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Abstract. The ferromagnetig-states Potts model on a square lattice is analysed; fer4,
through an elaborate version of the operatorial variational method. In the variational approach
proposed in this paper, the duality relations are exactly satisfied, involving at a more fundamental
level, a duality relationship between variational parameters. Besides some exact predictions, the
approach is very effective in the numerical estimates over a wide range of temperature and can
be systematically improved.

1. Introduction

We consider the ferromagnetjestate Potts model [1] on a square lattice, limiting ourselves
to the isotropic, nearest-neighbour (NN) case, with no external field. The Hamiltonian of
the model is given by

H
— =—-K S, 1
T ; &

wheres; = 1,2,...,q, i denotes the lattice sitesy, is the Kronecker symbol and
K = J/kT, with J > 0. We suppose that the lattice is madenpofrows andn columns,
and that free boundary conditions are applied. Our interest will be in the limits— oo.

For ¢ > 4 the model has a temperature-driven first-order phase transitidfy at
Ki(¢) = In(1+ /q). At K the free energyf, the internal energies, anduy of the
ordered and disordered phase, and the latent heat are known exactly [1, 2]. Btjlhare
recently an analytic formula for the correlation length has been also derived [3, 4].

Due to these exact results, the 2D Potts model has an important role in the study
of first-order phase transitions [5]. As a matter of fact its properties have been studied
through several methods, such as analysis of high- or low-temperature series expansions
[6], resummation of large expansions [7-9] and Monte Carlo simulations [10-14]. As
a rule, the discontinuous character of the first-order phase transitions makes the numerical
calculations in these cases more uncertain, with respect to analogous calculations in the case
of second-order phase transitions. Moreover we have that some aspects of the discontinuous
transitions are not completely understood from a general, theoretical point of view.
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On the other hand an accurate description of the Potts model transition, when the number
of components; is very large, is provided by the mean-field theory [15]. Indeed, it has
been proved that mean-field theory is exact in the lignit- +o0o [16]. So it suggests itself
that a reliable quantitative analysis of the properties of our model, at leagtfo#, could
also be obtained directly from a proper extension of this theory.

As a matter of fact, in this paper it is shown that considerable and systematic
improvements of the mean-field theory can be obtained in the framework of the transfer-
matrix approach, through an elaborate version of the standard variational method for
Hermitian operators. This method is alternative to the variational Gibbs principle [16, 17],
which provides the analytical basis of the mean-field procedure or, more generally, of the
cluster variational method [18].

The formal aspects of our approach are described in the next four sections. We will
limit ourselves tog > 4. In the last section we present the results of some numerical
calculations and add some concluding remarks.

2. Operatorial variational method

Let Z,,..(K) be the partition function of our model. We are interested in the free energy
per site, f(T), given by

f(T)=—kT¢(K)

where
. . 1
¢(K) = lim lim —logZ, ,(K). 2)
m—o00n—00 NM
Now, if o = (s1, 52, ..., s,) describes the spin configuration on a column, we can write
Zm.n in the form
Znw= Y x(O)L(01,09)L(02,03) ... L(0s1,0)x(00) = (X, L" ")) (3)
01,02,..., Oy
where
x(o) = e% I S 4)
and
K16,

T x (o) (5)

is the symmetrized transfer matrix of our model.

The matrixL (o, ¢’) is Hermitian. Therefore we can apply the spectral theorem and take
account of the extremal properties of its eigenvalues. We also note that, fdr(eus’),
the Perron—Frobenius (PF) theorem is valid [19]. Furthermore we haveltfaat’) is
positive definite, that is, for any vect§o), we obtain

(€. L&) =) E(0)L(0,0)E(0)) > 0. (6)

L(o,0") = x(0)€

In fact we can write
& L&) =) fo) [[a+ € —Ds, . f0)
0,0’ i=1

where

fo) =§(0)x(0).
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By expanding the product, we obtain a sum df frms, each giving a non-negative
contribution, due to® -1 > 0.

Let 11(K; m) be the highest eigenvalue @f(s, ¢’). From (2) and (3) it follows that
[19]:

¢(K) = lim E logri(K, m). )
m—o0 m
Now, by considering the functional given by the Rayleigh—Ritz (RR) quotient
(&, L§)
F[&] = 8
(6] ) (8)

we have

sgpF[s] = 11 (K;m)

the sup being attained faf(o) = ¥1(o), where y1(o) is the eigenvector of (o, o)
corresponding to.;(K; m). So, for any vectok (o),

lim E log ¢, L§)

m=00 m (.8
This inequality is the starting point of the operatorial variational method in statistical
mechanics [20-24]. In this approach, the principal (or ground state) eigenuzoio)
is usually described through an ansditzo; «, B, ...), having a definite formal structure,
which contains one or several unknown parameters which do not depend ohhen,
within the formal structure of the considered ansatz, the best estimagtéTofis obtained
by fixing the parameters through

sup lim 1 log (WJ Ljp).

a‘ﬂ‘_"meoo m (w’ w)
As a matter of fact, this approach, which is at the origin of the concept of the transfer
matrix, is not really adequate to analyse the properties of a critical point. However, the
situation can be different in the case of first-order transitions.

We note that the above approach can be realized in several ways, depending on the
structure of the chosen ansatz and on the way the sup in (10) is handled. One elegant and
efficient particular structure has been introduced by Baxter [2,22, 23], which allows us to
obtain explicitly the stationary points of the RR quotient through the solutions of a set of
nonlinear matrix equations, which are treated numerically. This structure is improved by
changing only the order of the unknown matrices. However other efficient structures of the
ansatz can also be introduced [21] on the basis of physical and mathematical arguments; in
these cases the sup (10) is handled directly by numerical procedures.

In the following, fixing attention on the 2D square Potts model, we will discuss a
further elaboration of the operatorial variational method. Our aim, compared with previous
realizations, is to see if the variational method, due to its non-perturbative nature, can
be adequately realized in such a way that some general non-perturbative aspects, such as
duality, can be obtained exactly. So, we come back to the problem of the structure of the
variational ansatz, by adopting a more flexible point of view.

First of all, it is useful to bear in mind the meaning and the roleyets). In our
lattice made ofm rows, let us consider a stri; of i adjacent columns, having,
columns at its right and, columns at its left. The reduced probability distribution (RPD)

< ¢(K). )

(10)



7680 L Angelini et al

P, = Pi(01,0%,...,0;) of a spin configuration orx;, obtained by averaging over all the
configurations at the right and the left &, is given, in the limitn,, n; — 400, by

Y1(o1)L(01, 02) L(02, 03) ... L(0;_1, 07)Y¥r1(07)

P (01,0%,...,0;) = : 11
ne (Y1, L~Lyn) ()
for i > 2, while in the case of one column, we have the RP[Qr) through
¥i©)
Pi(o) = . 12
T v (12)

So, an ansat# (o) for ¥1(o) has the role of a parametric description of the above averaging
process leading to the RPB.

Now, very reliable and simple descriptions, having, however, a different formal content,
can be obtained by considering separately the high- and low-temperature regions. This fact
drives us to introduce fof/ (o) two formal structures, generally different, which we call
Vq(o) and (o) and to consider) (o) as made of twaharts (¥4(o), ¥o(o)), associated
with the ordered and disordered phase, which should match, if possible, at the transition
point K;. The choice of the appropriathart is demanded by the variational method. This
point of view is a slight generalization of the traditional approach, where a fixed formal
structure fory (o) is considered, and only the parameters are varied. However, it leads
quite naturally to variational approximations ¢qK), in which duality [2,25] is exactly
satisfied.

3. One-parameter ansatz

In this section we introduce and discuss some one-parameter ansatz of which we will make
use in the variational approach based on equation (10).
Let us fix attention first on the disordered phase. For latgelue to the smallness of
the correlation length, we expect that
eK Zz”:?ll 5“'i“"H»l
Pj_(O') x>y (13)
s x)
Then, with regard to the disordered phase, we introduce the simplest one-parameter ansatz
for ¥1(o) in the form

IP0) =TT (AK) > 0) (14)

that is, for K belonging to the disordered region, the result of the averaging process at
the left and the right of a column, is represented simply by a renormalized ferromagnetic
coupling A(K) between NN spins, such thdt(K) ~ K for small K.

This simplest ansatz can be improved in several ways. Since the averaging process
produces new interactions among the spins of a column, we need, in principle, other
parameters related to these new couplings. For example, a first correctﬁﬁ)(@) can
be considered by also taking into account second-neighbour interactions. However, it is
possible to stay with a one-parameter ansatz and, at the same time, to irﬁd?&me, by
applying the transfer matrix to Jfél) (o). As a matter of fact, ifL is applied repeatedly to
1/751) (o), we reach at the end the principal eigenvector. Sihde positive definite, we can
consider, more generally, the action bt. So, due to the simple structure irf,l)(a), we
will fix our attention on the sequence of one-parameter ansatz

I 0), 32 (0) = LEgP (o). ..., 3 (0) = L3P (o). (15)
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The reliability of the one-approximate description ¥f(o) can be tested by considering
the next approximation in the sequence.
Then we are led to the RR quotients

(IZ'(].), Ll/;(l)) (&(2)’ LIZ}(Z))
Ioél)(Av K):% péz)(A,K):%,... (16)
Yg s ¥g ) Wy g )
which can also be written in the form
; (~(1>’ Ly ~(1))
p (A, K) = Vg i (17)

W L4
We note that
Z(AK) = @0, L) (18)

is, for v > 1, the partition function of a Potts; A) model on a stripX, of m rows and

v columns, having the same couplings as the original model (1), except on the first and
last column, where there is vertical NN coupling(K) + K)/2. This model provides an
approximate descriptio®"’ of the RPDP, (01, 02, ..., 0,).

We also remark that the Potts A) is associated with @” x ¢ transfer matrix, (A, K),
connecting two adjacent rows af,. We will call A(lv)(A, K) the highest eigenvalue of
2,(A, K).

In each RR quotient we can fix the parametgiK), by considering the variational
estimate (10). We obtain then a sequence of estinmgfé(sK) of ¢(K), given by

Z{™ (A, K)
z{ (A, K)
AP (A, K)
M(A, K)
where the sup is taken over valuesAfwhich give ferromagnetic couplings, that4s> 0

forvr=1,A>—-Kforv=23, ...

It is useful to point out that, for 6 A, K < 400, the PF theorem is valid for the
reducedtransfer matrices of finite orde¥, (A, K), so that, in this range of parameters, the
Pottgv; A) model has a uniquground state(as it happens in the thermodynamic limit for
the original model) in the disordered phase.

Now, let us consider the ordered phase. For finiteeven if large,y1(o) is a well
defined, unique, vector; furthermorfk (o) has the same symmetries of the Hamiltonian (1).
However, in the limitm — oo, we have several phenomena as asymptotic degeneracy [2]
of the highest eigenvalue df (related to the occurrence gfordered phases), macroscopic
instabilities with respect to boundary perturbations or the existenspaftaneousgong-
range order. So, an ansafz (o) will be appropriate if these aspects can be correctly
predicted. In particular, if we introduaceducedtransfer matrices of finite order, as we did
in the disordered case, we have to elude the PF theorem.

We show that the above requirements can be satisfied through an approximate description
not of the result of the averaging process leading/i¢ ), but the process itself.

Let us consider a columB. We replace tha, columns, withn, — oo, at the right ofz,
with one columnX” of Potts spinsy, o/, ..., g, having an effective horizontal coupling
H(H > 0) with the spins ofz. Furthermore, adjacent spiag are constrained to be in the
same state, this last condition having the role to describe the ordered phase. The averaging
process at the right af is then simulated by the summation over all configuration&6n

& (K) = sup li 1
d = P im 0og
A m—oom

= suplog = supp!’ (A, K) v=12..) (19)
A A
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The same procedure is applied at the leféqfby introducing a columrk’. So, we obtain
the distribution

D 1 / " m—1
&wJ=F§:ZﬁmL¢mw,m&Z@%wl (20)

whereT is a normalization constant and

oS

m—1
(o', o) = e Zihs 1_[ 8.5/ (21)
i=1

We are then led to the one-parameter ans;}éf-i(a) in the ordered phase, given by
)P (o) = (Z M’ a>)e'5 Ti S (22)

We note thatP,(c') is a RPD obtained from the distribution
~ 1 m—
Py(o',0,0") = Fl'[(a’, o) (c”, o)eX Y Sy (23)

involving the stripX’ U U £”. Now, Po(c’, o, 0”) is associated with g3 x ¢3 transfer
matrix £ = £(s}, s, s;'|s;, 1. si+1, 5}, 1), having many matrix elements equal to zero, due to
the factors[ /"5 85050117 Mt 8s/.s1,,- This allows us to elude the PF theorem. In fact, the
highest eigenvalue of is g times degenerate; we have thats the direct sum of the
blocks made by the samgx ¢ matrix,

Z(M) - E(Siv Si+1; M) - E(M, Sis M'/’Lv Si+1, I’L) (ll’ = 11 27 BN q)
and of theg(¢g — 1) blocks

O, ) = (s, Sivas i, 1) = €(, si, (|8, Sigpas 1) (' =1,2,...,9, w#n)

made also by x ¢ coincident matrices, which differ from the previous ones. The highest
eigenvalue of? is contained in the blocks(w), which are associated with the ordered
phases, whil&(u, ') are related to the occurrence of a surface tension between different
phases.

The problem of selecting a particuldc) is physically equivalent to applying an
external fieldr, to the spin statg, on the boundarie®’ andX”, to take the limitm — oo
and then to consider the limit, — 0. Once this selection of a particularhas been made,
we see from (21) that the horizontal effective coupliiggives rise to an external field
2H, applied onX to the spin statg:, obtaining then the long-range order relative to the
u phase. So, we see that our paramdiehas a role analogous to the effective field of
the mean-field theory. By modulating through the rigid boundary conditions oR’ and
7, 1}31)(0) provides the simplest description of the phase having a temperature-dependent
order parameter.

As we did for the disordered phase, we can imprd\g@ (o) through the action ol:.
So, in the ordered region, we have the sequence of one-parameter ansgitofpr

7P ), 4P 0) = LY (), .. (24)
and the relative RR quotients
W, LY )

) _
P (H, K) = 0= o o
° WP, L1y

v > 1. (25)
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It is useful to point out that/{Y(¢) can be written in the form

V(o) = fim e Z QR DI gy TH Tl 85 DI B
= lim 93P R) (26)
and that
WP, L) = Z0HP(H, K) =1 (27)

is the partition function of a Potts + 2; 400, H) model on a stripz,,, of m rows and
v + 2 columns, with the same coupling as the original model (1), except for the first and
last column of sites, where we have a vertical NN coupling of infinite strength, and for
the first and last column of rows where we have a horizontal NN coupling of stréigth
This model provides an approximate descriptiéf‘P of the RPDP, (01,07, ...,0,) in the
ordered phase.

The Pott$y + 2; +oo, H) is associated with ag'+? x ¢'*2 transfer matrix
£,.2(4+00, H, K) having properties analogous to that of the previéus ¢3(+o0, H, K).
If we call A(1”+2)(+oo, H, K) its highest eigenvalue, we obtain the sequence of estimates
#8(K) of ¢ (K) in the form
A" (400, H, K)

) (K) = suplog ~% = sup¢p”(H, K) wv=12..). 28
%o H>E gx§“+2)(+oo, H,K) H>|8¢° (28)

By taking a vecton}|’ (o) of the sequence (15) and a vectaf’’ (o) of the sequence (24),
we obtain an ansatz
V(o) = Wy (@), ¥ (o) (29)

with two charts providing the estimates @f(K), given byg_’ (K) andgs’ (K) respectively.
These two functions are defined for a§. For eachk, the choice between the two
descriptions is made by a further application of the variational method, that is by considering

max¢y’ (K), o’ (K)). (30)

We will say that two vectorsi|” (o) and 5" (o) are exactly compatible if it happens that

¢é”([<) and ¢f,j)(l<) match exactly at the transition poif;. In the next section, we will
show that such vectors exist.

4. Duality

A crucial property of the 2D Potts model is the duality relation which connects the partition
function in the high- and low-temperature regions. In terms of the free energy, it states that

(2]

$(K) = logx? + ¢(K*) (31)
where
_ef-1
T
and K*, the pointdual of K, is defined by

-1 1

Ji
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The equation (31) is an exact analytic constraint, allowing the location of the transition point
K: (given byx = 1) on the basis of the non-analyticity ¢{ K) at this point [2]. However,
besides this formal aspect, we have no trace, in the above relation, of the mechanism leading
to a transition from the disordered to the ordered phase.

Now, we will see that further insights and additional aspects of duality are provided by
the variational method, by means of the ansatz’s introduced in the previous section.

First of all we remark that, due to the fact that the ordered and disordered regions
are described by a unique vectgr (o) for finite m, the two charts of a proper ansatz
should share some common property, as an expression of their common origin. As a
matter of fact there is a property that allows us to associate univod&éﬂyo) with
L2y (o) = i (0), leading us to consider, as proper ansatz with tharts the

7 Y0) =GP ©0), TP ©0), ..., 7P 0) = @ (0), ¥ (o)) (32)
and then the sequence of estimagés(K) for ¢(K), given by
@ (K) = maxpi ™ (K), 9 (K)) (i=12..). (33)

This property, shared by’ (o) and ¢/ " (o), is an algebraic structure, as will be shown
in the following.

We first considenﬁé”(o), for v > 2. We have seen that this vector defines the
Pottgv; A) model on a stripZ,. Let us callt = (71,12, ...,%) a spin configuration
on a row of¥,. The transfer matriX,(A, K), which connects two adjacent rows, can be
written in the form [2]

0, (A, K)=V,W, = q2a®x""%(,(A, K) (34)
with

V, = +xUP)YT +xUP) ... (I +xU>7?) (v=2

1 1
qa® (1 + Ué”) (1 + Ué?’)) v=2
a a
v 35
W, = { g2a’x" 2 (1 + 1U51>) (1 + 1U§2”-1>) (1 + 1U53>> (39)
a a X
1 (2v-3)
T+ -U v=23
X
where
s —1
a= —
va
andU®,UP, ..., UV areq” x ¢" matrices defined by
. 1
UV, =116, (i=12...,v)
ﬂ 11:!. J
J#i

U (2, 7)) = /a8, H‘Stw’f (G=12...v-1)
=1
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They satisfy the relations

Uy = Jqu® (i=212...,2v-1)
uihud =u9u®  (ji—jl > 2)

L ) . 36
uulithu® =uyd (i=12..,20-2) (30)
uPui-yh =y (i=12..,20-1).

These relations define the Temperley—Lieb algebra generatedthyy 2, ..., U®~D,

and then all the eigenvalues 6f(A, K), with the exception of their degeneracies.

Now we come toj{" (o)(v = 1, 2, ...), which defines the Poitg+ 2; +-0o, H) model.
It is useful to consider this model as the limit, fBr— o0, of Pottgv+2; R, H), obtained
through the substitution of$Y (o) with ¥{Y (o'; R) of equation (26). Then, following the
previous procedure, we have that PatisR, H)(v > 3) is associated with a" x ¢¥ transfer
matrix £, (R, H, K), which can be written in the form

6(R, H, K) = V,W,(R) (37)

with
(I +hUPYU +hUP =2 +xUP) ... (I +xU>) (v > 4)
| a +hU@ya 4+ husy (v =23)
WV — e—Zngpzx"—z I+ EU(l) I+ 1(](2”—1) I+ }U(S) (38)
p v p v X v
1
(1 + U§2”3>) (v >3
X
where
el -1 ef -1
Va Va

Taking the limit R — +o0, we obtain

0,(+00, H, K) = V,W,(+00) = ¢ % x""20,(+00, H, K) (39)
with

. 2 o 1.3 1 @3

Wy(+oo) =q 2 x" 21+ =09 ) .. (1+=U! . (40)

X X

So, the matriced/(Y) and U®~Y being suppressed by the limiting procedure, we remain
only with the 2v — 1) — 1 ¢" x ¢" matricesU?,U®, ..., U3 U?-2_ However, if
we define

u® =ylity (i=12....,20—-1) -1

we see from (36), that thesé¢12— 1) — 1 ¢” x ¢” matricesU " satisfy the same algebraic
relations which are satisfied by thé~! x ¢"~! matricesU”, (i = 1,2,...,2(v—1) —1).

We only have with thé/ () a representation of different dimensionality of the same algebraic
structure. Together with the structure@f-+oo, H, K) and?,_1(A, K), this is the common
property which allows us to couple the vectbg“‘z) (o) (v > 3) with the vector&é”‘l)(cr),
leading then to the sequence (32).
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_As a matter of fact, it follows from (34), (35), (38)—(40) that the eigenvalues of
£,(400, H, K) coincide with those of,_1(Ap(H, K*), K*), whereAp(H, K*) is defined
by

Ap(H.K*)+K*
- 2z

\/5_1 — } (41)

In particular, we have

=

h2
A (400, H, K) = ﬁxbﬂ;“—”(AD(H, K*), K*) (=3 (42)

which is a duality relation for the partition function of Pdiis+oo, H) and Pottsv —1; A).
As a consequence, coming back to the variational method, we obtain the duality relation
for the RR quotients

MV (koo HK) _ 524 P (Ap(H. K*). K*)
AP (oo, HK) AP (Ap(H, K*), K¥)

Since, asH goes from zero totoo, Ap(H, K*) goes from+oco to —K*, we deduce from
(43), (19), (28) that

¢5)(K) = logx? + ¢ (K™)
or, equivalently,

¢g U (K) = logx® + ¢ (K*) (44)
the relative sup being attained dwal points, according to (41). Sp (o) and ¥\ (o)

are exactly compatible.
The equation (44) is the variational version of (31). Indeed, from (44) it follows that

¢ (K) — ¢y ™V (K) = ¢V (K™) — ¢ (K™). (45)
Therefore, if at a poinK we have, for examplep"“)(K) > ¢ (K), then at the dual point

it results thatp® (K*) > ¢ (K*). So we conclude that the estimai® (K) given by
(33), satisfy exactly the duality relation (31), that is

oD (K) = logx? + ¢D (K*) (i=12...). (46)

We see that the mechanism of non-analyticity &t can be described as a crossing
phenomenon, involving{” (K) andq&é’*l)(K).

(43)

5. Two-parameters ansatz

The above results can be extended to two-parameters ansatz, which are useful to consider
both from the computational and variational point of view.

To fix our ideas, let us suppose that we need to go beyond the estivbﬁt@%) and
02 (K). We can consider thep,” (K). The relative calculations require strips of four and
five columns, to be compared with the case of three and four columns needg( tf).
However, we can also improuﬁf)(l() without changing the number of columns and the
size of the involved transfer matrices, by adding a further parameter. In fact, by making use
of the procedure of an approximate description of the averaging process, we can introduce
the two-parameters ansatz foi (o)

gl m—
(3) (O.) ( Z 1 1 (SA K4 +B Zz 15\’ si )elz( Zi:ll 851’-31+1 (47)
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LT T

Figure 1. The three- and four-column Potts models originated by the two-parameters ansatz

(47). They correspond to the partition functioﬁéf) and Z‘(f) leading to our estimat¢(’j(3) of
the free energy in the disordered phase.

with A, B > 0. » . » »
Then, by consideringy\>, Li,>)/ (42, ¥,>), we are led to the estimate ¢f(K)

Z\(A, B, K
¢d(3)(K)—supI|m i|og d (A, B, K)

S (48)
apm=oom 734 B, K)

where Z(’)(A, B, K)(i = 3,4) are the patrtition functions of the Potts models shown in
figure 1. Therefore, we deduce from (19) and (48)

¢57 (K) < ¢4 (K) < p(K). (49)
We can improve analogousty? (K), which is determined through? (o) = Ly (),
by introducing the two-parameter ansatz

7i2(0) = L2y (o) (50)
with

v (o) = (Z (o', o))eZ s (G >0) (51)

where I(¢', o) is given by (21). Throughy?, Ly ®)/ (2, ¥?), we obtain the
estimate

1. zO(G,H, K

o2 (K) = sup lim = Iog%

cuam=eem =z (G H,K)

where Z9(G, H, K) (i = 4,5) are the partition functions of the Potts models shown in
figure 2.

By making use again of the generators of the Temperley—Lieb algebra we have, as in
(44),

(52)

0.2 (K) = logx? + ¢ (K*) (53)
so that the estimate @f(K),
¢ @ (K) = max¢, ¥ (K), 2 (K)) (54)

also satisfies the duality relation (31). As a matter of fact, the paramBtensd G are the
dual expression ofdA and B, respectively.

In principle, further improved two-parameters ansatz can be obtained from the action
of (L)' on the vecton) @ (o) = (¥,> (o), ¥4 (0)), leading to the sequence of estimates
¢’(i+2)(K)_
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2 2
H ‘[ K I H
Figure 2. The four- and five-column Potts models originated by the two-parameters ansatz (50).

They correspond to the partition functioﬁé‘” and Z(()s) leading to our estimate)(’,(z) of the free

energy in the ordered phase. Double lines connect spins constrained to be in the same state.

6. Some numerical results and comments

Now we discuss the effective aspects of the variational method presented in the previous
sections, by considering the estimates of lower order.

We have calculated explicity? (K), ¢S (K), ¢, 2 (K), ¢ (K), p2 (K) andp,® (K),
obtaining thenp® (K), @ (K) and ¢ ®(K), according to (33) and (54). We have also
consideredﬁél)(A, K), which does not have dual partner in our scheme, but, in any case,
allows us to obtain the simplest approximationg@t@k), for every K. As a matter of fact,
¢\" (A, K) has a finite absolute maximum poiA(K) for K < K;, while for K > K, the
absolute maximum is taken @ — +oo. These points are also relative maximum points
in a neighbourhood oK, at its right and at its left, respectivel\; is an estimate of the
transition pointKy; at K; we have a crossing betwee)” (A, K) and¢_” (+00, K).

The simplest estimate of our variational method is then given by

¢ @(K) = maxo{” (A(K), K), ¢S5 (+00, K)). (55)

It turns out thay©@ (K) satisfies quite well, even if approximately, the duality relation (31),
wheng is large. As a matter of fact, by making a comparison with the known exact results,
we have thap© (K) provides quite a reliable description, for eveky of the properties

of the 2D square Potts model fgr > 50, the description being more and more accurate
asq increases. In this respect, our simplest approximation behaves like mean-field theory.
However, from a quantitative point of view, we get a net improvement, since it turns out
that the mean-field estimates, which are exact in the limit- +oo, differ significantly
from the known exact results alreadysabf order 1G. Indeed, in the large expansions,

we have power series in/1/qg with very large coefficients [9], which are responsible for
such deviations. In figures & and @) we plot, forg = 100, ¢ (K) and the relative
internal energy© (K), given by

u@K) d o
—5 —d—qu (K)

and we make a comparison with the analogous mean-field quamiifigX’) andume(K);
the small circles are the known exact values.

From a computational point of view, in order to avajl x ¢" matrices of very high
order, especially ify is large, we have made use of the relationship between the reduced
transfer matrices and the matrice4?, ..., U®~D which satisfy the relations (36) (see
(34), (35), (37) and (38)). Now the relations (36) are also satisfied by'the4d matrices
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g=100 =100
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Figure 3. Our simplest estimate (full lines) of the free energy and of the internal energy
(b) at ¢ = 100 are compared with the results from the mean-field theory (broken lines). Also
shown are the exact values at the transition point (small circles).

U given by [2]

@) ’ / rN
U, (ag, 0, ..., Olzv|O{1, (27T azv) = (Sala’l cee 8&;71a[71ha;ai+1ha:a;+l5a,+zai’+2 cee (Saz\,a’zv

(56)
(i=12...,2v-1), whereq; = £1, o} = 1,
hiw=h_=0  h,_ =gz h_, = ez

with 2 coshi = ¢%/2. This is the 6-vertex representation of the Temperley—Lieb algebra.

The eigenvalues of our reduced transfer matrices have been determined by making use
of the representation (56), which allows us to translate a Potts Btripto an ice-type (or
6-vertex) stripx! and, as a by-product, to consider also non integer valugs of

As expected, the results of our calculations show tkiatis the only crossing point
of ¢V (K) with ¢@(K)(i = 1,2) and also ofg,> (K) with ¢, @(K). Furthermore
P{P(K) > ¢O(K), 2 (K) > ¢ P (K) for K < Ky, so that

¢V (K) = ¢ P(K) = :

(i+1) '(3)
K K <K K K <K
¢q T (K) t g~ (K) t (57)
K >

¢ (K) K > K b2 (K)

In order to see the degree of accuracy which we obtain, in table 1 we compare our results
at Ky, for severalg, with the known exact valueg(K;) and—uq(K;)/J. Of course, due to
the duality relation, we reproduce exactly, througfR (K), @ (K) and¢ @ (K), the mean
value (uq(Ky) + uo(Ky))/2.

We see that, for every > 4, ¢©@(Ky), ¢V (Ky), $@(Ky) and ¢ @ (K,) provide a
monotonous sequence of very accurate estimates(&%), the accuracy being better as
g increases. Ay = 5, the errors of these estimates are of 0.25%, 0.10%, 0.05%, 0.02%

<
=
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Table 1. Our predictions for the free energy the internal energy in the disorder phageand
the specific heat in the ordered phaigcalculated at the transition poitif;. The exact values
for the free internal energy and the internal energy are also reported.

q 5 10 15 20 30 100

#O(Ky) 2403806 2.895964 3.202524 3.428507 3.758386 4.803843
»D (Ky) 2407461 2.898352 3.204045 3.429543 3.758951 4.803915
#@ (Ky) 2.408681 2.899057 3.204432 3.429775 3.759055 4.803922
'@ (Ky) 2.409378 2.899363 3.204563 3.429841 3.759078 4.803923
¢ (Ky) 2.410306 2.899597 3.204631 3.429867 3.759084 4.803923
¢ (Ky) 2409849 2.899522 3.204615 3.429862 3.759083 4.803923

fufjo) (Kv)/J 1.189595 0.868464 0.701564 0.597935 0.474256 0.236934
—u((jl)(Kt)/J 1.249544 0.911736 0.728555 0.615741 0.483472 0.237961
—uéz) (Kv)/J 1.282729 0.933513 0.739933 0.622203 0.486151 0.238115
—u;j@(](t)/J 1317667 0.949882 0.746210 0.625067 0.487035 0.238139

—ug?(Kp/J 1413784 0971819 0751328 0.626773 0487391 0.238142
—ug(Ky/J 1420754 0968203 0.750492 0.626529 0.487353 0.238142

c k) 4.5049 5.406 3 4.6024 3.8641 2.9059 1.1762
c®? (k) 6.2350 7.2927 5.6956 45144 3.1923 1.1969
c? (k) 9.9421 9.8526 6.6928 4.9700 3.3350 1.2013

Cg(z)(Kt) 30.6324 15.7009 7.9572 5.3728 3.4165 1.2022

respectively, while aff = 10, the sequence of the errors is 0.12%, 0.04%, 0.02%, 0.005%.
As a matter of fact, by analysing the stability of our results #r# K, we obtain that
these errors are still rapidly decreasing, as we move fkgm
For the internal energy, our predictions are characterized by larger errors, provised
low and K is very near toK;. But our last estimate, through the two-parameters variational
ansatz, is quite accurate for eveky and everyg > 15. At g = 20, —u’d(2>(1<1)/1 gives
the exact value with an error of I%. On the other hand, we obtain errors of 7% and 2%
atg = 5 andg = 10, respectively. However, as we move frath, our estimates of the
internal energy are again quite accurate, even for §&sv This is shown in figures 4
and ), where we plot the functionsu™(K)/J, —u®(K)/J and—u'®(K)/J.
Through¢®(K) (i = 0,1,2) and ¢ ®(K) we have also determined the estimates
CY(K) and C'@(K) of the specific heaC (K), which is not exactly known, even .
The sequenc€© (K), CY(K), C?(K), C'?(K) is monotonous and rapidly converging
for every K, providedq > 30. For theseg’s, C'@(K) provides a quite reliable estimate
of C(K) for every K. This is also true forC©@(K), CP(K) and C?(K) as soon ag
increases. For lower values ¢f we have to move fronK; in order to get the same
accuracy. In figure 5 we plof®(K), C®(K) and C'?(K) at ¢ = 10, while in table 1
we give, for several, CP(Ky), C?(Ky) and C{? (Ky), that is the previous estimates at
K, evaluated in the ordered phase (the predictions for the disordered phase can be obtained
from these through duality).
On the other hand, we obtain a considerable improvement in our estimates of the
internal energy and of the specific heat for loweand K very near toK;, by accelerating
the convergence of the already rapidly convergent sequence of our estimates of the free
energy. Starting fromp™® (K), ¢ (K) and¢ @ (K) and by making use of the Aitken?
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Figure 4. The monotonous sequence of our estimates® (K)/J, —u®(K)/J and
—u/(2>(K)/J of the internal energy at) ¢ = 10 and b) ¢ = 5. The broken curve represents
—u"@(K)/J, obtained from equation (58). Also shown are the exact values at the transition
point (small circles).
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20
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12 1.25 13 135 14 145 15 155 16 K 1.65

Figure 5. The monotonous sequence of our estimaté8(K), C@(K) and C'@(K) of the
specific heat ay = 10. The broken curve represer(ré(z)(K), obtained from equation (58).
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method (or of the [11] Padk approximant), we deduce the new extimate

¢?(K) — P (K)

¢ @(K)—¢p@(K)
O K)—pT(K)

¢ P(K) =P (K) +

(58)

We callx"@(K) andC"®(K) the internal energy and the specific heat calculated through
¢ @ (K). The improvement which we obtain can be checked by comparéﬁt([(t) with

the known exact value. We give in table¢l® (K), u;(z)(Kt) and C,?(Ky) for several

q. We see that-u,? (Ky)/J reproduces-uq(Ky)/J within the errors of (6% and 04% at

g = 5 andqg = 10, respectively, a net improvement with respect—w’cfz)(Kt)/J. On the
other hand, whem 2 (K) and C'?(K) are already quite reliabley’®(K) does not lead

to significant corrections. Faf = 10 andg = 5, the function—u;(z)(K)/J is plotted in
figures 46) and p), where its role is made quite evident. A stronger correction is obtained
for specific heat, as shown in figure 5, where we @lo® (K), for ¢ = 10. Our estimate of

16 for Co(Ky) atg = 10, agrees essentially with the estimate of 18 obtained from large-
expansions [9], which is contradicted by the value 32 deduced from low-temperature series
[6]. For ¢ = 15, 20, 30 the results of [9] are confirmed quite well by a0§® (Ky).

So, we see that the variational approach presented in this paper, besides providing exact
predictions and physical or mathematical mechanisms for the first-order transition of our
model (forg > 4), is also very effective in the numerical predictions of unknown quantities.

We point out that the first approximation in the Baxter method [22] corresponds to the
variational approximation of Kramers—Wannier (K—-W) type [20, 21]. On the other hand the
K-W approximation corresponds to the form of the cluster variation method introduced by
Kikuchi [26], which improves both the mean-field and the Bethe approximations.

The K-W type of ansatz is improved by Baxter [22] in a way formally elegant, but not
very flexible for the purpose of taking into account some general non-perturbative aspects.

Our sequencepP(K), 9 @(K), ... is an improvement of©@(K) (55), which also
coincides exactly with the K-W approximation in its disordered phase. However, our
dD(K),p@(K),... are all able to localize exactly the point of singularity of the
thermodynamical quantities and to get exactly other properties related to duality. Such
a feature is to be compared with the approximate (in any case quite good) localization of
the critical point in the Baxter procedure [23, 24].

Our numerical analysis will be completed in a future paper and will concern properties
such as spontaneous magnetization and susceptibility, which are accessible through low-
temperature series expansions [6], but not through larggpansions. On the other hand,
since these two approaches give contradicting results in the case of specific heat, a further
analysis of the estimates made in [6] would be appropriate.

Furthermore we will explore more completely the consequences of duality, which in
the variational approach proposed here appears at a more fundamental level. Through the
reduced probability distributions and the variational parameters having dual partners, it is
possible to study more completely the link between typical properties of the ordered and
disordered phases.

Our aim will also be to extend the above approach to the important case of the 3D Potts
model.
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