
Chapter 3

The spectral theorem

The time evolution of a quantum mechanical system is governed by the
Schrödinger equation

i
d

dt
�(t) = H�(t). (3.1)

If H = Cn and H is hence a matrix, this system of ordinary di�erential
equations is solved by the matrix exponential

�(t) = exp(�itH)�(0). (3.2)

This matrix exponential can be defined by a convergent power series

exp(�itH) =
⇥�

n=0

(�it)n

n!
Hn. (3.3)

For this approach the boundedness of H is crucial, which might not be the
case for a quantum system. However, the best way to compute the matrix
exponential and to understand the underlying dynamics is to diagonalize H.
But how do we diagonalize a self-adjoint operator? The answer is known as
the spectral theorem.

3.1. The spectral theorem

In this section we want to address the problem of defining functions of a
self-adjoint operator A in a natural way, that is, such that

(f+g)(A) = f(A)+g(A), (fg)(A) = f(A)g(A), (f�)(A) = f(A)�. (3.4)

As long as f and g are polynomials, no problems arise. If we want to extend
this definition to a larger class of functions, we will need to perform some
limiting procedure. Hence we could consider convergent power series or
equip the space of polynomials on the spectrum with the sup norm. In both
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88 3. The spectral theorem

cases this only works if the operator A is bounded. To overcome this limita-
tion, we will use characteristic functions ⇤�(A) instead of powers Aj . Since
⇤�(�)2 = ⇤�(�), the corresponding operators should be orthogonal projec-
tions. Moreover, we should also have ⇤R(A) = I and ⇤�(A) =

�n
j=1 ⇤�j (A)

for any finite union � =
⇥n

j=1 �j of disjoint sets. The only remaining prob-
lem is of course the definition of ⇤�(A). However, we will defer this problem
and begin by developing a functional calculus for a family of characteristic
functions ⇤�(A).

Denote the Borel sigma algebra of R by B. A projection-valued mea-
sure is a map

P : B ⇤ L(H), � ⌃⇤ P (�), (3.5)

from the Borel sets to the set of orthogonal projections, that is, P (�)� =
P (�) and P (�)2 = P (�), such that the following two conditions hold:

(i) P (R) = I.
(ii) If � =

⇥
n �n with �n � �m = ⌥ for n ⇧= m, then

�
n P (�n)⌅ =

P (�)⌅ for every ⌅ ⌅ H (strong ⇥-additivity).

Note that we require strong convergence,
�

n P (�n)⌅ = P (�)⌅, rather
than norm convergence,

�
n P (�n) = P (�). In fact, norm convergence

does not even hold in the simplest case where H = L2(I) and P (�) = ⇤�

(multiplication operator), since for a multiplication operator the norm is just
the sup norm of the function. Furthermore, it even su⇥ces to require weak
convergence, since w-lim Pn = P for some orthogonal projections implies
s-lim Pn = P by  ⌅, Pn⌅⌦ =  ⌅, P 2

n⌅⌦ =  Pn⌅, Pn⌅⌦ = ↵Pn⌅↵2 together
with Lemma 1.12 (iv).
Example. Let H = Cn and let A ⌅ GL(n) be some symmetric matrix. Let
�1, . . . ,�m be its (distinct) eigenvalues and let Pj be the projections onto
the corresponding eigenspaces. Then

PA(�) =
⇤

{j|�j⇥�}

Pj (3.6)

is a projection-valued measure. ⇥

Example. Let H = L2(R) and let f be a real-valued measurable function.
Then

P (�) = ⇤f�1(�) (3.7)

is a projection-valued measure (Problem 3.3). ⇥

It is straightforward to verify that any projection-valued measure satis-
fies

P (⌥) = 0, P (R\�) = I � P (�), (3.8)
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and
P (�1  �2) + P (�1 ⌦ �2) = P (�1) + P (�2). (3.9)

Moreover, we also have

P (�1)P (�2) = P (�1 ⌦ �2). (3.10)

Indeed, first suppose �1⌦�2 = �. Then, taking the square of (3.9), we infer

P (�1)P (�2) + P (�2)P (�1) = 0. (3.11)

Multiplying this equation from the right by P (�2) shows that P (�1)P (�2) =
�P (�2)P (�1)P (�2) is self-adjoint and thus P (�1)P (�2) = P (�2)P (�1) =
0. For the general case �1 ⌦ �2 ⌥= � we now have

P (�1)P (�2) = (P (�1 � �2) + P (�1 ⌦ �2))(P (�2 � �1) + P (�1 ⌦ �2))
= P (�1 ⌦ �2) (3.12)

as stated.
Moreover, a projection-valued measure is monotone, that is,

�1 ⇥ �2 ⌅ P (�1) ⇤ P (�2), (3.13)

in the sense that ↵⇥, P (�1)⇥� ⇤ ↵⇥, P (�2)⇥� or equivalently Ran(P (�1)) ⇥
Ran(P (�2)) (cf. Problem 1.7). As a useful consequence note that P (�2) = 0
implies P (�1) = 0 for every subset �1 ⇥ �2.

To every projection-valued measure there corresponds a resolution of
the identity

P (�) = P ((�⇧, �]) (3.14)
which has the properties (Problem 3.4):

(i) P (�) is an orthogonal projection.
(ii) P (�1) ⇤ P (�2) for �1 ⇤ �2.
(iii) s-lim�n⇤� P (�n) = P (�) (strong right continuity).
(iv) s-lim�⇥�⌅ P (�) = 0 and s-lim�⇥+⌅ P (�) = I.

As before, strong right continuity is equivalent to weak right continuity.
Picking ⇥ ⌃ H, we obtain a finite Borel measure µ⇥(�) = ↵⇥, P (�)⇥� =

�P (�)⇥�2 with µ⇥(R) = �⇥�2 < ⇧. The corresponding distribution func-
tion is given by µ⇥(�) = ↵⇥, P (�)⇥� and since for every distribution function
there is a unique Borel measure (Theorem A.2), for every resolution of the
identity there is a unique projection-valued measure.

Using the polarization identity (2.16), we also have the complex Borel
measures

µ⇤,⇥(�) = ↵⇤, P (�)⇥� =
1
4
(µ⇤+⇥(�)� µ⇤�⇥(�) + iµ⇤�i⇥(�)� iµ⇤+i⇥(�)).

(3.15)
Note also that, by Cauchy–Schwarz, |µ⇤,⇥(�)| ⇤ �⇤� �⇥�.
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Now let us turn to integration with respect to our projection-valued
measure. For any simple function f =

�n
j=1 �j⌅�j (where �j = f�1(�j))

we set

P (f) �
⌅

R
f(⇥)dP (⇥) =

n⇤

j=1

�jP (�j). (3.16)

In particular, P (⌅�) = P (�). Then ⇧⌃, P (f)⇧⌃ =
�

j �jµ⇤,⇥(�j) shows

⇧⌃, P (f)⇧⌃ =
⌅

R
f(⇥)dµ⇤,⇥(⇥) (3.17)

and, by linearity of the integral, the operator P is a linear map from the set
of simple functions into the set of bounded linear operators on H. Moreover,
⌥P (f)⇧⌥2 =

�
j |�j |2µ⇥(�j) (the sets �j are disjoint) shows

⌥P (f)⇧⌥2 =
⌅

R
|f(⇥)|2dµ⇥(⇥). (3.18)

Equipping the set of simple functions with the sup norm, we infer

⌥P (f)⇧⌥ ⇥ ⌥f⌥⇤⌥⇧⌥, (3.19)

which implies that P has norm one. Since the simple functions are dense
in the Banach space of bounded Borel functions B(R), there is a unique
extension of P to a bounded linear operator P : B(R) ⇤ L(H) (whose norm
is one) from the bounded Borel functions on R (with sup norm) to the set
of bounded linear operators on H. In particular, (3.17) and (3.18) remain
true.

There is some additional structure behind this extension. Recall that
the set L(H) of all bounded linear mappings on H forms a C⇥ algebra. A C⇥

algebra homomorphism ⇤ is a linear map between two C⇥ algebras which
respects both the multiplication and the adjoint; that is, ⇤(ab) = ⇤(a)⇤(b)
and ⇤(a⇥) = ⇤(a)⇥.

Theorem 3.1. Let P (�) be a projection-valued measure on H. Then the
operator

P : B(R) ⇤ L(H)
f ⌅⇤

⇥
R f(⇥)dP (⇥)

(3.20)

is a C⇥ algebra homomorphism with norm one such that

⇧P (g)⌃, P (f)⇧⌃ =
⌅

R
g⇥(⇥)f(⇥)dµ⇤,⇥(⇥). (3.21)

In addition, if fn(x) ⇤ f(x) pointwise and if the sequence sup�⌅R |fn(⇥)| is
bounded, then P (fn) s⇤ P (f) strongly.

Proof. The properties P (1) = I, P (f⇥) = P (f)⇥, and P (fg) = P (f)P (g)
are straightforward for simple functions f . For general f they follow from
continuity. Hence P is a C⇥ algebra homomorphism.
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Equation (3.21) is a consequence of ⌃P (g)⇧, P (f)⌅⌥ = ⌃⇧, P (g�f)⌅⌥.
The last claim follows from the dominated convergence theorem and

(3.18). ⇤

As a consequence of (3.21), observe

µP (g)⇤,P (f)⇥(�) = ⌃P (g)⇧, P (�)P (f)⌅⌥ =
⇥

�
g�(⇥)f(⇥)dµ⇤,⇥(⇥), (3.22)

which implies
dµP (g)⇤,P (f)⇥ = g�fdµ⇤,⇥. (3.23)

Example. Let H = Cn and A = A� ⇧ GL(n), respectively, PA, as in the
previous example. Then

PA(f) =
m�

j=1

f(⇥j)Pj . (3.24)

In particular, PA(f) = A for f(⇥) = ⇥. �

Next we want to define this operator for unbounded Borel functions.
Since we expect the resulting operator to be unbounded, we need a suitable
domain first. Motivated by (3.18), we set

Df = {⌅ ⇧ H|
⇥

R
|f(⇥)|2dµ⇥(⇥) < ⌅}. (3.25)

This is clearly a linear subspace of H since µ�⇥(�) = |�|2µ⇥(�) and since
µ⇤+⇥(�) = �P (�)(⇧+⌅)�2 ⇥ 2(�P (�)⇧�2+�P (�)⌅�2) = 2(µ⇤(�)+µ⇥(�))
(by the triangle inequality).

For every ⌅ ⇧ Df , the sequence of bounded Borel functions

fn = ⇤�nf, �n = {⇥| |f(⇥)| ⇥ n}, (3.26)

is a Cauchy sequence converging to f in the sense of L2(R, dµ⇥). Hence, by
virtue of (3.18), the vectors ⌅n = P (fn)⌅ form a Cauchy sequence in H and
we can define

P (f)⌅ = lim
n⇥⇤

P (fn)⌅, ⌅ ⇧ Df . (3.27)

By construction, P (f) is a linear operator such that (3.18) holds. Since
f ⇧ L1(R, dµ⇥) (µ⇥ is finite), (3.17) also remains true at least for ⇧ = ⌅.

In addition, Df is dense. Indeed, let �n be defined as in (3.26) and
abbreviate ⌅n = P (�n)⌅. Now observe that dµ⇥n = ⇤�ndµ⇥ and hence
⌅n ⇧ Df . Moreover, ⌅n ⇤ ⌅ by (3.18) since ⇤�n ⇤ 1 in L2(R, dµ⇥).

The operator P (f) has some additional properties. One calls an un-
bounded operator A normal if D(A) = D(A�) and �A⌅� = �A�⌅� for all
⌅ ⇧ D(A). Note that normal operators are closed since the graph norms on
D(A) = D(A�) are identical.
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Theorem 3.2. For any Borel function f , the operator

P (f) �
⇥

R
f(�)dP (�), D(P (f)) = Df , (3.28)

is normal and satisfies
P (f)� = P (f�). (3.29)

Proof. Let f be given and define fn, �n as above. Since (3.29) holds for
fn by our previous theorem, we get

⇧⌅, P (f)⇤⌃ = ⇧P (f�)⌅, ⇤⌃

for any ⌅, ⇤ ⌅ Df = Df� by continuity. Thus it remains to show that
D(P (f)�) ⇥ Df . If ⇤ ⌅ D(P (f)�), we have ⇧⇤, P (f)⌅⌃ = ⇧⇤̃,⌅⌃ for all
⌅ ⌅ Df by definition. By construction of P (f) we have P (fn) = P (f)P (�n)
and thus

⇧P (f�n)⇤,⌅⌃ = ⇧⇤, P (fn)⌅⌃ = ⇧⇤, P (f)P (�n)⌅⌃ = ⇧P (�n)⇤̃,⌅⌃

for any ⌅ ⌅ H shows P (f�n)⇤ = P (�n)⇤̃. This proves existence of the limit

lim
n⇥⇤

⇥

R
|fn|2dµ� = lim

n⇥⇤
⌥P (f�n)⇤⌥2 = lim

n⇥⇤
⌥P (�n)⇤̃⌥2 = ⌥⇤̃⌥2,

which by monotone convergence implies f ⌅ L2(R, dµ�); that is, ⇤ ⌅ Df .
That P (f) is normal follows from (3.18), which implies ⌥P (f)⇤⌥2 =

⌥P (f�)⇤⌥2 =
�

R |f(�)|2dµ�. ⇤

These considerations seem to indicate some kind of correspondence be-
tween the operators P (f) in H and f in L2(R, dµ�). Recall that U : H ⇤ H̃
is called unitary if it is a bijection which preserves norms ⌥U⇤⌥ = ⌥⇤⌥ (and
hence scalar products). The operators A in H and Ã in H̃ are said to be
unitarily equivalent if

UA = ÃU, UD(A) = D(Ã). (3.30)

Clearly, A is self-adjoint if and only if Ã is and ⇥(A) = ⇥(Ã).
Now let us return to our original problem and consider the subspace

H� = {P (g)⇤|g ⌅ L2(R, dµ�)} ⇥ H. (3.31)

Note that H� is closed since L2 is and ⇤n = P (gn)⇤ converges in H if and
only if gn converges in L2. It even turns out that we can restrict P (f) to
H� (see Section 2.5).

Lemma 3.3. The subspace H� reduces P (f); that is, P�P (f) ⇥ P (f)P�.
Here P� is the projection onto H�.
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Theorem 3.7 (Spectral theorem). To every self-adjoint operator A there
corresponds a unique projection-valued measure PA such that

A =
⇥

R
�dPA(�). (3.49)

Proof. Existence has already been established. Moreover, Lemma 3.5 shows
that PA((��z)�1) = RA(z), z ⌅ C\R. Since the measures µ⌅,⇥ are uniquely
determined by the resolvent and the projection-valued measure is uniquely
determined by the measures µ⌅,⇥, we are done. ⇤

The quadratic form of A is given by

qA(⇧) =
⇥

R
�dµ⇥(�) (3.50)

and can be defined for every ⇧ in the form domain

Q(A) = D(|A|1/2) = {⇧ ⌅ H|
⇥

R
|�|dµ⇥(�) < ⇤} (3.51)

(which is larger than the domain D(A) = {⇧ ⌅ H|
�

R �2dµ⇥(�) < ⇤}). This
extends our previous definition for nonnegative operators.

Note that if A and Ã are unitarily equivalent as in (3.30), then URA(z) =
RÃ(z)U and hence

dµ⇥ = dµ̃U⇥. (3.52)
In particular, we have UPA(f) = PÃ(f)U , UD(PA(f)) = D(PÃ(f)).

Finally, let us give a characterization of the spectrum of A in terms of
the associated projectors.

Theorem 3.8. The spectrum of A is given by

⇤(A) = {� ⌅ R|PA((�� ⌃, � + ⌃)) ⇧= 0 for all ⌃ > 0}. (3.53)

Proof. Let �n = (�0 � 1
n , �0 + 1

n). Suppose PA(�n) ⇧= 0. Then we can find
a ⇧n ⌅ PA(�n)H with ⌃⇧n⌃ = 1. Since

⌃(A� �0)⇧n⌃2 = ⌃(A� �0)PA(�n)⇧n⌃2

=
⇥

R
(�� �0)2⌅�n(�)dµ⇥n(�) ⇥ 1

n2
,

we conclude �0 ⌅ ⇤(A) by Lemma 2.16.
Conversely, if PA((�0 � ⌃, �0 + ⌃)) = 0, set

f⇤(�) = ⌅R\(�0�⇤,�0+⇤)(�)(�� �0)�1.

Then

(A� �0)PA(f⇤) = PA((�� �0)f⇤(�)) = PA(R\(�0 � ⌃, �0 + ⌃)) = I.
Similarly PA(f⇤)(A� �0) = I|D(A) and hence �0 ⌅ ⇥(A). ⇤
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In particular, PA((⇥1, ⇥2)) = 0 if and only if (⇥1, ⇥2) ⇥ ⇤(A).

Corollary 3.9. We have

PA(⌅(A)) = I and PA(R ⌥ ⇤(A)) = 0. (3.54)

Proof. For every ⇥ ⇧ R⌥⇤(A) there is some open interval I� with PA(I�) =
0. These intervals form an open cover for R⌥ ⇤(A) and there is a countable
subcover Jn. Setting ⇥n = Jn\

⇥
m<n Jm, we have disjoint Borel sets which

cover R ⌥ ⇤(A) and satisfy PA(⇥n) = 0. Finally, strong ⌅-additivity shows
PA(R ⌥ ⇤(A))⌃ =

�
n PA(⇥n)⌃ = 0. ⇤

Consequently,

PA(f) = PA(⌅(A))PA(f) = PA(⇧⇥(A)f). (3.55)

In other words, PA(f) is not a⇤ected by the values of f on R\⌅(A)!
It is clearly more intuitive to write PA(f) = f(A) and we will do so from

now on. This notation is justified by the elementary observation

PA(
n⇤

j=0

�j⇥
j) =

n⇤

j=0

�jA
j . (3.56)

Moreover, this also shows that if A is bounded and f(A) can be defined via
a convergent power series, then this agrees with our present definition by
Theorem 3.1.

Problem 3.1. Show that a self-adjoint operator P is a projection if and
only if ⌅(P ) ⇥ {0, 1}.

Problem 3.2. Consider the parity operator � : L2(Rn) ⌅ L2(Rn),
⌃(x) ⌃⌅ ⌃(�x). Show that � is self-adjoint. Compute its spectrum ⌅(�)
and the corresponding projection-valued measure P�.

Problem 3.3. Show that (3.7) is a projection-valued measure. What is the
corresponding operator?

Problem 3.4. Show that P (⇥) defined in (3.14) satisfies properties (i)–(iv)
stated there.

Problem 3.5. Show that for a self-adjoint operator A we have �RA(z)� =
dist(z, ⌅(A)).

Problem 3.6. Suppose A is self-adjoint and �B � z0� ⇤ r. Show that
⌅(A + B) ⇥ ⌅(A) + Br(z0), where Br(z0) is the ball of radius r around z0.
(Hint: Problem 2.17.)
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Problem 3.7. Show that for a self-adjoint operator A we have ⌦ARA(z)⌦ ⇥
|z|

Im(z) . Find some A for which equality is attained.
Conclude that for every ⇤ ⇧ H we have

lim
z⇥⇤

⌦ARA(z)⇤⌦ = 0, (3.57)

where the limit is taken in any sector ⌅|Re(z)| ⇥ | Im(z)|, ⌅ > 0.

Problem 3.8. Suppose A is self-adjoint. Show that, if ⇤ ⇧ D(An), then

RA(z)⇤ = �
n⇥

j=0

Aj⇤

zj+1
+ O(

⌦An⇤⌦
|z|n Im(z)

), as z ⇤ ⌅. (3.58)

(Hint: Proceed as in (2.87) and use the previous problem.)

Problem 3.9. Let �0 be an eigenvalue and ⇤ a corresponding normalized
eigenvector. Compute µ�.

Problem 3.10. Show that �0 is an eigenvalue if and only if P ({�0}) ⌃= 0.
Show that Ran(P ({�0})) is the corresponding eigenspace in this case.

Problem 3.11 (Polar decomposition). Let A be a closed operator and
set |A| =

↵
A�A (recall that, by Problem 2.12, A�A is self-adjoint and

Q(A�A) = D(A)). Show that

⌦|A|⇤⌦ = ⌦A⇤⌦.

Conclude that Ker(A) = Ker(|A|) = Ran(|A|)⌅ and that

U =
�

⇧ = |A|⇤ ⌥⇤ A⇤ if ⇧ ⇧ Ran(|A|),
⇧ ⌥⇤ 0 if ⇧ ⇧ Ker(|A|)

extends to a well-defined partial isometry; that is, U : Ker(U)⌅ ⇤ Ran(U)
is unitary, where Ker(U) = Ker(A) and Ran(U) = Ker(A�)⌅.

In particular, we have the polar decomposition

A = U |A|.

Problem 3.12. Compute |A| =
↵

A�A for the rank one operator A =
�⇧, . ⇤. Compute

↵
AA� also.

3.2. More on Borel measures

Section 3.1 showed that in order to understand self-adjoint operators, one
needs to understand multiplication operators on L2(R, dµ), where dµ is a
finite Borel measure. This is the purpose of the present section.

The set of all growth points, that is,

⇥(µ) = {� ⇧ R|µ((� � ⌅, � + ⌅)) > 0 for all ⌅ > 0}, (3.59)



Chapter 5

Quantum dynamics

As in the finite dimensional case, the solution of the Schrödinger equation

i
d

dt
�(t) = H�(t) (5.1)

is given by
�(t) = exp(�itH)�(0). (5.2)

A detailed investigation of this formula will be our first task. Moreover, in
the finite dimensional case the dynamics is understood once the eigenvalues
are known and the same is true in our case once we know the spectrum. Note
that, like any Hamiltonian system from classical mechanics, our system is
not hyperbolic (i.e., the spectrum is not away from the real axis) and hence
simple results such as all solutions tend to the equilibrium position cannot
be expected.

5.1. The time evolution and Stone’s theorem

In this section we want to have a look at the initial value problem associated
with the Schrödinger equation (2.12) in the Hilbert space H. If H is one-
dimensional (and hence A is a real number), the solution is given by

�(t) = e�itA�(0). (5.3)

Our hope is that this formula also applies in the general case and that we
can reconstruct a one-parameter unitary group U(t) from its generator A
(compare (2.11)) via U(t) = exp(�itA). We first investigate the family of
operators exp(�itA).

Theorem 5.1. Let A be self-adjoint and let U(t) = exp(�itA).

(i) U(t) is a strongly continuous one-parameter unitary group.
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(ii) The limit limt⇥0
1
t (U(t)⇥ � ⇥) exists if and only if ⇥ ⌅ D(A) in

which case limt⇥0
1
t (U(t)⇥ � ⇥) = �iA⇥.

(iii) U(t)D(A) = D(A) and AU(t) = U(t)A.

Proof. The group property (i) follows directly from Theorem 3.1 and the
corresponding statements for the function exp(�it�). To prove strong con-
tinuity, observe that

lim
t⇥t0

⌥e�itA⇥ � e�it0A⇥⌥2 = lim
t⇥t0

�

R
|e�it� � e�it0�|2dµ⇥(�)

=
�

R
lim
t⇥t0

|e�it� � e�it0�|2dµ⇥(�) = 0

by the dominated convergence theorem.
Similarly, if ⇥ ⌅ D(A), we obtain

lim
t⇥0

⌥1
t
(e�itA⇥ � ⇥) + iA⇥⌥2 = lim

t⇥0

�

R
|1
t
(e�it� � 1) + i�|2dµ⇥(�) = 0

since |eit��1| ⇥ |t�|. Now let Ã be the generator defined as in (2.11). Then
Ã is a symmetric extension of A since we have

⇧⇤, Ã⇥⌃ = lim
t⇥0

⇧⇤,
i
t
(U(t)� 1)⇥⌃ = lim

t⇥0
⇧ i
�t

(U(�t)� 1)⇤, ⇥⌃ = ⇧Ã⇤, ⇥⌃

and hence Ã = A by Corollary 2.2. This settles (ii).
To see (iii), replace ⇥ ⇤ U(s)⇥ in (ii). ⇤

For our original problem this implies that formula (5.3) is indeed the
solution to the initial value problem of the Schrödinger equation. Moreover,

⇧U(t)⇥, AU(t)⇥⌃ = ⇧U(t)⇥, U(t)A⇥⌃ = ⇧⇥, A⇥⌃ (5.4)

shows that the expectations of A are time independent. This corresponds
to conservation of energy.

On the other hand, the generator of the time evolution of a quantum
mechanical system should always be a self-adjoint operator since it corre-
sponds to an observable (energy). Moreover, there should be a one-to-one
correspondence between the unitary group and its generator. This is ensured
by Stone’s theorem.

Theorem 5.2 (Stone). Let U(t) be a weakly continuous one-parameter uni-
tary group. Then its generator A is self-adjoint and U(t) = exp(�itA).

Proof. First of all observe that weak continuity together with item (iv) of
Lemma 1.12 shows that U(t) is in fact strongly continuous.
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Next we show that A is densely defined. Pick ⇥ ⌅ H and set

⇥� =
� �

0
U(t)⇥dt

(the integral is defined as in Section 4.1) implying lim�⇤0 ��1⇥� = ⇥. More-
over,

1
t
(U(t)⇥� � ⇥� ) =

1
t

� t+�

t
U(s)⇥ds� 1

t

� �

0
U(s)⇥ds

=
1
t

� �+t

�
U(s)⇥ds� 1

t

� t

0
U(s)⇥ds

=
1
t
U(�)

� t

0
U(s)⇥ds� 1

t

� t

0
U(s)⇥ds ⇤ U(�)⇥ � ⇥

as t ⇤ 0 shows ⇥� ⌅ D(A). As in the proof of the previous theorem, we can
show that A is symmetric and that U(t)D(A) = D(A).

Next, let us prove that A is essentially self-adjoint. By Lemma 2.7 it
su�ces to prove Ker(A⇥ � z⇥) = {0} for z ⌅ C\R. Suppose A⇥⇤ = z⇥⇤.
Then for each ⇥ ⌅ D(A) we have

d

dt
⇧⇤, U(t)⇥⌃ = ⇧⇤,�iAU(t)⇥⌃ = �i⇧A⇥⇤, U(t)⇥⌃ = �iz⇧⇤, U(t)⇥⌃

and hence ⇧⇤, U(t)⇥⌃ = exp(�izt)⇧⇤, ⇥⌃. Since the left-hand side is bounded
for all t ⌅ R and the exponential on the right-hand side is not, we must have
⇧⇤, ⇥⌃ = 0 implying ⇤ = 0 since D(A) is dense.

So A is essentially self-adjoint and we can introduce V (t) = exp(�itA).
We are done if we can show U(t) = V (t).

Let ⇥ ⌅ D(A) and abbreviate ⇥(t) = (U(t)� V (t))⇥. Then

lim
s⇤0

⇥(t + s)� ⇥(t)
s

= iA⇥(t)

and hence d
dt⌥⇥(t)⌥2 = 2Re⇧⇥(t), iA⇥(t)⌃ = 0. Since ⇥(0) = 0, we have

⇥(t) = 0 and hence U(t) and V (t) coincide on D(A). Furthermore, since
D(A) is dense, we have U(t) = V (t) by continuity. ⇤

As an immediate consequence of the proof we also note the following
useful criterion.

Corollary 5.3. Suppose D ⇥ D(A) is dense and invariant under U(t).
Then A is essentially self-adjoint on D.

Proof. As in the above proof it follows that ⇧⇤, ⇥⌃ = 0 for any ⇥ ⌅ D and
⇤ ⌅ Ker(A⇥ � z⇥). ⇤
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Note that by Lemma 4.9 two strongly continuous one-parameter groups
commute,

[e�itA, e�isB] = 0, (5.5)

if and only if the generators commute.
Clearly, for a physicist, one of the goals must be to understand the time

evolution of a quantum mechanical system. We have seen that the time
evolution is generated by a self-adjoint operator, the Hamiltonian, and is
given by a linear first order di�erential equation, the Schrödinger equation.
To understand the dynamics of such a first order di�erential equation, one
must understand the spectrum of the generator. Some general tools for this
endeavor will be provided in the following sections.

Problem 5.1. Let H = L2(0, 2⇥) and consider the one-parameter unitary
group given by U(t)f(x) = f(x� t mod 2⇥). What is the generator of U?

5.2. The RAGE theorem

Now, let us discuss why the decomposition of the spectrum introduced in
Section 3.3 is of physical relevance. Let ⌃⌅⌃ = ⌃⇤⌃ = 1. The vector ⌅⌅, ⇤⇧⌅
is the projection of ⇤ onto the (one-dimensional) subspace spanned by ⌅.
Hence |⌅⌅, ⇤⇧|2 can be viewed as the part of ⇤ which is in the state ⌅. The
first question one might raise is, how does

|⌅⌅, U(t)⇤⇧|2, U(t) = e�itA, (5.6)

behave as t ⇥⇤? By the spectral theorem,

µ̂⇤,⇥(t) = ⌅⌅, U(t)⇤⇧ =
⇥

R
e�it�dµ⇤,⇥(�) (5.7)

is the Fourier transform of the measure µ⇤,⇥. Thus our question is an-
swered by Wiener’s theorem.

Theorem 5.4 (Wiener). Let µ be a finite complex Borel measure on R and
let

µ̂(t) =
⇥

R
e�it�dµ(�) (5.8)

be its Fourier transform. Then the Cesàro time average of µ̂(t) has the limit

lim
T⇥⇤

1
T

⇥ T

0
|µ̂(t)|2dt =

�

�⌅R
|µ({�})|2, (5.9)

where the sum on the right-hand side is finite.


