and A ⊆ Ã hold.

The adjoint operator A∗ of a densely defined linear operator A is
defined by

D(A∗) = {ψ ∈ H|∃ψ̃ ∈ H : �ψ, Aϕ� = �ψ̃,ϕ�,∀ϕ ∈ D(A)},
A∗ψ = ψ̃.

(2.19)

The requirement that D(A) be dense implies that A∗ is well-defined. How-
ever, note that D(A∗) might not be dense in general. In fact, it might
contain no vectors other than 0.

Clearly we have (αA)∗ = α∗A∗ for α ∈ C and (A + B)∗ ⊇ A∗ + B∗

provided D(A + B) = D(A) ∩ D(B) is dense. However, equality will not
hold in general unless one operator is bounded (Problem 2.2).

For later use, note that (Problem 2.4)

Ker(A∗) = Ran(A)⊥. (2.20)

For symmetric operators we clearly have A ⊆ A∗. If, in addition, A = A∗

holds, then A is called self-adjoint. Our goal is to show that observables
correspond to self-adjoint operators. This is for example true in the case of
the position operator x, which is a special case of a multiplication operator.
Example. (Multiplication operator) Consider the multiplication operator

(Af)(x) = A(x)f(x), D(A) = {f ∈ L2(Rn, dµ) |Af ∈ L2(Rn, dµ)}
(2.21)

given by multiplication with the measurable function A : Rn → C. First
of all note that D(A) is dense. In fact, consider Ωn = {x ∈ Rn | |A(x)| ≤
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n} � Rn. Then, for every f ∈ L2(Rn, dµ) the function fn = χΩnf ∈ D(A)
converges to f as n →∞ by dominated convergence.

Next, let us compute the adjoint of A. Performing a formal computation,
we have for h, f ∈ D(A) that

�h, Af� =
�

h(x)∗A(x)f(x)dµ(x) =
�

(A(x)∗h(x))∗f(x)dµ(x) = �Ãh, f�,
(2.22)

where Ã is multiplication by A(x)∗,

(Ãf)(x) = A(x)∗f(x), D(Ã) = {f ∈ L2(Rn, dµ) | Ãf ∈ L2(Rn, dµ)}.
(2.23)

Note D(Ã) = D(A). At first sight this seems to show that the adjoint of
A is Ã. But for our calculation we had to assume h ∈ D(A) and there
might be some functions in D(A∗) which do not satisfy this requirement! In
particular, our calculation only shows Ã ⊆ A∗. To show that equality holds,
we need to work a little harder:

If h ∈ D(A∗), there is some g ∈ L2(Rn, dµ) such that
�

h(x)∗A(x)f(x)dµ(x) =
�

g(x)∗f(x)dµ(x), f ∈ D(A), (2.24)

and thus�
(h(x)A(x)∗ − g(x))∗f(x)dµ(x) = 0, f ∈ D(A). (2.25)

In particular,
�

χΩn(x)(h(x)A(x)∗ − g(x))∗f(x)dµ(x) = 0, f ∈ L2(Rn, dµ), (2.26)

which shows that χΩn(h(x)A(x)∗ − g(x))∗ ∈ L2(Rn, dµ) vanishes. Since n
is arbitrary, we even have h(x)A(x)∗ = g(x) ∈ L2(Rn, dµ) and thus A∗ is
multiplication by A(x)∗ and D(A∗) = D(A).

In particular, A is self-adjoint if A is real-valued. In the general case we
have at least �Af� = �A∗f� for all f ∈ D(A) = D(A∗). Such operators are
called normal. �

Now note that
A ⊆ B ⇒ B∗ ⊆ A∗; (2.27)

that is, increasing the domain of A implies decreasing the domain of A∗.
Thus there is no point in trying to extend the domain of a self-adjoint
operator further. In fact, if A is self-adjoint and B is a symmetric extension,
we infer A ⊆ B ⊆ B∗ ⊆ A∗ = A implying A = B.

Corollary 2.2. Self-adjoint operators are maximal; that is, they do not have
any symmetric extensions.
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Furthermore, if A
∗

is densely defined (which is the case if A is symmet-

ric), we can consider A
∗∗

. From the definition (2.19) it is clear that A ⊆ A
∗∗

and thus A
∗∗

is an extension of A. This extension is closely related to ex-

tending a linear subspace M via M
⊥⊥

= M (as we will see a bit later) and

thus is called the closure A = A
∗∗

of A.

If A is symmetric, we have A ⊆ A
∗

and hence A = A
∗∗ ⊆ A

∗
; that is,

A lies between A and A
∗
. Moreover, �ψ, A

∗ϕ� = �Aψ,ϕ� for all ψ ∈ D(A),

ϕ ∈ D(A
∗
) implies that A is symmetric since A

∗ϕ = Aϕ for ϕ ∈ D(A).

Example. (Differential operator) Take H = L
2
(0, 2π).

(i) Consider the operator

A0f = −i
d

dx
f, D(A0) = {f ∈ C

1
[0, 2π] | f(0) = f(2π) = 0}. (2.28)

That A0 is symmetric can be shown by a simple integration by parts (do

this). Note that the boundary conditions f(0) = f(2π) = 0 are chosen

such that the boundary terms occurring from integration by parts vanish.

However, this will also follow once we have computed A
∗
0. If g ∈ D(A

∗
0), we

must have � 2π

0
g(x)

∗
(−if

�
(x))dx =

� 2π

0
g̃(x)

∗
f(x)dx (2.29)

for some g̃ ∈ L
2
(0, 2π). Integration by parts (cf. (2.116)) shows

� 2π

0
f
�
(x)

�
g(x)− i

� x

0
g̃(t)dt

�∗
dx = 0. (2.30)

In fact, this formula holds for g̃ ∈ C[0, 2π]. Since the set of continuous

functions is dense, the general case g̃ ∈ L
2
(0, 2π) follows by approximating

g̃ with continuous functions and taking limits on both sides using dominated

convergence.

Hence g(x) − i
� x
0 g̃(t)dt ∈ {f �|f ∈ D(A0)}⊥. But {f �|f ∈ D(A0)} =

{h ∈ C[0, 2π]|
� 2π
0 h(t)dt = 0} (show this) implying g(x) = g(0) + i

� x
0 g̃(t)dt

since {f �|f ∈ D(A0)} = {h ∈ H|�1, h� = 0} = {1}⊥ and {1}⊥⊥
= span{1}.

Thus g ∈ AC[0, 2π], where

AC[a, b] = {f ∈ C[a, b]|f(x) = f(a) +

� x

a
g(t)dt, g ∈ L

1
(a, b)} (2.31)

denotes the set of all absolutely continuous functions (see Section 2.7). In

summary, g ∈ D(A
∗
0) implies g ∈ AC[0, 2π] and A

∗
0g = g̃ = −ig

�
. Conversely,

for every g ∈ H
1
(0, 2π) = {f ∈ AC[0, 2π]|f � ∈ L

2
(0, 2π)}, (2.29) holds with

g̃ = −ig
�
and we conclude

A
∗
0f = −i

d

dx
f, D(A

∗
0) = H

1
(0, 2π). (2.32)
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In particular, A0 is symmetric but not self-adjoint. Since A0 = A
∗∗
0 ⊆ A

∗
0,

we can use integration by parts to compute

0 = �g, A0f� − �A∗
0g, f� = i(f(0)g(0)∗ − f(2π)g(2π)∗) (2.33)

and since the boundary values of g ∈ D(A∗
0) can be prescribed arbitrarily,

we must have f(0) = f(2π) = 0. Thus

A0f = −i
d

dx
f, D(A0) = {f ∈ D(A∗

0) | f(0) = f(2π) = 0}. (2.34)

(ii) Now let us take

Af = −i
d

dx
f, D(A) = {f ∈ C

1[0, 2π] | f(0) = f(2π)}, (2.35)

which is clearly an extension of A0. Thus A
∗ ⊆ A

∗
0 and we compute

0 = �g,Af� − �A∗
g, f� = if(0)(g(0)∗ − g(2π)∗). (2.36)

Since this must hold for all f ∈ D(A), we conclude g(0) = g(2π) and

A
∗
f = −i

d

dx
f, D(A∗) = {f ∈ H

1(0, 2π) | f(0) = f(2π)}. (2.37)

Similarly, as before, A = A
∗ and thus A is self-adjoint. �

One might suspect that there is no big difference between the two sym-
metric operators A0 and A from the previous example, since they coincide
on a dense set of vectors. However, the converse is true: For example, the
first operator A0 has no eigenvectors at all (i.e., solutions of the equation
A0ψ = zψ, z ∈ C) whereas the second one has an orthonormal basis of
eigenvectors!
Example. Compute the eigenvectors of A0 and A from the previous exam-
ple.

(i) By definition, an eigenvector is a (nonzero) solution of A0u = zu,
z ∈ C, that is, a solution of the ordinary differential equation

− iu�(x) = zu(x) (2.38)

satisfying the boundary conditions u(0) = u(2π) = 0 (since we must have
u ∈ D(A0)). The general solution of the differential equation is u(x) =
u(0)eizx and the boundary conditions imply u(x) = 0. Hence there are no
eigenvectors.

(ii) Now we look for solutions of Au = zu, that is, the same differential
equation as before, but now subject to the boundary condition u(0) = u(2π).
Again the general solution is u(x) = u(0)eizx and the boundary condition
requires u(0) = u(0)e2πiz. Thus there are two possibilities. Either u(0) = 0
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(which is of no use for us) or z ∈ Z. In particular, we see that all eigenvectors
are given by

un(x) =
1√
2π

einx, n ∈ Z, (2.39)

which are well known to form an orthonormal basis. �

We will see a bit later that this is a consequence of self-adjointness of
A. Hence it will be important to know whether a given operator is self-
adjoint or not. Our example shows that symmetry is easy to check (in case
of differential operators it usually boils down to integration by parts), but
computing the adjoint of an operator is a nontrivial job even in simple situ-
ations. However, we will learn soon that self-adjointness is a much stronger
property than symmetry, justifying the additional effort needed to prove it.

On the other hand, if a given symmetric operator A turns out not to
be self-adjoint, this raises the question of self-adjoint extensions. Two cases
need to be distinguished. If A is self-adjoint, then there is only one self-
adjoint extension (if B is another one, we have A ⊆ B and hence A = B
by Corollary 2.2). In this case A is called essentially self-adjoint and
D(A) is called a core for A. Otherwise there might be more than one self-
adjoint extension or none at all. This situation is more delicate and will be
investigated in Section 2.6.

Since we have seen that computing A∗ is not always easy, a criterion for
self-adjointness not involving A∗ will be useful.

Lemma 2.3. Let A be symmetric such that Ran(A+ z) = Ran(A+ z∗) = H

for one z ∈ C. Then A is self-adjoint.

Proof. Let ψ ∈ D(A∗) and A∗ψ = ψ̃. Since Ran(A + z∗) = H, there is a
ϑ ∈ D(A) such that (A + z∗)ϑ = ψ̃ + z∗ψ. Now we compute

�ψ, (A + z)ϕ� = �ψ̃ + z∗ψ,ϕ� = �(A + z∗)ϑ, ϕ� = �ϑ, (A + z)ϕ�, ϕ ∈ D(A),

and hence ψ = ϑ ∈ D(A) since Ran(A + z) = H. �

To proceed further, we will need more information on the closure of
an operator. We will use a different approach which avoids the use of the
adjoint operator. We will establish equivalence with our original definition
in Lemma 2.4.

The simplest way of extending an operator A is to take the closure of its
graph Γ(A) = {(ψ, Aψ)|ψ ∈ D(A)} ⊂ H2. That is, if (ψn, Aψn) → (ψ, ψ̃),
we might try to define Aψ = ψ̃. For Aψ to be well-defined, we need that
(ψn, Aψn) → (0, ψ̃) implies ψ̃ = 0. In this case A is called closable and
the unique operator A which satisfies Γ(A) = Γ(A) is called the closure of
A. Clearly, A is called closed if A = A, which is the case if and only if the
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graph of A is closed. Equivalently, A is closed if and only if Γ(A) equipped

with the graph norm �(ψ, Aψ)�2
Γ(A) = �ψ�2

+ �Aψ�2
is a Hilbert space

(i.e., closed). By construction, A is the smallest closed extension of A.

Example. Suppose A is bounded. Then the closure was already computed

in Theorem 0.26. In particular, D(A) = D(A) and a bounded operator is

closed if and only if its domain is closed. �

Example. Consider again the differential operator A0 from (2.28) and let

us compute the closure without the use of the adjoint operator.

Let f ∈ D(A0) and let fn ∈ D(A0) be a sequence such that fn → f ,

A0fn → −ig. Then f �n → g and hence f(x) =
� x
0 g(t)dt. Thus f ∈ AC[0, 2π]

and f(0) = 0. Moreover f(2π) = limn→0
� 2π
0 f �n(t)dt = 0. Conversely, any

such f can be approximated by functions in D(A0) (show this). �

Example. Consider again the multiplication operator by A(x) in L2
(Rn, dµ)

but now defined on functions with compact support, that is,

D(A0) = {f ∈ D(A) | supp(f) is compact}. (2.40)

Then its closure is given by A0 = A. In particular, A0 is essentially self-

adjoint and D(A0) is a core for A.

To prove A0 = A, let some f ∈ D(A) be given and consider fn =

χ{x| |x|≤n}f . Then fn ∈ D(A0) and fn(x) → f(x) as well as A(x)fn(x) →
A(x)f(x) in L2

(Rn, dµ) by dominated convergence. Thus D(A0) ⊆ D(A)

and since A is closed, we even get equality. �

Example. Consider the multiplication A(x) = x in L2
(R) defined on

D(A0) = {f ∈ D(A) |
�

R
f(x)dx = 0}. (2.41)

Then A0 is closed. Hence D(A0) is not a core for A.

To show that A0 is closed, suppose there is a sequence fn(x) → f(x)

such that xfn(x) → g(x). Since A is closed, we necessarily have f ∈ D(A)

and g(x) = xf(x). But then

0 = lim
n→∞

�

R
fn(x)dx = lim

n→∞

�

R

1

1 + |x|(fn(x) + sign(x)xfn(x))dx

=

�

R

1

1 + |x|(f(x) + sign(x)g(x))dx =

�

R
f(x)dx (2.42)

which shows f ∈ D(A0). �

Next, let us collect a few important results.
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Lemma 2.4. Suppose A is a densely defined operator.

(i) A∗ is closed.
(ii) A is closable if and only if D(A∗

) is dense and A = A∗∗, respec-
tively, (A)

∗
= A∗, in this case.

(iii) If A is injective and Ran(A) is dense, then (A∗
)
−1

= (A−1
)
∗. If

A is closable and A is injective, then A
−1

= A−1.

Proof. Let us consider the following two unitary operators from H2
to itself

U(ϕ, ψ) = (ψ,−ϕ), V (ϕ, ψ) = (ψ,ϕ).

(i) From

Γ(A∗
) = {(ϕ, ϕ̃) ∈ H

2|�ϕ, Aψ� = �ϕ̃, ψ�, ∀ψ ∈ D(A)}

= {(ϕ, ϕ̃) ∈ H
2|�(ϕ, ϕ̃), (ψ̃,−ψ)�H2 = 0, ∀(ψ, ψ̃) ∈ Γ(A)}

= (UΓ(A))
⊥

(2.43)

we conclude that A∗
is closed.

(ii) Similarly, using UΓ⊥ = (UΓ)
⊥

(Problem 1.4), by

Γ(A) = Γ(A)
⊥⊥

= (UΓ(A∗
))
⊥

= {(ψ, ψ̃)| �ψ, A∗ϕ� − �ψ̃,ϕ� = 0,∀ϕ ∈ D(A∗
)}

we see that (0, ψ̃) ∈ Γ(A) if and only if ψ̃ ∈ D(A∗
)
⊥
. Hence A is closable if

and only if D(A∗
) is dense. In this case, equation (2.43) also shows A

∗
= A∗

.

Moreover, replacing A by A∗
in (2.43) and comparing with the last formula

shows A∗∗
= A.

(iii) Next note that (provided A is injective)

Γ(A−1
) = V Γ(A).

Hence if Ran(A) is dense, then Ker(A∗
) = Ran(A)

⊥
= {0} and

Γ((A∗
)
−1

) = V Γ(A∗
) = V UΓ(A)

⊥
= UV Γ(A)

⊥
= U(V Γ(A))

⊥

shows that (A∗
)
−1

= (A−1
)
∗
. Similarly, if A is closable and A is injective,

then A
−1

= A−1 by

Γ(A
−1

) = V Γ(A) = V Γ(A) = Γ(A−1).

�
Corollary 2.5. If A is self-adjoint and injective, then A−1 is also self-
adjoint.

Proof. Equation (2.20) in the case A = A∗
implies Ran(A)

⊥
= Ker(A) =

{0} and hence (iii) is applicable. �
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If A is densely defined and bounded, we clearly have D(A∗
) = H and by

Corollary 1.9, A∗ ∈ L(H). In particular, since A = A∗∗
, we obtain

Theorem 2.6. We have A ∈ L(H) if and only if A∗ ∈ L(H).

Now we can also generalize Lemma 2.3 to the case of essential self-adjoint

operators.

Lemma 2.7. A symmetric operator A is essentially self-adjoint if and only

if one of the following conditions holds for one z ∈ C\R:

• Ran(A + z) = Ran(A + z∗) = H,

• Ker(A∗
+ z) = Ker(A∗

+ z∗) = {0}.

If A is nonnegative, that is, �ψ, Aψ� ≥ 0 for all ψ ∈ D(A), we can also

admit z ∈ (−∞, 0).

Proof. First of all note that by (2.20) the two conditions are equivalent.

By taking the closure of A, it is no restriction to assume that A is closed.

Let z = x + iy. From

�(A + z)ψ�2
= �(A + x)ψ + iyψ�2

= �(A + x)ψ�2
+ y2�ψ�2 ≥ y2�ψ�2, (2.44)

we infer that Ker(A+z) = {0} and hence (A+z)
−1

exists. Moreover, setting

ψ = (A + z)
−1ϕ (y �= 0) shows �(A + z)

−1� ≤ |y|−1
. Hence (A + z)

−1
is

bounded and closed. Since it is densely defined by assumption, its domain

Ran(A+ z) must be equal to H. Replacing z by z∗, we see Ran(A+ z∗) = H

and applying Lemma 2.3 shows that A is self-adjoint. Conversely, if A = A∗
,

the above calculation shows Ker(A∗
+ z) = {0}, which finishes the case

z ∈ C\R.

The argument for the nonnegative case with z < 0 is similar using

ε�ψ�2 ≤ �ψ, (A + ε)ψ� ≤ �ψ��(A + ε)ψ� which shows (A + ε)−1 ≤ ε−1
,

ε > 0. �

In addition, we can also prove the closed graph theorem which shows

that an unbounded closed operator cannot be defined on the entire Hilbert

space.

Theorem 2.8 (Closed graph). Let H1 and H2 be two Hilbert spaces and

A : H1 → H2 an operator defined on all of H1. Then A is bounded if and

only if Γ(A) is closed.

Proof. If A is bounded, then it is easy to see that Γ(A) is closed. So let us

assume that Γ(A) is closed. Then A∗
is well-defined and for all unit vectors
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ϕ ∈ D(A∗) we have that the linear functional �ϕ(ψ) = �A∗ϕ, ψ� is pointwise

bounded, that is,

��ϕ(ψ)� = |�ϕ, Aψ�| ≤ �Aψ�.
Hence by the uniform boundedness principle there is a constant C such that

��ϕ� = �A∗ϕ� ≤ C. That is, A∗ is bounded and so is A = A∗∗. �

Note that since symmetric operators are closable, they are automatically

closed if they are defined on the entire Hilbert space.

Theorem 2.9 (Hellinger-Toeplitz). A symmetric operator defined on the

entire Hilbert space is bounded.

Problem 2.1 (Jacobi operator). Let a and b be some real-valued sequences

in �∞(Z). Consider the operator

Jfn = anfn+1 + an−1fn−1 + bnfn, f ∈ �2
(Z).

Show that J is a bounded self-adjoint operator.

Problem 2.2. Show that (αA)
∗

= α∗A∗ and (A + B)
∗ ⊇ A∗ + B∗ (where

D(A∗ + B∗) = D(A∗) ∩ D(B∗)) with equality if one operator is bounded.

Give an example where equality does not hold.

Problem 2.3. Suppose AB is densely defined. Show that (AB)
∗ ⊇ B∗A∗.

Moreover, if B is bounded, then (BA)
∗

= A∗B∗.

Problem 2.4. Show (2.20).

Problem 2.5. An operator is called normal if �Aψ� = �A∗ψ� for all

ψ ∈ D(A) = D(A∗).

Show that if A is normal, so is A + z for any z ∈ C.

Problem 2.6. Show that normal operators are closed. (Hint: A∗ is closed.)

Problem 2.7. Show that a bounded operator A is normal if and only if

AA∗ = A∗A.

Problem 2.8. Show that the kernel of a closed operator is closed.

Problem 2.9. Show that if A is closed and B bounded, then AB is closed.

2.3. Quadratic forms and the Friedrichs extension

Finally we want to draw some further consequences of Axiom 2 and show

that observables correspond to self-adjoint operators. Since self-adjoint op-

erators are already maximal, the difficult part remaining is to show that an

observable has at least one self-adjoint extension. There is a good way of

doing this for nonnegative operators and hence we will consider this case

first.
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An operator is called nonnegative (resp. positive) if �ψ, Aψ� ≥ 0 (resp.

> 0 for ψ �= 0) for all ψ ∈ D(A). If A is positive, the map (ϕ, ψ) �→ �ϕ, Aψ�
is a scalar product. However, there might be sequences which are Cauchy

with respect to this scalar product but not with respect to our original one.

To avoid this, we introduce the scalar product

�ϕ, ψ�A = �ϕ, (A + 1)ψ�, A ≥ 0, (2.45)

defined on D(A), which satisfies �ψ� ≤ �ψ�A. Let HA be the completion of

D(A) with respect to the above scalar product. We claim that HA can be

regarded as a subspace of H; that is, D(A) ⊆ HA ⊆ H.

If (ψn) is a Cauchy sequence in D(A), then it is also Cauchy in H (since

�ψ� ≤ �ψ�A by assumption) and hence we can identify the limit in HA with

the limit of (ψn) regarded as a sequence in H. For this identification to be

unique, we need to show that if (ψn) ⊂ D(A) is a Cauchy sequence in HA

such that �ψn� → 0, then �ψn�A → 0. This follows from

�ψn�2
A = �ψn, ψn − ψm�A + �ψn, ψm�A
≤ �ψn�A�ψn − ψm�A + �ψn��(A + 1)ψm� (2.46)

since the right-hand side can be made arbitrarily small choosing m, n large.

Clearly the quadratic form qA can be extended to every ψ ∈ HA by

setting

qA(ψ) = �ψ,ψ�A − �ψ�2, ψ ∈ Q(A) = HA. (2.47)

The set Q(A) is also called the form domain of A.

Example. (Multiplication operator) Let A be multiplication by A(x) ≥ 0

in L2
(Rn, dµ). Then

Q(A) = D(A1/2
) = {f ∈ L2

(Rn, dµ) |A1/2f ∈ L2
(Rn, dµ)} (2.48)

and

qA(x) =

�

Rn
A(x)|f(x)|2dµ(x) (2.49)

(show this). �

Now we come to our extension result. Note that A + 1 is injective and

the best we can hope for is that for a nonnegative extension Ã, the operator

Ã + 1 is a bijection from D(Ã) onto H.

Lemma 2.10. Suppose A is a nonnegative operator. Then there is a non-
negative extension Ã such that Ran(Ã + 1) = H.

Proof. Let us define an operator Ã by

D(Ã) = {ψ ∈ HA|∃ψ̃ ∈ H : �ϕ, ψ�A = �ϕ, ψ̃�,∀ϕ ∈ HA},
Ãψ = ψ̃ − ψ.
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Since HA is dense, ψ̃ is well-defined. Moreover, it is straightforward to see

that Ã is a nonnegative extension of A.

It is also not hard to see that Ran(Ã + 1) = H. Indeed, for any ψ̃ ∈ H,

ϕ �→ �ψ̃,ϕ� is a bounded linear functional on HA. Hence there is an element

ψ ∈ HA such that �ψ̃,ϕ� = �ψ,ϕ�A for all ϕ ∈ HA. By the definition of Ã,

(Ã + 1)ψ = ψ̃ and hence Ã + 1 is onto. �

Example. Let us take H = L
2
(0, π) and consider the operator

Af = − d
2

dx2
f, D(A) = {f ∈ C

2
[0, π] | f(0) = f(π) = 0}, (2.50)

which corresponds to the one-dimensional model of a particle confined to a

box.

(i) First of all, using integration by parts twice, it is straightforward to

check that A is symmetric:

� π

0
g(x)

∗
(−f

��
)(x)dx =

� π

0
g
�
(x)

∗
f
�
(x)dx =

� π

0
(−g

��
)(x)

∗
f(x)dx. (2.51)

Note that the boundary conditions f(0) = f(π) = 0 are chosen such that

the boundary terms occurring from integration by parts vanish. Moreover,

the same calculation also shows that A is positive:

� π

0
f(x)

∗
(−f

��
)(x)dx =

� π

0
|f �(x)|2dx > 0, f �= 0. (2.52)

(ii) Next let us show HA = {f ∈ H
1
(0, π) | f(0) = f(π) = 0}. In fact,

since

�g, f�A =

� π

0

�
g
�
(x)

∗
f
�
(x) + g(x)

∗
f(x)

�
dx, (2.53)

we see that fn is Cauchy in HA if and only if both fn and f
�
n are Cauchy

in L
2
(0, π). Thus fn → f and f

�
n → g in L

2
(0, π) and fn(x) =

� x
0 f

�
n(t)dt

implies f(x) =
� x
0 g(t)dt. Thus f ∈ AC[0, π]. Moreover, f(0) = 0 is obvious

and from 0 = fn(π) =
� π
0 f

�
n(t)dt we have f(π) = limn→∞

� π
0 f

�
n(t)dt = 0.

So we have HA ⊆ {f ∈ H
1
(0, π) | f(0) = f(π) = 0}. To see the converse,

approximate f
�

by smooth functions gn. Using gn − 1
π

� π
0 gn(t)dt instead

of gn, it is no restriction to assume
� π
0 gn(t)dt = 0. Now define fn(x) =� x

0 gn(t)dt and note fn ∈ D(A) → f .

(iii) Finally, let us compute the extension Ã. We have f ∈ D(Ã) if for

all g ∈ HA there is an f̃ such that �g, f�A = �g, f̃�. That is,

� π

0
g
�
(x)

∗
f
�
(x)dx =

� π

0
g(x)

∗
(f̃(x)− f(x))dx. (2.54)
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Integration by parts on the right-hand side shows
� π

0
g
�(x)∗f �(x)dx = −

� π

0
g
�(x)∗

� x

0
(f̃(t)− f(t))dt dx (2.55)

or equivalently
� π

0
g
�(x)∗

�
f
�(x) +

� x

0
(f̃(t)− f(t))dt

�
dx = 0. (2.56)

Now observe {g� ∈ H|g ∈ HA} = {h ∈ H|
� π
0 h(t)dt = 0} = {1}⊥ and thus

f
�(x) +

� x
0 (f̃(t) − f(t))dt ∈ {1}⊥⊥ = span{1}. So we see f ∈ H

2(0, π) =
{f ∈ AC[0, π]|f � ∈ H

1(0, π)} and Ãf = −f
��. The converse is easy and

hence

Ãf = − d
2

dx2
f, D(Ã) = {f ∈ H

2[0, π] | f(0) = f(π) = 0}. (2.57)

�

Now let us apply this result to operators A corresponding to observables.
Since A will, in general, not satisfy the assumptions of our lemma, we will
consider A

2 instead, which has a symmetric extension Ã2 with Ran(Ã2+1) =
H. By our requirement for observables, A

2 is maximally defined and hence
is equal to this extension. In other words, Ran(A2 + 1) = H. Moreover, for
any ϕ ∈ H there is a ψ ∈ D(A2) such that

(A− i)(A + i)ψ = (A + i)(A− i)ψ = ϕ (2.58)

and since (A ± i)ψ ∈ D(A), we infer Ran(A ± i) = H. As an immediate
consequence we obtain

Corollary 2.11. Observables correspond to self-adjoint operators.

But there is another important consequence of the results which is worth-
while mentioning. A symmetric operator is called semi-bounded, respec-
tively, bounded from below, if

qA(ψ) = �ψ, Aψ� ≥ γ�ψ�2
, γ ∈ R. (2.59)

We will write A ≥ γ for short.

Theorem 2.12 (Friedrichs extension). Let A be a symmetric operator which

is bounded from below by γ. Then there is a self-adjoint extension Ã which

is also bounded from below by γ and which satisfies D(Ã) ⊆ HA−γ.

Moreover, Ã is the only self-adjoint extension with D(Ã) ⊆ HA−γ.

Proof. If we replace A by A− γ, then existence follows from Lemma 2.10.
To see uniqueness, let Â be another self-adjoint extension with D(Â) ⊆ HA.
Choose ϕ ∈ D(A) and ψ ∈ D(Â). Then

�ϕ, (Â + 1)ψ� = �(A + 1)ϕ, ψ� = �ψ, (A + 1)ϕ�∗ = �ψ,ϕ�∗A = �ϕ, ψ�A
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Proof. Using the polarization identity and the parallelogram law (Prob-
lem 0.14), we infer 2 Re�ϕ, Aψ� ≤ (�ψ�2+�ϕ�2) supψ |�ψ, Aψ�| and choosing
ϕ = �Aψ�−1

Aψ shows �A� ≤ �q|. The converse is easy. �

As a consequence we see that for symmetric operators we have

�A� = sup
�ψ�=1

|�ψ, Aψ�| (2.65)

generalizing (2.14) in this case.

Problem 2.10. Let A be invertible. Show A > 0 if and only if A
−1

> 0.

Problem 2.11. Let A = − d2

dx2 , D(A) = {f ∈ H
2(0, π) | f(0) = f(π) = 0}

and let ψ(x) = 1
2
√

π
x(π−x). Find the error in the following argument: Since

A is symmetric, we have 1 = �Aψ, Aψ� = �ψ, A
2ψ� = 0.

Problem 2.12. Suppose A is a closed operator. Show that A
∗
A (with

D(A∗A) = {ψ ∈ D(A)|Aψ ∈ D(A∗)}) is self-adjoint. Show Q(A∗A) =
D(A). (Hint: A

∗
A ≥ 0.)

Problem 2.13. Suppose A0 can be written as A0 = S
∗
S. Show that the

Friedrichs extension is given by A = S
∗
S.

Use this to compute the Friedrichs extension of A = − d2

dx2 , D(A) = {f ∈
C

2(0, π)|f(0) = f(π) = 0}. Compute also the self-adjoint operator SS
∗

and

its form domain.

Problem 2.14. Use the previous problem to compute the Friedrichs exten-

sion A of A0 = − d2

dx2 , D(A0) = C
∞
c (R). Show that Q(A) = H

1(R) and

D(A) = H
2(R). (Hint: Section 2.7.)

Problem 2.15. Let A be self-adjoint. Suppose D ⊆ D(A) is a core. Then

D is also a form core.

Problem 2.16. Show that (2.65) is wrong if A is not symmetric.

2.4. Resolvents and spectra

Let A be a (densely defined) closed operator. The resolvent set of A is
defined by

ρ(A) = {z ∈ C|(A− z)−1 ∈ L(H)}. (2.66)
More precisely, z ∈ ρ(A) if and only if (A − z) : D(A) → H is bijective
and its inverse is bounded. By the closed graph theorem (Theorem 2.8), it
suffices to check that A − z is bijective. The complement of the resolvent
set is called the spectrum

σ(A) = C\ρ(A) (2.67)
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of A. In particular, z ∈ σ(A) if A − z has a nontrivial kernel. A vector
ψ ∈ Ker(A− z) is called an eigenvector and z is called an eigenvalue in
this case.

The function
RA : ρ(A) → L(H)

z �→ (A− z)−1
(2.68)

is called the resolvent of A. Note the convenient formula

RA(z)∗ = ((A− z)−1)∗ = ((A− z)∗)−1 = (A∗ − z∗)−1 = RA∗(z∗). (2.69)

In particular,
ρ(A∗) = ρ(A)∗. (2.70)

Example. (Multiplication operator) Consider again the multiplication op-
erator

(Af)(x) = A(x)f(x), D(A) = {f ∈ L2(Rn, dµ) |Af ∈ L2(Rn, dµ)},
(2.71)

given by multiplication with the measurable function A : Rn → C. Clearly
(A− z)−1 is given by the multiplication operator

(A− z)−1f(x) =
1

A(x)− z
f(x),

D((A− z)−1) = {f ∈ L2(Rn, dµ) | 1
A− z

f ∈ L2(Rn, dµ)} (2.72)

whenever this operator is bounded. But �(A − z)−1� = � 1
A−z�∞ ≤ 1

ε is
equivalent to µ({x| |A(x)− z| < ε}) = 0 and hence

ρ(A) = {z ∈ C|∃ε > 0 : µ({x| |A(x)− z| < ε}) = 0}. (2.73)

The spectrum

σ(A) = {z ∈ C|∀ε > 0 : µ({x| |A(x)− z| < ε}) > 0} (2.74)

is also known as the essential range of A(x). Moreover, z is an eigenvalue
of A if µ(A−1({z})) > 0 and χA−1({z}) is a corresponding eigenfunction in
this case. �

Example. (Differential operator) Consider again the differential operator

Af = −i
d

dx
f, D(A) = {f ∈ AC[0, 2π] | f � ∈ L2, f(0) = f(2π)} (2.75)

in L2(0, 2π). We already know that the eigenvalues of A are the integers
and that the corresponding normalized eigenfunctions

un(x) =
1√
2π

einx (2.76)

form an orthonormal basis.
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To compute the resolvent, we must find the solution of the correspond-

ing inhomogeneous equation −if �(x) − z f(x) = g(x). By the variation of

constants formula the solution is given by (this can also be easily verified

directly)

f(x) = f(0)e
izx

+ i

� x

0
e
iz(x−t)g(t)dt. (2.77)

Since f must lie in the domain of A, we must have f(0) = f(2π) which gives

f(0) =
i

e−2πiz − 1

� 2π

0
e
−iztg(t)dt, z ∈ C\Z. (2.78)

(Since z ∈ Z are the eigenvalues, the inverse cannot exist in this case.) Hence

(A− z)
−1g(x) =

� 2π

0
G(z, x, t)g(t)dt, (2.79)

where

G(z, x, t) = e
iz(x−t)

�
−i

1−e−2πiz , t > x,
i

1−e2πiz , t < x,
z ∈ C\Z. (2.80)

In particular σ(A) = Z. �

If z, z� ∈ ρ(A), we have the first resolvent formula

RA(z)−RA(z�) = (z − z�)RA(z)RA(z�) = (z − z�)RA(z�)RA(z). (2.81)

In fact,

(A− z)
−1 − (z − z�)(A− z)

−1
(A− z�)−1

= (A− z)
−1

(1− (z −A + A− z�)(A− z�)−1
) = (A− z�)−1, (2.82)

which proves the first equality. The second follows after interchanging z and

z�. Now fix z� = z0 and use (2.81) recursively to obtain

RA(z) =

n�

j=0

(z − z0)
jRA(z0)

j+1
+ (z − z0)

n+1RA(z0)
n+1RA(z). (2.83)

The sequence of bounded operators

Rn =

n�

j=0

(z − z0)
jRA(z0)

j+1
(2.84)

converges to a bounded operator if |z − z0| < �RA(z0)�−1
and clearly we

expect z ∈ ρ(A) and Rn → RA(z) in this case. Let R∞ = limn→∞Rn and

set ϕn = Rnψ, ϕ = R∞ψ for some ψ ∈ H. Then a quick calculation shows

ARnψ = (A− z0)Rnψ + z0ϕn = ψ + (z − z0)ϕn−1 + z0ϕn. (2.85)

Hence (ϕn, Aϕn) → (ϕ, ψ + zϕ) shows ϕ ∈ D(A) (since A is closed) and

(A− z)R∞ψ = ψ. Similarly, for ψ ∈ D(A),

RnAψ = ψ + (z − z0)ϕn−1 + z0ϕn (2.86)
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and hence R∞(A − z)ψ = ψ after taking the limit. Thus R∞ = RA(z) as
anticipated.

If A is bounded, a similar argument verifies the Neumann series for
the resolvent

RA(z) = −
n−1�

j=0

Aj

zj+1
+

1
zn

AnRA(z)

= −
∞�

j=0

Aj

zj+1
, |z| > �A�. (2.87)

In summary we have proved the following:

Theorem 2.15. The resolvent set ρ(A) is open and RA : ρ(A) → L(H) is
holomorphic; that is, it has an absolutely convergent power series expansion
around every point z0 ∈ ρ(A). In addition,

�RA(z)� ≥ dist(z, σ(A))−1 (2.88)

and if A is bounded, we have {z ∈ C| |z| > �A�} ⊆ ρ(A).

As a consequence we obtain the useful

Lemma 2.16. We have z ∈ σ(A) if there is a sequence ψn ∈ D(A) such
that �ψn� = 1 and �(A− z)ψn� → 0. If z is a boundary point of ρ(A), then
the converse is also true. Such a sequence is called a Weyl sequence.

Proof. Let ψn be a Weyl sequence. Then z ∈ ρ(A) is impossible by 1 =
�ψn� = �RA(z)(A − z)ψn� ≤ �RA(z)��(A − z)ψn� → 0. Conversely, by
(2.88) there is a sequence zn → z and corresponding vectors ϕn ∈ H such
that �RA(z)ϕn��ϕn�−1 →∞. Let ψn = RA(zn)ϕn and rescale ϕn such that
�ψn� = 1. Then �ϕn� → 0 and hence

�(A− z)ψn� = �ϕn + (zn − z)ψn� ≤ �ϕn�+ |z − zn|→ 0

shows that ψn is a Weyl sequence. �

Let us also note the following spectral mapping result.

Lemma 2.17. Suppose A is injective. Then

σ(A−1)\{0} = (σ(A)\{0})−1. (2.89)

In addition, we have Aψ = zψ if and only if A−1ψ = z−1ψ.

Proof. Suppose z ∈ ρ(A)\{0}. Then we claim

RA−1(z−1) = −zARA(z) = −z − z2RA(z).
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In fact, the right-hand side is a bounded operator from H → Ran(A) =

D(A−1
) and

(A−1 − z−1
)(−zARA(z))ϕ = (−z + A)RA(z)ϕ = ϕ, ϕ ∈ H.

Conversely, if ψ ∈ D(A−1
) = Ran(A), we have ψ = Aϕ and hence

(−zARA(z))(A−1 − z−1
)ψ = ARA(z)((A− z)ϕ) = Aϕ = ψ.

Thus z−1 ∈ ρ(A−1
). The rest follows after interchanging the roles of A and

A−1
. �

Next, let us characterize the spectra of self-adjoint operators.

Theorem 2.18. Let A be symmetric. Then A is self-adjoint if and only if
σ(A) ⊆ R and (A−E) ≥ 0, E ∈ R, if and only if σ(A) ⊆ [E,∞). Moreover,
�RA(z)� ≤ | Im(z)|−1 and, if (A− E) ≥ 0, �RA(λ)� ≤ |λ− E|−1, λ < E.

Proof. If σ(A) ⊆ R, then Ran(A + z) = H, z ∈ C\R, and hence A is

self-adjoint by Lemma 2.7. Conversely, if A is self-adjoint (resp. A ≥ E),

then RA(z) exists for z ∈ C\R (resp. z ∈ C\[E,∞)) and satisfies the given

estimates as has been shown in the proof of Lemma 2.7. �

In particular, we obtain (show this!)

Theorem 2.19. Let A be self-adjoint. Then

inf σ(A) = inf
ψ∈D(A), �ψ�=1

�ψ, Aψ� (2.90)

and
supσ(A) = sup

ψ∈D(A), �ψ�=1
�ψ, Aψ�. (2.91)

For the eigenvalues and corresponding eigenfunctions we have

Lemma 2.20. Let A be symmetric. Then all eigenvalues are real and eigen-
vectors corresponding to different eigenvalues are orthogonal.

Proof. If Aψj = λjψj , j = 1, 2, we have

λ1�ψ1�2
= �ψ1, λ1ψ1� = �ψ1, Aψ1� = �ψ1, Aψ1� = �λ1ψ1, ψ1� = λ∗1�ψ1�2

and

(λ1 − λ2)�ψ1, ψ2� = �Aψ1, ψ2� − �Aψ1, ψ2� = 0,

finishing the proof. �

The result does not imply that two linearly independent eigenfunctions

to the same eigenvalue are orthogonal. However, it is no restriction to

assume that they are since we can use Gram–Schmidt to find an orthonormal

basis for Ker(A − λ). If H is finite dimensional, we can always find an

orthonormal basis of eigenvectors. In the infinite dimensional case this is
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no longer true in general. However, if there is an orthonormal basis of

eigenvectors, then A is essentially self-adjoint.

Theorem 2.21. Suppose A is a symmetric operator which has an orthonor-

mal basis of eigenfunctions {ϕj}. Then A is essentially self-adjoint. In

particular, it is essentially self-adjoint on span{ϕj}.

Proof. Consider the set of all finite linear combinations ψ =
�n

j=0 cjϕj

which is dense in H. Then φ =
�n

j=0
cj

λj±iϕj ∈ D(A) and (A ± i)φ = ψ

shows that Ran(A ± i) is dense. �

Similarly, we can characterize the spectra of unitary operators. Recall

that a bijection U is called unitary if �Uψ, Uψ� = �ψ, U
∗
Uψ� = �ψ,ψ�. Thus

U is unitary if and only if

U
∗

= U
−1

. (2.92)

Theorem 2.22. Let U be unitary. Then σ(U) ⊆ {z ∈ C| |z| = 1}. All

eigenvalues have modulus one and eigenvectors corresponding to different

eigenvalues are orthogonal.

Proof. Since �U� ≤ 1, we have σ(U) ⊆ {z ∈ C| |z| ≤ 1}. Moreover, U
−1

is also unitary and hence σ(U) ⊆ {z ∈ C| |z| ≥ 1} by Lemma 2.17. If

Uψj = zjψj , j = 1, 2, we have

(z1 − z2)�ψ1, ψ2� = �U∗ψ1, ψ2� − �ψ1, Uψ2� = 0

since Uψ = zψ implies U
∗ψ = U

−1ψ = z
−1ψ = z

∗ψ. �

Problem 2.17. Suppose A is closed and B bounded:

• Show that I + B has a bounded inverse if �B� < 1.

• Suppose A has a bounded inverse. Then so does A + B if �B� ≤
�A−1�−1

.

Problem 2.18. What is the spectrum of an orthogonal projection?

Problem 2.19. Compute the resolvent of

Af = f
�
, D(A) = {f ∈ H

1
[0, 1] | f(0) = 0}

and show that unbounded operators can have empty spectrum.

Problem 2.20. Compute the eigenvalues and eigenvectors of A = − d2

dx2 ,

D(A) = {f ∈ H
2
(0, π)|f(0) = f(π) = 0}. Compute the resolvent of A.

Problem 2.21. Find a Weyl sequence for the self-adjoint operator A =

− d2

dx2 , D(A) = H
2
(R) for z ∈ (0,∞). What is σ(A)? (Hint: Cut off the

solutions of −u
��
(x) = z u(x) outside a finite ball.)
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Corollary 2.4.9. λ belongs to the spectrum of a self-adjoint or unitary operator iff
there exists a Weyl sequence for this operator at λ.

Proof. If the operator is self-adjoint its spectrum is real (Theorem 2.2.17); if it is
unitary its spectrum belongs to the unit circumference in C (Proposition 2.2.21).
In both cases all points in the spectrum are also boundary points. Apply Theo-
rem 2.4.8. !
Example 2.4.10. Let P , dom P = H1(R), be the momentum operator on R dis-
cussed in Example 2.3.11. This operator has no eigenvalues; indeed, if λ ∈ R (recall
that its spectrum is real) satisfies

(Pψ)(x) = −i
dψ

dx
(x) = λψ(x), ψ ∈ H1(R),

then ψ(x) = ceiλx, which belongs to L2(R) iff c = 0; however, by “cutting off”
such ψ, it will be possible to determine the spectrum of P . It should be noted that
the “cutting off” that follows is a usual procedure.

Now fix λ ∈ R and let φ(x) = (2/π)1/4e−x2
; then 1 = ‖φ‖2 =

∫
R |φ(x)|2 dx.

For each n set
ξn(x) =

1√
n

φ
(x

n

)
eiλx,

which belongs to dom P and ‖ξn‖ = 1. Since

‖P ξn − λξn‖2 =
1
n2

∫

R
|φ′(t)|2 dt

which vanishes as n → ∞. Then (ξn) is a Weyl sequence for P at λ, and λ ∈ σ(P ).
Therefore, σ(P ) = R and it has no eigenvalues.
Example 2.4.11. Let q : R → R, q(x) = x be the position operator on R (see
Exercise 2.3.31; here an alternative solution to that exercise is discussed). If λ ∈ R,
for each n set

ξn(x) =
√

n

π1/4
e−n2(x−λ)2 ,

which belongs to dom Mq, ‖ξn‖2 = 1 and

‖qξn − λξn‖2 =
1√
π n2

∫

R
x2 e−x2

dx,

vanishes as n → ∞, then (ξn) is a Weyl sequence for q at λ. Therefore, σ(Mq) = R
and it is easy to check that it has no eigenvalues.
Example 2.4.12. If T is a bounded self-adjoint operator so that T 2k = 1, for some
k ∈ N, then σ(T ) ⊂ {z ∈ C : z2k = 1}. In fact, if k = 1 and (ξn) is a Weyl sequence
for T at z, then

(1 − z21)ξn = (T 2 − z21)ξn = (T + z1)(T − z1)ξn


