1.2 Metric and normed linear spaces

Throughout this work, we will be dealing with sets of functions or operators
or other objects and we will often need a way of measuring the distance
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between the objects in the sets. It is reasonable to define a notion of distance
that has the most important properties of ordinary distance in R>.

Definition A metric space is a set M and a real-valued function d(-, )
on M x M which satisfies:

(i) dxy)=20
(i) d(x,y)=0if and only if x = y
(i) d(x, y) = d(y, x)
(iv) d(x,z) < d(x,y) + d(y, z) [triangle inequality]

The function d is called a metric on M.

We often call the elements of a metric space points. Notice that a metric
space is a set M together with a metric function d; in general, a given set X
can be made into a metric space in different ways by employing different
metric functions. When it is not clear from the context which metric we are
talking about, we will denote the metric space by (M, d), so that the metric
is explicitly displayed.

Example 1 Let M = R" with the distance between two points x =
(Xyy .oy Xy and y = Yy, ..., Yay given by

d(x,y)=\/(xl ‘_yl)z + -+ (xn"yn)z

Example 2  Let M be the unit circle in R?, that is, the set of all pairs of
real numbers (a, §> with a® + 2 =1, and let

di(a, B, o', BD) = /(@ — o) + (B — B)?

Another possible metric is d,[p, p']} = arc length between the points p, p’
(see Figure 1.1).

FiGURE I.1 The metrics d, and d..




1.2 Metric and normed iinear spaces 5

Example 3 Let M = C[0, 1}, the continuous real-valued functions on
[0, 1] with either of the metrics

d\(f,9)= max |f(x)—g@®)|  &(f9) =] 1/ —g(9)] dx

xef0,1}

Now that we have a notion of distance, we can say what we mean by
convergence.

Definition A sequence of elements {x,};>, of a metric space (M, d) is
said to converge to an element x € M, if d(x, x,) - 0 as n —» co. We will often
denote this by x,—2, x or lim,_, x, = x. If x, does not converge to x, we
will write x,—%, x.

In Example 2, di(p, p') <d,(p, p’) <nd,(p, p’) which we will write

d, <d, <nd,. Thusp,—% ,pif and only if p, %2, p. But in Example 3, the

metrics induce distinct notions of convergence. Since d, < d,, f, —2., fimplies

f, %, £, but the converse is false. A counterexample is given by the functions

g, defined in Figure 1.2, which converge to the zero function in the metric d,

FiGURE 1.2 The graph of g.(x).
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but which do not converge in the metric d,. This may be seen by introducing
the important notion of Cauchy sequence.

Definition A sequence of elements {x,} of a metric space (M, d) is
called a Cauchy sequence if (Ve > 0)(AN) n, m > N implies d(x,, x,,) < ¢.

Proposition Any convergent sequence is Cauchy.

Proof Given x,— x and ¢, find N so n> N implies d(x,, x) < ¢/2. Then
n, m > N implies d(x,, x,,) < d(x,, x) + d(x, x,,) < }¢ + %¢. ]
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We now return to the functions in Figure 1.2. It is easy to see that if n # m,
d,(g.,9m) = 1. Thus g, is not a Cauchy sequence in {C[0, 1], d,)> and therefore
not a convergent sequence. Thus, the sequence {g,} converges in (C[0, 1], d;)
but not in {(C[0, 1], d,).

Although every convergent sequence is a Cauchy sequence, the following
example shows that the converse need not be true. Let @ be the rational
numbers with the usual metric (that is, d(x, y) = |x — y|) and let x* be any
irrational number (that is, x* € R\Q). Find a sequence of rationals x, with
x, — x* in R. Then x, is a Cauchy sequence of numbers in Q, but it cannot
converge in Q to some y e Q (for, if x, »y in Q, then x, —y in R, so we
would have y = x*).

Definition A metric space in which all Cauchy sequences converge is
called complete.

For example, R is complete, but Q is not. It can be shown (Sections 1.3 and
1.5) that {C[0, 1}, d,) is complete but {(C[0, 1}, 4, is not. The example of Q
and R suggests what we need to do to an incomplete space X to make it
complete. We need to enlarge X by adding ““all possible limits of Cauchy
sequences.” The original space X should be dense in the larger space X
where:

Definition A set B in a metric space M is called dense if everyme M is a
limit of elements in B.

Of course, if the incomplete space is not already contained in a larger
complete space (like @ is contained in R) it is not clear what ““all possible
limits”” means. That this ‘ completion” can be done is the content of a
theorem that we shall shortly state; but first some definitions:

Definition A function f from a metric space (X, d) to a metric space
(Y, p) is called continuous at x if f(x,) <¥22_, f(x) whenever x, %2, x.

We have already had an example of a sequence of elements in C[0, 1] with
£, 0 but f, -4, 0. Thus the identity function from (C[0, 1},d,) to
(C[0, 1],d,> is not continuous but the identity from {C[0,1],4,> to
{C[0, 1}, d,) is continuous.
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Definition A bijection & from (X, d) to (Y, p) which preserves the
metric, that is,
p(h(x), h(y)) = d(x, y)

is called an isometry. It is automatically continuous. (X, d) and (Y, p) are
said to be isometric if such an isometry exists.

Isometric spaces are essentially identical as metric spaces; a theorem con-
cerning only the metric structure of (X, d) will hold in all spaces isometric
to it.

We now state precisely in which sense an incomplete space can be fattened
out to be complete:

Theorem 1.3 If (M, d) is an incomplete metric space, it is possible to
find a complete metric space M so that M is isometric to a dense subset of M.

Sketch of proof Consider the Cauchy sequences {x,} of elements of M. Call
two sequences, {x,}, {ym}, equivalent if lim,_, . d(x,, y,) =0. Let M be the
family of equivalence classes of Cauchy sequences under this equivalence
relation. One can show that for any two Cauchy sequences lim,_, , d(x,, y,)
exists and depends only on the equivalence classes of {x,} and {y,}. This limit
defines a metric on M and M is complete. Finally, map M into M by taking x
into the constant sequence in which each x, equals x. M is dense in M and
the map is isometric. |

To complete our discussion of metric spaces, we want to introduce the
notions of open and closed sets. The reader should keep the example of open
and closed sets on the real line in mind.

Definition Let (X, d) be a metric space:

(@) The set {x|x e X, d(x, y) < r}is called the open ball, B(y; r), of radius
r about the point y.

(b) A set O < X is called open if (Vy e O)@3r > 0) B(y; r) < O.

(c) Aset Nc< X is called a neighborhood of y € N if B(y; r) = N for some
r>0.

(d) Let EcX. A point x is called a limit point of E, if (Vr > 0)
B(x;r) n (E\{x}) # &, that is, x is a limit point of E if E contains points
other than x arbitrarily near x.

(e) A set Fc X is called closed if F contains all its limit points.

(f) If G = X, x € G is called an interior point of G, if G is a neighborhood
of x.
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The reader can prove for himself the following collection of elementary
statements:

Theorem 1.4 Let (X, d) be a metric space:

(@) A set, O, is open if and only if X\O is closed.

(b) x,—2-s x if and only if for each neighborhood N of x, there exists an
M so that m > M implies x,, € N.

(c) The set of interior points of a set is open.

(d) The union of a set E with its limit points is a closed set (denoted by E
and called the closure of E).

(¢) A setis open if and only if it is a neighborhood of each of its points.

One of the main uses of open sets is to check for convergence using
Theorem 1.4.b and in particular to check for continuity via the following
criteria, the proof of which we leave as an exercise:

Theorem 1.5 A function f(-) from a metric space X to another space Y
is continuous if and only if for all open sets O < Y, f ~![0] is open.

Finally, we warn the reader that often in incomplete metric spaces, closed
sets may not appear to be closed at first glance. For example, [4, 1) is closed in
(0, 1) (with the usual metric).

We complete this section with a discussion of two of the central concepts of
functional analysis: normed linear spaces and bounded linear transformations.

Definition A normed linear space is a vector space, V, over R (or C)
and a function, ||‘|| from V to R which satisfies:

1 |vlfj=0forallvinV

(i) |lv]j=0if and onlyif v =0
(i) llew| = || llv]l for all v in ¥ and « in R (or C)
@iv) llv+wl < |lv]l+ ||w| for all v and win V

Definition A bonnded-linear transformation (or bounded operator) from
a normed linear space (V,, || ||;> to a normed linear space (V,, || |I,) is a
function, T, from ¥, to V, which satisfies:

(1) T(aw + pw)=aT() + BT(w) (Yv,we V)(Va, B € R or C)
(i) Forsome C =0, ||Tv|l, < Clv],
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The smallest such C is called the norm of 7, written ||T|| or || T]l, ,. Thus

IT]l=sup [[Tvll
ol =1

Since we will study these concepts in detail later, we will not give many
examples now but merely note that R"” with the norm

€15 - o5 Xadll = /|21 |2 4o 4 | X

and C[0, 1] with either the norm

Ifle= sup 17 o I/h=[ 17()] ds

x6[0,1]

are normed linear spaces. Observe also that any normed linear space (V, ||*[>
is a metric space when given the distance function d(v, w) = ||v — w||. There
is thus a notion of continuity of functions, and for linear functions this is
precisely captured by bounded linear transformations. The proof of this fact
is left to the reader.

Theorem 1.6 Let T be a linear transformation between two normed
linear spaces. The following are equivalent:

(a) T is continuous at one point.
(b) T is continuous at all points.
(c) T is bounded.

Definition We say {V, [||l> is complete if it is complete as a metric
space in the induced metric.

If (X, ||*|I> is a normed linear space, then X has a completion as a metric
space by Theorem 1.3. Using the fact that X is dense in X, it is easy to see that
X can be made into a normed linear space in exactly one natural way.
All these concepts are well illustrated by the following important theorem
and its proof:

Theorem 1.7 (the B.L.T. theorem) Suppose T is a bounded linear trans-
formation from a normed linear space { V4, ||'|l;> to acomplete normed linear
space {(V,, lI‘ll;>. Then T can be uniquely extended to a bounded linear
transformation (with the same bound), T, from the completion of V; to

Vo, 17112
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Proof Let V, be the completion of V,. For each x in ¥,, there is a sequence
of elements {x,} in ¥V, with x, — x as n — . Since x, converges, it is Cauchy,
so given ¢, we can find N so that n, m > N implies || x, — x,,|l; < ¢/lIT{l. Then
1T %, — Txnllz = IT(X, = %)z < TN %, — X/, <& which proves that
Tx, is a Cauchy sequence in V, . Since V, is complete, Tx, — y for some y. Set
Tx = y. We must first show that this definition is independent of the sequence
x, — x chosen. If x, — x and x, — x, then the sequence x,, X7, X5, X3, ... =+ X
so Tx,, Tx},...— yfor some y by the above argument. Thus lim Tx, = y =
lim Tx,. Moreover, we can show T so defined is bounded because

NTx|, = lim ||Tx,|i, (see Problem 8)

n—w

<Iim C|ix,l, (see Appendix to 1.2)

n— oo

= Cllx|l,

Thus T is bounded. The proofs of linearity and uniqueness are left to the
reader. |}



Example 4 (thebounded operators) In Section 1.3 we defined the concept
of a bounded linear transformation or bounded operator from one normed
linear space, X, to another Y; we will denote the set of all bounded linear
operators from X to Y by Z(X, Y). We can introduce a norm on £(X, Y) by
defining

HAx]ly
Al = su
“ “ xeX, xp#:o "x“x

This norm is often called the operator norm.
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Theorem I11.2 If Y is complete, £(X, Y) is a Banach space.

Proof Since any finite linear combination of bounded operators is again a
bounded operator, £(X, Y) is a vector space. It is easy to see that ||| is a
norm; for example, the triangle inequality is proven by the computation

(4 +B)xl| _ _|l4x] + |Bx|

[A + B]| = su <
w0 Ixl T aeo X
I Ax| | Bx|
< sup S
x#0 lIx|l x20 x|l
= |4 + || Bl
To show that Z(X, Y) is complete, we must prove that if {4,}°, is a

Cauchy sequence in the operator norm, then there is a bounded linear
operator A so that |4, — A}l = 0. Let {4,}°, be Cauchy in the operator
norm; we construct 4 as follows. For each xe X, {4,x}X., is a Cauchy
sequence in Y. Since Y is complete, 4,x converges to an element ye Y.
Define Ax = y. It is easy to check that A4 is a linear operator. From the
triangle inequality it follows that

AN = 1 4mll| < 14, — 4]

so {4,112, ts a Cauchy sequence of real numbers converging to some real
number C. Thus,

liAxly = lim |4, xlly < lim | 4,0 lixilx

n—w R+ ®

= Clixllx

so A is a bounded linear operator. We must still show that 4, — 4 in the
operator norm. Since ||(4 — A )x| = lim,,. ., (4, — A.)x|l, we have

(4 — A)x]

< lim A, — Al
||x“ n—®
which implies
A—A .
14— A, = sup WA AN 4, ~ 4
x#0 “x" m—o

which is arbitrarily small for n large enough. The triangle inequality shows
that the norm of A is actually equal to C. §



