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Cost functions for pairwise data clustering
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Abstract

Cost functions for non-hierarchical pairwise clustering are introduced, in the probabilistic autoencoder framework, by the
request of maximal average similarity between input and the output of the autoencoder. Clustering is thus formulated as the
problem of finding the ground state of Potts spins Hamiltonians. The partition, provided by this procedure, identifies clusters
with dense connected regions in the data space. 2001 Elsevier Science B.V. All rights reserved.

Clustering methods aim at partitioning a set of data-
points in classes such that points that belong to the
same class are more alike than points that belong to
different classes [1]. These classes are called clusters
and their number may be preassigned or can be a pa-
rameter to be determined by the algorithm. There exist
applications of clustering in such diverse fields as pat-
tern recognition [2], astrophysics [3], communications
[4], biology [5], business [6] and many others. Two
main approaches to clustering can be identified: para-
metric and non-parametric clustering.

Non-parametric approaches make few assumptions
about about the data structure and, typically, follow
some local criterion for the construction of clusters.
Typical examples of the non-parametric approach are
the agglomerative and divisive algorithms that produce
dendrograms. In the last years non-parametric cluster-
ing algorithms have been introduced employing the
statistical properties of physical systems. The super-
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paramagnetic approach by Domany and coworkers [7]
exploits the analogy to a model granular magnet: the
spin–spin correlation of a Potts model, living on the
data-points lattice and with pair couplings decreasing
with the distance, is used to partition points in clusters.
The synchronization properties of a system of coupled
chaotic maps are used in [8] to produce hierarchical
clustering.

Parametric methods make some assumptions about
the underlying data structure. Generative mixture mod-
els [9] treat clustering as a problem of density esti-
mation: data are viewed as coming from a mixture of
probability distributions, each representing a different
cluster, and the parameters of these distributions are
adjusted to achieve a good match with the distribution
of the input data. This can be obtained by maximiz-
ing the data likelihood (ML) or the posterior (MAP) if
additional prior information on the parameters is avail-
able [10].

Many parametric clustering methods are based on
a cost function: the best partition of points in clusters
is assumed to be the one with minimum cost. Often
cost functions incorporate the loss of information in-
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curred by the clustering procedure when trying to re-
construct the original data from the compressed cluster
representation: the most popular algorithm to optimize
a cost function isK-means [9]. Starting from a statisti-
cal ansatzand invoking maximum likelihood leads to
a cost function which has been observed to work for
clustering financial time series [11].

It is important to stress the difference betweencen-
tral clustering, where it is assumed that each clus-
ter can be represented by a prototype [12], andpair-
wise clustering where data are indirectly character-
ized by pairwise comparison instead of explicit coor-
dinates [13]; pairwise algorithms require as input only
the matrix of dissimilarities. Obviously the choice of
the measure of dissimilarity is not unique and it is
crucial for the performance of any pairwise clustering
method. It is worth remarking that it often happens that
the dissimilarity matrix violates the requirements of a
distance measure, i.e., the triangular inequality does
not necessarily holds.

Folded Markov chains are used in the probabilis-
tic autoencoder framework to derive cost functions for
clustering [14]. Some examples of two-stage folded
Markov chains, and the corresponding algorithms for
clustering and topographic mapping [15], are thor-
oughly analyzed in [16], where it is also shown that
the cost function for pairwise clustering, introduced in
[13], may be seen as a consequence of Bayes’ theorem
and the requirement of minimal average distorsion in
a probabilistic autoencoder.

It is the purpose of this Letter to introduce a new
class of cost functions for pairwise clustering which
can be obtained, in the autoencoder frame, by re-
quiring maximal similarityinstead of minimal distor-
sion. We show that the cost functions here introduced
provide a non-hierarchical clustering of points where
dense connected regions of points in the data space are
recognized as clusters.

Let us now discuss autoencoders described by
one-stage folded Markov chains. Let us consider a
point x, in a data space, sampled with probability
distribution P0 (x); a code indexα ∈ {1, . . . , q} is
assigned tox according to conditional probabilities
P(α|x). A reconstructed version of the input,x ′, is
then obtained by use of the Bayesian decoder:

(1)P(x ′|α) = P(α|x ′)P0(x
′)

P (α)
.

The joint distribution ofx, x ′ andα, describing this
encoding–decoding process, is

(2)P(x, x ′, α) = P0(x)P (α|x)P (x ′|α);
owing to (1), the joint distribution reads

(3)P(x, x ′, α) = P0(x)P0(x
′)P (α|x)P (α|x ′)
P (α)

.

The conditional probabilities{P(α|x)} are the free pa-
rameters that must be adjusted to force the autoen-
coder to emulate the identity map on the data space.

Let d(x, x ′) be a measure of the distorsion between
input and output of the autoencoder. The average
distorsion is then given by

D =
q∑

α=1

∫
dx

∫
dx ′ P0(x)P0(x

′)P (α|x)P (α|x ′)
P (α)

(4)× d(x, x ′).
Moreover, lets(x, x ′) be a measure of the similarity
between input and output; the average similarity is
then given by

S =
q∑

α=1

∫
dx

∫
dx ′ P0(x)P0(x

′)P (α|x)P (α|x ′)
P (α)

(5)× s(x, x ′).
It is natural to postulate a one-to-one mapping between
values of distorsion and similarity,s = F(d), with
F a strictly decreasing function. A good autoencoder
is obviously characterized by a low value ofD and
high value ofS. However, we remark that the two
requirements Min(D) and Max(S), for reasonable
choices ofF , are not generically equivalent.

Now we turn back to the clustering problem. Given
a data-set{xi} of cardinality N , partitioning these
points inq classes corresponds, in this frame, to design
an autoencoder, withq code indexes, acting on data
space. We choose the encoder to be deterministic:

(6)P(α|x) = δα σ(x),

σ (x) ∈ {1, . . . , q} being the code index associated
to x. The estimate for the average distorsion (4), based
on the data-set at hand, is given bŷD = NHd [σ ],
where we introduce the HamiltonianHd for the Potts
variables{σi}:

(7)Hd[σ ] =
q∑

α=1

∑N
i,j=1 δασi δασj dij∑N

k=1 δασk

,
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whereσi = σ(xi), dij = d(xi, xj ). It turns out thatHd

is equivalent to the cost function for pairwise cluster-
ing, influential in the clustering literature, introduced
in [13].

The estimate for the average similarity is, similarly,
given by Ŝ = −NHs [σ ], where we introduce the
HamiltonianHs :

(8)Hs[σ ] = −
q∑

α=1

∑N
i,j=1 δασi δασj sij∑N

k=1 δασk

.

If we choose the autoencoder by minimizing the
average distorsion, then the best partition of the data-
set inq classes corresponds to the ground state ofHd .
If we choose it by maximizing the average similarity,
then the ground state ofHs must be sought for, instead.
Since both{dij } and {sij } may be taken positive, it
follows thatHd is characterized by antiferromagnetic
couplings between the Potts variables, whileHs is
made of ferromagnetic couplings. Denominators in
bothHd andHs serve to enforce the coherence among
the q clusters. In particular, without the denominator
the ground state ofHs would correspond to a single
big cluster.

The form of the functionF , determining the relation
betweens andd , has to be specified. In what follows
we consider two forms of this relation. A scale-free
relation

(9)sij = Fγ (dij ) =
(

dij

〈d〉
)−γ

,

depending on the exponentγ , and a scale-dependent
relation

(10)sij = Fa(dij ) = exp

(
− 1

2a2

(
dij

〈d〉
)2
)

,

depending on the scalea. In the formulas above,〈d〉 is
the average dissimilarity over all the pairs of data-set
points. The exponentγ will be restricted to assume
small values so as to characterize the corresponding
Potts model by long-range ferromagnetic couplings;
the scale parametera will be bounded in[0,1].

At this point it is worth stressing that minimization
of the distorsion and maximization of the similarity
yield, in the autoencoder frame, different cost func-
tions. The HamiltonianHd embodies the requirement
that pairs of distant points (largedij ) should belong to
different clusters. On the other hand, the Hamiltonian

Hs , for reasonable choices ofF , concentrates on pairs
of close points (smalld) and forces them to belong
to the same cluster. In other words,Hs may be seen
to implement the idea that clusters should be searched
for as dense connected regions in the data space.

We describe now the application of the variational
criterions for clustering, described above, to some ar-
tificial and real data-sets. We consider two optimiza-
tion algorithms to find the configuration of minimum
cost: simulated annealing [17] and mean-field anneal-
ing [18]. Both approaches associate a Gibbs probabil-
ity distribution to the functional to be optimized. Sim-
ulated annealing is a Monte Carlo technique which
samples the Gibbs distribution as the temperature is
reduced to zero, while mean-field annealing attempts
to track an approximation, to the mean of the distribu-
tion, known asmean fieldapproximation [19]. We re-
mark that an efficient mean-field annealing algorithm
for cost function (7), based on the EM scheme [20], is
described in [13]: the generalization of that algorithm
to (8) is straightforward.

In many cases cost functionsHd andHs have very
close global minima. For example, in Fig. 1(a) we de-
pict an artificial data-set generated by two overlapping
isotropic Gaussian distributions. In this case the nat-
ural measure of dissimilarity is Euclidean metrics, and
we useq = 2. In Fig. 1(b) the corresponding ground
state ofHd [21] is depicted: it is very close to the
Bayesian solution, i.e., the solution obtained drawing
the symmetry plane for the centers of the two Gaus-
sians. A similar partition is obtained minimizing, by
simulated annealing,Hs . As a measure of the differ-
ence between two partitions{σi} and{ηi}, we evaluate
the following quantity:

(11)ε = 1

N(N − 1)

N∑
i=1

N∑
j=1, j �=i

(δσiσj − δηiηj )
2

which counts the number of pairs of points upon which
the two partitions disagree. Using the scale-dependent
Fa , we find the ground state ofHs to differ from those
of Hd by ε < 0.01 varyinga in [0.05,1]. Analogously,
using the scale-freeFγ , with γ ∈ [0.1,1.5], we find
ε < 0.02 when we compare the ground state ofHs

with those ofHd . Hence, on this data-set, the cost
functions introduced above work similarly within wide
ranges ofγ anda values.
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Fig. 1. (a) An artificial data-set made of two Gaussian clusters, each consisting of 100 points. Empty squares and black circles refer to the two
different clusters. (b) Clustering result obtained by minimization ofHd (see the text).

We find a similar behaviour with respect to the
famous IRIS data of Anderson [22]. This data-set has
often been used as a standard for testing clustering
algorithms: it consists of three clusters (Virginica,
Versicolor and Setosa) and there are 50 objects inR4

per cluster. Two clusters (Virginica, Versicolor) are
very overlapping. The clustering result, withq = 3
and minimizingHd , consists of three clusters of 61,
39 and 50 points, respectively, with 90% of correct
classification percentage. We obtain exactly the same
partition by minimizingHs using a scale-freeF (with
γ ∈ [0.15,1.45]), and using a scale-dependentF (with
a ∈ [0.25,1]). For a ∈ [0.1,0.25] we obtain, in the
scale-dependent case, a slightly different partition with
clusters’ sizes 58, 42, 50 and correct classification
percentage 93.3%. These results show that also in
the IRIS case the pairwise clustering procedures by
distorsion minimization and similarity maximization
are almost equivalent.

A typical situation resulting in different answers
from Hd and Hs is depicted in Fig. 2(a). This two-
dimensional data-set is made of an elongated cluster
and a Gaussian distributed circular one. It is evident
that two dense connected regions are present, and that
the farthest pairs of points belong to the same con-
nected region. This is the type of data-set such that
minimizing the distorsion is not equivalent to maxi-
mizing the similarity. In Fig. 2(b) the partition we ob-

tain minimizingHd is depicted: it fails to recognize
the structure in the data-set. Let us now consider the
ground state ofHs with the scale-dependentF . For
a < 0.7 the ground state, depicted in Fig. 2(c), recog-
nizes with 99% accuracy the data structure. Ata ∼ 0.7
a transition phenomenon occurs: the configuration de-
picted in Fig. 2(c) ceases to be the global minimum,
the new ground state (Fig. 2(d)) being very close to the
solution byHd . In Fig. 3(a) we depict the efficiency
of the classification versus the resolution parametera,
for the scale dependentF , while in Fig. 3(b) we con-
sider a sequence ofa-values and we plot theε between
partitions corresponding to adjacent values ofa. The
peak ata = 0.7 is the indicator of the transition be-
tween global minima. Finally, in Fig. 3(c) the size of
the two clusters, versusa, is depicted. Concerning the
scale-freeF , in Fig. 4 the same plots as in Fig. 3 are
depicted, showing that thegoodminimum is stable for
a wide range ofγ .

The choice of the optimization algorithm deserves
a comment. All the results described above are ob-
tained by simulated annealing; we also apply the
mean-field annealing scheme, described in [13], and
we always find a configuration very close to the one
from simulated annealing, while spending less com-
putational time. This confirms that optimization al-
gorithms rooted on mean-field theory yield quickly a
good solution on these problems [18].
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Fig. 2. (a) An artificial data-set made of an elongated cluster of 500 points (empty circles) and a circular cluster of 200 points (black circles).
(b) Partition by minimizingHd . (c) Partition by minimizing scale dependentHs with a < 0.7. (d) Partition by minimizing scale dependentHs

with a > 0.7.

In summary, we address non-hierarchical pairwise
clustering and, working in the probabilistic autoen-
coder frame, we introduce a class of cost functions
arising from the request of maximal average similar-
ity between the input and the output of the autoen-
coder. Our simulations show that the partition pro-
vided by these new cost functions corresponds to ex-
tract dense connected regions in data space, and that a
relevant discrepancy with the partition provided by the
cost function introduced in [13] is to be expected in
case of non-trivial geometry of clusters. We note that
the approach to clustering here described has some

similarities with the method in [7]: indeed, in both
cases clustering is mapped onto a ferromagnetic Potts
model with couplings decreasing with the distance. In
the superparamagnetic approach, however,q is not re-
lated to the number of classes present in the data-set
and one obtains hierarchical clustering as the temper-
ature of the Potts model is varied. In the present case
q is the number of classes, which is supposed to be
known (non-hierarchical clustering), and the denom-
inators in the Hamiltonian, ensuring clusters’s coher-
ence, leads to a non-trivial ground state which reflects
data structure. We consider two classes of cost func-
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Fig. 3. (a) The efficiency (percentage of correctly classified points) versusa, obtained on the data-set depicted in Fig. 2 by minimizingHs with
scale-dependentF . The dashed line is the efficiency obtained by minimization ofHd . (b) Theε parameter (see the text), between partitions
corresponding to adjacent values ofa, is plotted versusa. (c) The size of the two output clusters versusa.

Fig. 4. (a) The efficiency (percentage of correctly classified points) versusγ , obtained on the data-set depicted in Fig. 2 by minimizingHs with
scale-independentF . The dashed line is the efficiency obtained by minimization ofHd . (b) Theε parameter (see the text), between partitions
corresponding to adjacent values ofγ , is plotted versusγ . (c) The size of the two output clusters versusγ .

tion. Scale-free cost functions depend on the exponent
γ , while scale-dependent ones depend on the scale-
parametera. Varyinga, i.e., changing the resolution at
which the data-set is processed, may give rise to tran-
sitions between different partitions; in the scale-free
case, the clustering output is fairly stable, with respect
to γ , in a wide range.

Further work will be devoted to test these new cost
functions on other real applications and to study re-
lated issues, such as the introduction of anadaptivere-
lation between distorsion and similarity, i.e., the func-
tion s = F(d) might be depending on the properties of
the data-set in a neighbourhood of the pair of points
under consideration. It will be also important to de-
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velop cluster-validity criterions to provide a means
to choose an optimalq value in situations where the
number of classes is ambiguous.
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