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Abstract

We present some result about phase separation in coupled map lattices with additive noise. We show that additive noise act:
as an ordering agent in this class of systems. In particular, in the weak coupling region, a suitable quantity of noise leads to
complete phase separation. Extrapolating our results at small coupling, we deduce that this phenomenon could take place als
in the limit of zero coupling 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction this field include critical-point shifts in standard mod-
els of phase transitions [3], puneise-induced phase
The role of noise as an ordering agent has been transitions [4], stabilization of propagating fronts

broadly studied in recent years in the context of both []; @nd noise-driven structures in pattern-formation
temporal and spatiotemporal dynamics. In the tem- Processes [6]. In all these cases, the qualitative (and
poral case, that was first considered, external fluctu- SOCMeéwhat counterintuitive) effect of noise is to enlarge
ations were found to produce and control transitions 1€ domain of existence of the ordered phase in the pa-
(known ashoise-induced transitions) from monostable ~ "ameter space. .

to bistable stationary distributions in a large variety !t iS the purpose of this Letter to analyse the role
of physical, chemical and biological systems [1]; the of additive noise in the_phase separation of multi-
phenomenon ofoise-induced order in chaotic sys-  Phase coupled map lattices (CMLs) [7,8]. Coupled
tems has also been analyzed (see, for example, [2]). M@P Iattlc_es are networks of chaotlc_elements intro-
As far as spatiotemporal systems are concerned, theduced to investigate complex dynamical phenomena
combined effects of the spatial coupling and noise N spatially extended sygtem_s. They consists of chgotlc
may produce an ergodicity breaking of a bistable state, Maps locally coupled diffusively with some coupling
leading to phase transitions between spatially homoge- Stréngthg. In these systems one observes multista-

neous and heterogeneous phases. Results obtained iRiliy that is the remainder, for small couplings, of
the completely uncoupled case [9]. For large enough

couplings one observes non-trivial collective behavior
* Corresponding author. (NTCB) [10]: collective quantities, such as spatial av-
E-mail address: angelini@ba.infn.it (L. Angelini). erages, display the onset of long-range order in spite
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of local chaotic fluctuations. Moreover, the temporal effective growth exponent was observed to increase
evolution of these quantities is “non-trivial”, i.e., not  with temperature. In the long time regimeassumes
asymptotically stationary. the value ¥3, corresponding to the universality class

Recently [11], phase separation mechanisms haveof a Langevin equation known as modgl[14], that
been investigated in a coupled map lattice model describes the standard conserved Ising model (when
where the one-body probability distribution functions bulk diffusion dominate over surface diffusion [15]).
of local (continuous) variables has two disjoint sup- The duration of the transient decreases with temper-
ports. By introducing Ising spin variables, the phase ature, becoming negligible fof > 1/3T,, whereT,
ordering process following uncorrelated initial condi- is the temperature beyond which no phase ordering
tions was numerically studied and complete phase sep-occurs. As a matter of fact one can conclude that, in
aration was observed for large coupling values. The this class of models, a proper amount of thermal noise
characteristic length of domaiiyr) (evaluated asthe  speeds up the phase ordering process.

width at midheigth of the two-point correlation func- In this Letter we investigate the effect of additive

tion) showed a slow crossover from a short time be- noise on the phase ordering properties of a lattice of
haviour to an asymptotic regime nbrmal curvature- coupled chaotic maps, where the corresponding Ising
driven domain growth. The short time behaviour was order parameter is not conserved. It will be shown that
characterized by an effective growth exponerftie- external noise can induce complete phase ordering for
fined by the scaling lawR(¢) ~ #*) continuously vary- coupling values not leading to phase separation in the

ing with the couplingg; at larger times the normal absence of the noise term. Furthermore this dynamical
growth R(r) ~ AtY/2 (peculiar to the class of univer-  transition is reentrant: phase separation appears at a
sality of the time dependent Ginzburg—Landau equa- critical value of the noise intensity but disappears
tion [12]) was observed, the prefactarbeing depen-  again at one higher value of the noise strength.
dent on the coupling. This study of the phase order- The Letter is organized as follows. In the next
ing properties allowed to determine the limit valgie section the coupled map lattice model here considered
beyond which multistability disappears and NTCB is is introduced. In Section 3 we present our numerical
observed. Indeed, the following relations were used, results. Section 4 summarizes our conclusions.
the first related to the early stage of the dynamics, the
second dealing with the asymptotic scaling regime:
2. Themodd
2~ (8 — 8" 1)
A~ (g —go)'2. ) Let us consider a two-dimensional square lattice
of coupled identical mapg acting on real variables

Fitting early times data by (1) or asymptotic data ; whose evolution is governed by the difference
by (2) lead to similar estimates fag. (0.169 and equation

0.171, respectively, for the case studied in [11]). The
persistence exponefit(defined byp(r) ~ =, where  xi(t + 1) = (1 — 4g) f[x;(1)]
the persistence probability(z) is the proportion of
spins that has not changed sign up to titheas found +38 Z flxio]+&®, 3
to be universal in the asymptotic regime and equal to JeNi
0.204. where N; is the set of the nearest neighbors of
A similar crossover phenomenon was observed in a sitei, & is a random number uniformly distributed in
lattice model of chaotic maps where the corresponding [—o/2, 0/2], g is the coupling strength and periodic
Ising spin model conserves the order parameter [13]. boundary conditions are assumed. We have chosen the
This model is equivalent to a conserved Ising model following map:
with couplings that fluctuate over the same time scale " 1 ) 1
as spin moves, in contact with a thermal bath at tem- —gexpla(x +3)] ifxe[—00, 3],
peratureT . The short time scaling exponertsand z fx) =4 px if x e (-3 3).
were found to vary with temperature; in particular, the Lexp(a[3—x]) if xe[3. +oo],

(4)
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Fig. 1. The mapf (x) defined in (4). Fig. 2. Invariant probability distribution for the positive attractor
of f(x).

that is defined for every in the real axis (see Fig. 1). boundary conditions were used; the persistep¢e
The map here considered is a modified version of the was measured as the proportion of sites that has not
map used in [11]; the modification is motivated by the changeds the initial value. The average domain size
fact that, due to the noise tergp, variablesx; (r) are R(t) was measured by the relati@gf{R(z),t] = 1/2,
not constrained to take valuefin 1, 1]. Choosingu = whereC (r, t) = (s;1(t)s; (¢)) is the two-point correla-
1.9 andx = 6, f has two symmetric chaotic attractors, tion function of the spin variables. Bof(r) andR(¢)
one withx > 0 and the other withv < 0. In Fig. 2 were averaged over many (up to thirty) different sam-
we show the invariant distribution of the attractor with ples of initial conditions.
positive x's: it is composed of smooth pieces. The
Lyapunov exponent of the map was evaluatesbg.

To study the phase ordering process, uncorrelated 3. Results
initial conditions were generated as follows: one half
of the sites were chosen at random and the correspond- As a first step we considered the noise-free case,
ing values ofx were assigned according to the invari- puttingo = 0 in our model. For various values gf
ant distribution of the chaotic attractor with > 0, we measured the characteristic lengttand the per-
while the other sites were similarly assigned values sistencep as functions of time; both these quantities
with x < 0. We associated an Ising spin configuration saturate for small couplings and show scaling behav-
s; (t) = sgrix; (¢)] to each configuration of the vari- iour for largeg values. Since the local map we used is
able. Large lattices (up to 10601000) with periodic slightly different from the one used in [11], we rede-
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A =0 . A similar behaviour is observed for not vanishing
and small noise strength. For example, in Figs. 4(a)
and (b) we show, respectively, the fit pfandd ver-
susg in the early times regime, while keepiagfixed
ol and equal to (1. As one can see, data are well fitted
by the scaling forms (1) and (5), and the estimated val-
ues areg. = 0.1628,w = 0.2197 for thez exponent,
0.05 andg, =0.1632,w = 0.2024 for thed exponent [16].
The ratiof/z was estimated at.8838. Normal coars-
ening was recovered at late times; also in this case
0 0165 v 0175 the prefactorA depended org according to (2), giv-
@ g ing the estimateg, = 0.1629 andw; = 0.3904. We
remark that our estimates of the critical coupling
when non-vanishing and small noise is present, are
all smaller than the noise-free critical value. This fact
clearly shows that a proper amount of noise favours
the phase separation process of the system.

The comparison between the valuegptalculated
by Eq. (1) and the ones calculated by Eq. (2) has been

A c=0

0.09 made for various values af. As already noticed in
P the cases of = 0 ando = 0.1, the two estimates co-
0.06 incided within a reasonable degree of approximation.

Therefore in the following we limit ourselves to re-
- : s L port results evaluated in the early stages of the domain
10 10 - ;
® o, coarsening process. .
Let us now consider the regiofi < g.(c = 0) =
Fig. 3. The prefactor calculated byR (r) ~ A+/7 in the asymptotic 0.1652. Here in the noise-free case the system evolves
time regime abr = 0 in linear (a) and log-log (b) plot. Solid lines  towards blocked configurations and no phase separa-
are best fits leading to the determinationggfthrough Eq. (2). tion takes place. We checked, however, that this as-
ymptotic regime was attained after very long evolu-

) o _ tion times: the system spent a lot of time in metastable
termined the value of. by fitting both early times (by  gtates, so that the evolution curve fBrand p dis-
Eq. (1)) and asymptotic (by Eq. (2)) data (see Fig. 3). pjayed typical stairs structure. This structure (the times

Our estimates arg. = 0.1652 andw; = 0.2260 in marking the steps of the curve) was very robust, in the
the first case, ang, = 0.1650 andw, = 0.3918 in sense that:

the second one. While obviously, due to the differ-

ence between Eqs (1) and (2)’ the growth exponent— it resisted to a Change of the initial conditions
depends on the time scale, the estimate of the critical (chosen following the particular prescription of
coupling is essentially the same, thus confirming the ~ Section 2),

results of [11]. We also studied at= 0 the behav-  — itdid not depend on lattice dimension,

iour of persistence probability(z). At early timeswe ~ — alittle noise (lowo) did not destroy it.

found that the exponemtdepends oy according to  Neyertheless, when the amount of noise was in-

the following law: creased, the life time of these metastable states be-
w came shorter and shorter, till they definitely disap-

Qw(g_gC) 35 (5)

peared foro greater than a critical value,(g). For
with g. = 0.1654. In the asymptotic reginteis inde- o > o.(g) we got again power laws fak (r) and p(r),
pendent orz and equal to 209 (to be compared with  showing that the system separates for large times. This
the valued = 0.204 reported in [11]). behaviour is shown in Fig. 5.
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Fig. 4. The estimated scaling exponents at fixed neise0.1: (a) the dependence of the growth expongeffom g in linear and log—log plot,
(b) the dependence of the persistence expofiérdm g in linear and log—log scale. Solid lines are best fits leading to the determinatign of

andw through the use of (1).

We estimated the critical value by fitting our data
with the ansatz ~ (¢ — o.)". In Fig. 6 we show our
data corresponding tg = 0.16: we evaluated, =

provided accurate fitting of data for a large interval extractthe exponent

of g letting us to give a precise measurementpf
We were able to measure in such a way for g

greater than @25; at smaller values gfthe dynamics
0.1094 andw = 0.3152. The choice of this ansatz became very slow and we were not able to numerically
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Fig. 5. The effect of additive noise on the time evolution of the

domain sizeR(¢) atg = 0.05. The three curve are relativedo= 0, oL . . ‘ . -

o =0.06,0 =0.24. i 107 107

0-0

Fig. 6. The estimated growth exponentersuso at fixed coupling

As o was increased, we found a transition at another ; — 0.16 in linear and log—log scale. Also shown is the best fit with
critical value of the noise strength showing that the the functionz ~ (o0 — o).
system does not separate beyond this criticahs an
example in Fig. 7 we show the exponenversuso
for g fixed and equal to Q7. The transition seems to  the two critical curves towardg = 0. We observe,
be discontinuous. interestingly, that the extrapolation of the two curves

We repeated this analysis for several valuegof  seem to meet a = 0; further investigation is needed
Interpolating the above described data for the critical to clarify the behavior of the noisy system close to
noise strength, we built the phase diagram for the g =0.
model shown in Fig. 8. The system separates in the
shaded area, that is it tends asymptotically to complete
phase ordering. Points in the white area correspond 4. Conclusions
to an asymptotic regime of the system where clusters
of the two phases are dynamical but their mean size In this Letter we have shown that additive noise
remains constant; only fos = 0 one has blocked acts as an ordering agent in this class of systems, i.e.,
configurations with clusters fixed in time. Our data for a suitable amount of noise the system may order
concerrg greater than 0.025, however we extrapolated even for values of the coupling strength for which no
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Fig. 7. The estimated growth exponentersuso at fixed coupling Fig. 8. The phase diagram ir_1 the plameg. The shaded area repre-
g =0.17.z goes abruptly to zero at = 1.2 showing that the system §ents the parameter region in which the system separates asymptot-
does not separate beyond this threshold. ically.
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