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Abstract. Within the framework of the transfer matrix formalism, a variational method
is elaborated with a constraint related to the fundamental role of the correlation length
near a critical point. The method is applied to a two-layer ferromagnetic film, made
of wo horizontal Ising planes interacting through a vertical coupling. The critical curve
of the model, as well as the correlation length above and near T are calculated. The
critical exponent »~ obtained agrees with the &pected two-dimensional exact value. For
the two particular values of the vertical coupling, for which there are numerical estimates
of T, through series analysis or the Monte Carlo method, an essential agrecment with
these estimates is found. Analytical expressions are given in the weak and strong vertical
coupling regimes. Non-perturbative aspects in the weak regime are analysed and a
singularity, of square root type, at zero vertical coupling is found. Also discussed is
the tramsition from the weak to the strong vertical coupling regime and its physical
manifestation through the rapidity with which the correlation length diverges at Te.

1. Introduction

An alternative variational procedure for the analysis of systems with an infinite num-
ber of degrees of freedom, has been proposed ina previous paper [1] This procedure

allows us to obtain exactly, in a simpie anaiyticai way, the correlation fength above
T., along a row or column for the anisotropic two-dimensional square Ising model
[1)- A further elaboration of the above approach and its application to a two-layer
ferromagnetic Ising film is reported in this work. We obtain results concerning the
critical curve and the correlation length above and near the critical temperature for
this model.

The two-layer Ising film which we consider, is made of two interacting isotropic
square lattices. The model is given by the Hamiltonian

m i
H=_J1§:E( 6J =+l,J+S,J =.J+1+uu t+11+u u‘1.1'+1)
i=1j3=1
ke n
U F N S n —_— LT PEEEEN
Y22 2 %ty (Ji >0, s; 5,0y 5 = £1). (L.1)
=1 j=1

J, 18 a horizontal isotropic coupling, while J, is the vertical coupling. Periodic
conditions on the two horizontal planes are unposed
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When J, = 0, the model is exactly soluble. In this case the Hamiltonian H, =
H{J, = 0] describes two uncoupled Ising planes or, equivalently, two free fermionic
fields [2, 8, 19). The partition function is then given by the Onsager solution. However,
when J, # 0, the model becomes non-trivial and quite interesting both from a
practical (with regard to the properties of the thin magnetic films) and a theoretical
point of view, with relation to the problem of two interacting fermionic fields. In this
case an exact solution is lacking,

In the current paper our attention is focused on the effects of the ‘coupling’ J,,
as this parameter is varied. The non-perturbative aspects for small J, are particularly
analysed, as well as the strong coupling behaviour. This type of analysis is made near
the critical point, within the framework of a proper variational procedure.

The general scheme of our approach is described in section 2. The variational
method is constrained in such a way as to take into account the fundamental role
of the correlation length when T is near 7. In section 3 we introduce a trial
effective Hamiltonian in order to describe the probability distribution for the spin
configurations on a vertical section of the layer. Then, the probability distribution on
two adjacent vertical sections induced by the transfer matrix, is analysed in section 4.
These two distributions are related to the classical numerator and denominator of
the Rayleigh-Ritz (RR) quotient. The basic equation of our approach is given in
section 5. It is based on the requirement that the above two distributions have the
same correlation length, A residual parameter of the effective Hamiltonian is fixed
in section 6, through a variational procedure. Then we give, in this section, the
critical curve and the correlation length for T near and above T,. In section 7
we consider the weak and strong coupling regimes and we give, in these cases, the
analytic expressions of our results. We obtain a square root singularity at J, = 0,
Furthermore we discuss the physical manifestation of a transition from the weak to
the strong coupling regime. Some comments are made in the last section.

We note furthermore that, within the general approach described in section 2, the
Ising films are the starting point for studying model with d > 3 [1].

2. Constrained variational method near the critical point

In this section we give an outline of the general framework of our analysis of the
model (1.1). The approach which we introduce is based on the transfer matrix
formalism.

Let us denote by (o,7) = {8y, .cerSyn; Uy --os Uy, ) @ Spin configuration on a
vertical section of the layer along a column of the horizontal planes. We call £ such
a type of section. The symmetrized transfer matrix L associated with (L.1), which
connects X with an adjacent ', is given by

L(o,7lo’,7) = T(a,7) exp[m S (sish + u‘-u:-)] (o' vy @)
=1
with

- 1, 1,
L(o,7)=exp [Q'K; Y (sisipn + wug) + 752 Zsi“.‘]

=1 i=}



Constrained variational approach 1o second order phase transitions 5425

and

J; )
I('=k_'}: ('E: 1,2).
We will be interested in the thermodynamic limit n,m — co. Let A, (which is
related to the free energy) be the highest eigenvalue of L and ‘Dl(a 7) the corre-
sponding eigenvector. If we consider the probability Plo,7)of a spin configuration

(a t) on a section X, regardless of the oonﬁguratlons of all other sections, we have
(3:4]

\pf(aa T)

Ploe, )= —__(\Ill,‘lll)

2.2)

where (¥,,¥,) =), ¥i(a,7). A consequence of (2.2) is that the pair correlation
function of our model, involving two spins of a section X, is equal to the pair
correlation function associated with the distribution W2(o, 7). It follows that the
singularity of A, at the critical temperature T, is strictly oonnected to the appearance
of long range order in the principal eigenvector &, of L.

Let us write P(o,7) in a Boltzmann form through an effective Hamiltonian
h{a,7) (in which we absorb a minus sign)

PRICAY

Plo,7) = VI6m] (2.3)
where Z(X,) =Y, , e*7). We can write h(o,7) in the form [5]
h(o,7) = Ay 3 (i85 + wttgyr) + Az D st + Ay D (844 + u8041)

i=1 i=1 i=1

F Ay D siuisi Ui + Ag D (8:8ipp + W) . ()]

i=1 i=1
where the expansion is organized according to the range and the number of spins
involved in a coupling. The effective coupling parametrs A4; are functions of the
temperature T or of K; and K.

Now, according to the Frobenius-Perron theorem, ¥,(o,7) is unique (up to
constant) and positive. Then, it follows from (2.2) that

¥, (o,7) = ehlom)/? 2.5
and
Z(Z,)=(¥,,¥,) (2.6)

It is us

{o,7),(¢’, ') on two adjacent sections X, and £!, regardless of the configurations
of all other sections. A generalization of (2.2) givcs [1]

U, (o, 7YL(o, Tl , 7Y, (o', T")
(¥, LY,)

ful to consider also the nrohability P(fr ra Y ofas

o consider also the probability P(o,r;0',7') of 2 spin

Plo,r;0',7") = 2.7)
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where

(¥, LY,) =" ¥, (0,7)L(o,7|o’, 7)¥ (o', ')

o, T o'y

= Z Z eblamio’,T) o Z(%,,T"). (2.8

o, 7 g, T!

The effective Hamiltonian h(o, 7; o, 7') of the lattice £, UX/, can be easily deduced
from (2.1) and (2.5). It follows from (2.7) that h(o, ), or the coupling parameters
A;, are determined by the marginality condition

Z P(o,7;6',7') = P(o,7). (2.9)

o', 1!
After the determination of h(e, 7), A, 15 given by

Z(z,,T,
Ay = LZ(—E—)_l (2.10)

Of course (2.9) and (2.10) do not reduce the complexity of our problem. However
we will refer us to them in our discussion of appropriate approximate procedures.

In order to have a problem that can be dealt with, we will consider approximate
descriptions h(o,7) of the effective interaction h(a, ), where only a finite number
of couplings are present. To fix the ideas, we will take, as an example

m

R(o,7) = A, D _(8;8i41 + %iUip) + A s

i=1 i=t

m m
+ Ay Y (8itigy F wisip) Ay D S84 Ui (211)

i=1 i=1

Formally, the structure of h(o,7) is obtained by truncating the expansion (2.4).
However the couplings /ﬂl',- will be, in general, different from the parameters A;
(i=1,...4). As a matter of fact, with the fixed structure (2.11), the actual values of
the A; will depend on the particular procedure by which (2.9) will be approximately

satisfied.
Let us introduce
6’1(097')=eﬁ(a'r)/2 ZD =("i’1,"f’1) 2N=(\-I~11,L\AI}1) (2.12)

and the probability distributions

[ 62(‘7’7)
Pp{o,7) = Rl A )
Zp

\Affl(cr, r)L(a, 1|0, T’)\'I;I(cr’, ')
Zn '

PN(G’ ‘T;O", Ti) =
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A particular recipe, by which the parameters A, can be determined, is given by the
requirement to obtain the best approximation to A,. This is the standard variational
method, which starts from the rigorous inequality

A, (2.13)

S
n

valid for every choice of the E,-, and considers

o~

=A, <A, (2.14)

oy
DN}

&

u
A;

—— T

This approach gives preference to the actual numerical value of A,. As a matter
of fact, we are more interested to its analytic structure. So it is useful to see the
meaning of the variational method from the point of view of our previous general
discussion.

Let us denote by (...}, and {...}, the expectation values calculated through
ﬁD(o‘, r) and IBN( o, 1;0',7"), respectively. The necessary condition for a maximum
of Zn/Zp

9 Zy

=0 i =1,...,4 2.15
Y (i ) (215)

leads to [5]

{(5:8i01)p = (8:8:01)ns (Siuip1)p = (8% N 2.16)

{(8;ugdp = (s;udbny (8,181 %iq1)p = {8iuiS i1 Uig1 )N

(by symmetry (u;u; 4 }p = (w; %1 )ns (%iSi41)p = (w8410 N )

So we see that the full condition (2.9), which leads to the equality, on X, of all
the correlation functions associated with P(a, 1) and P{a, 7; o', 7'), is replaced, in
the standard variational method, by an approximate marginality requirement which
involves only a finite number of short distances and low order correlation functions.

A consequence of the above remark is that (2.14) can be a reliable procedure, if
we are far from the critical point, since then large distances and high order correlation
functions have a negligible role, so that we have an effective reduction of the full set
of conditions imposed by (2.9). If, on the other hand, we are near T, there is no
trace in (2.14) or (2.16) of the physical and mathematical mechanism of a second-
order phase transition. Large distance correlations on £, and X, U X/, having the
same behaviour, are out of the content of (2.16).

However, when T is near T, an alternative procedure for the determination of
the parameters A; can be formulated, which allows us to overcome the difficulties
of the standard variational method when a large number of degrees of freedom are
effectively involved.

First of all, in order to be sure that we are analysing the model for T near T,
(as a matter of fact we will consider T > T,), we do not take the A as completely
free, but impose a constraint in such a way to be sure that h(o, r) leads actually
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to large distances correlations on ¥, and £, U £/. After this, the crucial problem
is to reduce the full condition (2.9) to some equations involving only the relevant
quantities associated with a second order phase transition.

From the analytic point of view, the critical point is characterized by a singularity
in A, at T.. A consistent description of this situation, when we consider the ratio
ZN / Z p Wwith an effective Hamiltonian h having large distance cormelations, would
require that the singular points of Z ~ and Z p be coincident. Now the relevant
quantity which is responsible of the singular behaviour is the correlation length. Then,
on the basis of the above natural analytic requirement, we are led to the marginality
condition that P, (o, ) and Py(o,7;0’,7’') have the same correlation length. Due
to the fundamental and unique role of this quantity when T is near T, we sum up,
with the correlation length equality (CLE) [1], a relevant aspect of (2.9) for T near
T.

In general, some residuai parameters, which we cali A‘U’m, wiil not be fixed by the
CLE equation. Further independent marginality conditions are then needed. How-
ever, having satisfied the crucial large distance condition, we can come back to the
variational inequality (2.13) and fix the residual A’ through

sup = ZN (2.17)
1A} Zp
In this way we arrive at a constrained maximum problem, with the CLE imposed on
the numerator ZN and denominator Z p of the classical Rayleigh-Ritz variational
method (RRVM). So, some kind of short range marginality conditions, compatible with
the CLE equation, will be also satisfied.

This approach will be completely developed in the following sections. After
the determination of the A we calculate the qaanhty to which we have essentially
addressed the full condition (29), that is the correlation length along a vertical section
I, which allows us to obtain the critical curve of our model.

As is well known, there are other variational approachs in statistical mechanics,
which do not make use of the transfer matrix formalism. A classical procedure, which
allows one to obtain closed form approximations, is the cluster variation method (CVM)
(see, for example, [6,7] and references therein). However also in this approach we
have a situation like that of the unconstrained RRVM; in principle the CvM approx-
imations are reliable in the absence of long range correlations [7]. As a matter of
fact, the Kikuchi version of the CVM, in the case of the two-dimensional square Ising
model, gives the same approximate critical point as the standard RRVM [6]. On the
other hand, in this case, the CLE equation allows us to obtain the exact correlation
length and then the exact critical point [1].

3. The trial effective Hamiltonian on a vertical section of the layer

Our explicit calculations are made by introducing, on a section X, the trial effective
Hamiltonian

B0, 7) =24 (sisi41 + i) + 2B (sipy + 4isip)

i=1 =1

+2CZS'*U" (3'1)

=1
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which is modelled on the original Hamiltonian H, except for the effective coupling
2B, which takes into account in the simplest way of the new types of couplings
resulting from the summation over the spin configurations on all the other sections.
A preliminary analysis of the case B = 0 was made in [1]. We will see that the
effective coupling B will have an important role.

As in (2.12), we associate with 'ﬁ,(cr, 7) the vector

U, (0, ) = eheoin)/?2 (32)
and the probability distribution

¥3(o,7)

— . 3.3
10 0,y) ¢

ISD!(C” T)=

By making use of the transfer matrix formalism, we give the correlation length £
of Pp, as a function of the parameters A, B and C.

The function \T’f, x {o,T) can be written in terms of a transfer matrix
t(s,, s,|s},s3) which connects two adjacent segments of the vertical section .
We have the 4 x 4 matrix

t(slvszlsi"g’?) = (31, 52!t|3'1a3'2)
= eC%t% exp (2A(s,8) + 555%) + 2B(5, 5, + s58,)) %1%, (3-9)

Since ¢ commutes with the parity operator, its eigenvectors have a definite parity. As
a consequence t splits into two independent 2 x 2 blocks, The eigenvalues associated
with the positive parity are given by

e’“ cosh4(A + B) + e *¢ cosh4(A - B)
+ {[e*“ cosh 4{A + B) —e ™€ cosh4(A — B)}* + 4}/2 (3.5)

while those of negative parity are

2e2C sinh 4(A + B) (.6)
and

2¢~?Csinh 4(A — B). G.7

We will call A, the highest eigenvalue with positive parity (this is given by (3.5) with
the plus sign), and A, the highest eigenvalue with negative parity. In the region
T > T, the correlation length £ is given by [8]

1 A
3 = log I:— (3.8)

For T  T., we must have A, = A,
Now, a ferromagnetic behaviour of our trial Hamiltonian demands that

X, = 2e*Csinh 4(A + B). . 39)
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Furthermore we require that A be positive and such that

A > |B|. (3.10)
From (3.7) and (3.9) we deduce also
2C+4B > 0. (3.11)

For T > T, but near T, X; and A, must be nearly degenerate. From (3.5) and
(3.9) it follows that this happens when A or B, or both are very large and positive.
However (3.10) demands that, in any case, A must be large and positive, with

lim A = 4oco. (3.12)

T—TF

The effective coupling A is the relevant parameter of our trial Hamiltonian &, (o, ).
It is useful to introduce the following notation

zme %A w=e 2B 5= e=C
(3.13)
A = e2C+4(A+B]X] A, = ezc+4(A+B)3;2
We have then
MM
Ay A,
_ 1 +w4z4+ ,74(w4 + z") + {[1 +u4z4 _74(w4 + 24)]2 + 16‘\/4w4z4}1/2
- 2(1 — wiz?)
(3.149)
For T near and above T, z is small and positive, with
lim 2=0 (3.15)
TeaTet
and
lim ;\,l = +1 (3.16)
z—0t A2

4. The induced probability distribution on two adjacent vertical sections

Now, according to the general discussion of section 2, we fix attention on the proba-
bility distribution
¥,(0,7)L(o, 7le!, T) ¥ (o, 7))

Prlorichr) = (@5 L2
1t 1t

(a.1)
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which is induced on two adjacent sections X, an X, by the trial effective Hamiltonian
h(o,7).

From (2.1) it follows that with this distribution is associated the 16 x 16 transfer
matrix

{815 83,83, 34!‘2'3’1’ 3‘2’ 5‘3! Sq)

=I(51s-92,33a34)

X exp ((A + 1K) 24: 5;8 4+ B(s,sh+ 5,8) + sg84 + 543'3))
‘st shshys)) “2)
with
(8,584, 53,8,) = exp ((C + LK) (8,5, + 5535,) + LK (5,5, + 5555)) .
We will analyse the properties of £ which are relevant for our approach.
First of all, by introducing a proper orthonormal basis, the operator £ splits in

the direct sum of two 8 x 8 matrices, which we call £* and €~. These give the
eigenvectors of ¢ with parity +1 and -1, respectively.

L I gy
4 1

and the highest eigenvalue of €7, which we call n,. From these we can deduce Z,,
and the correlation length on £ U X/, associated with (4.1).

By exploiting the other symmetries of £ (which are related to the exchange of s,
with s, and of s, with s,, or (s,,s;) with (s;,s,)) we have that #», is the highest
cingenvalue of a 5 x 5 matrix, while 7, is the highest eingenvalue of a 2 x 2 matrix.

It is useful to write

e =exp(4(A+ B)+2C+ K, +4K,) 7, ,. (4.3)
By making use of the notation (3.13) and of the following definition

v, =e K1 vy = e~ K3/2 4.9
we obtain 7, in the form
Ty = %(1 - V:‘*’zzz){l + Ul(wz)2 + Vl('Yuz)z(wz + V122)

+ (14 2y (w2)? = (1)1 (@ + 1,29))* + 16(wy20)Y] /)
4.5)

The most difficult part of the calculations is the determination of 7, which is the
highest eigenvalue of the 5 x 5 Hermitian matrix k., given by

hy =14 viwts? By = 2(vwz)? hyg = 2(v vyywz)?

hiy = 2v)(vyywz)? hys = 2v vpywz(1l + vywiz?) hay = ViR,

hys = vihyg has = hig hys = v1hys has = vivgy (w' + vi2*) (4.6)
has = viv’hyg has = 20 (vy7) walw® + v 2%] hyy = h/vi

has = has /v hyy = 2hyz + 11 (17)*(w? + 112%)(1 + v0%2%)
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However, since we are interested in T above and near T, where z is small and
positive (see (3.15)), we can calculate 7;, in an almost analytic way, by making use of
the standard perturbation theory. This leads to an expansion of 7, in powers of z2

M= 14 ageag ot age a4 @)

where the coefficients a; are functions of w,~,v,,v,. We will see that, in order to
develop our approach, we need at least terms of order of 2®. Except ¢, and a,,
the other coefficients are given by cumbersome analytic expressions, which have been
determined by making use of ‘Mathematica’ [9].

From (4.5) we deduce easily an analogous expansion of 7,

Tp=14byz2 4 byzt + byz® 4 b 254 - . (4.8)

It turns out that b, = a,. We have, as in (3.16),
lim =L =1. 4.9

For z? # 0, we have a splitting of this degenerate eigenvalue which, however, appears
at the order 2%,

5. The spectral gap equality for T near T,

We call log n, /n, and log A, /X, the spectral gaps of the transfer matrices £ and t.
The basic equation of our approach is the spectral gap equality, which we write in
the form

M_m

. 5.1
Ay M G-

For T > T, (5.1) is equivalent to the correlation length equality for the distributions
f'm(a,f) and PN.i(O’;T;O",T’). For T £ T, we must have A, /X, = n,/n, =1,
according to the mechanism of the spontaneous symmetry breaking. It is useful to
write (5.1) in the form

~

Mot 5.2)
Az 772
We will study this equation for small values of z.
From (4.9), (4.10) and a,; = b;, we deduce
%=1+r124+r2z6+7'328+"'- o)
2
We make an analogous expansion for XI / 3:2. From (3.14) we have
%=1+v124+v3za+---. 6.4
2
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We note that the expansion of X /)\ involves only powers of z%. On the other
hand, in (5.3) there generally appear odd powers of 22, after the term r,z%. Then,

before imposing (5.2), we implement the trial Hamiltonian Et(a,r) by requiring
that, at least for T" near T, %, /7, and A, /), have the same analytic behaviour as
functions of our relevant parameter A. So we are lead to the equation

rylw, v, ,1,) =0, (5.5)

It is useful to see the meaning of (5. 0.5), with regard to the discussion in section 2.
Starting from the induced distribution Py, (o, 7:0',7') given by (4.1), we come back
to the section X, and consider the marginal Hamiltonian h’( o,T) given by

R;(“V")

———— =) Py,(a,7;0', 7). (5.6)
@~

a-t’.rl

Now, as it was expected, 71’(0 7) has a pgeneral structure different from that
of h Ae,7). There are in h’(o- 7) many couplings that are absent in h Jlo, ).

Therefore the equation h’(cr )= h (o, 1), equivalent to (2.9), cannot be satisfied.
However, as long as we fix the attention on the correlation length and we are near 7 T,

we can describe h/(o,7) through an equivalent effective Hamiltonian R, o havmg
the same spectral gap (log 7, /7j,) and a small number of effective couplings. Now,
if we impose (5.5), the equation (5.3) can be reproduced up to the order 2® through
an TL; o having the same structure of &,(o, 7).

In order to analyse (5.5), which can be considered as a constraint between the
parameters B and C, it is useful to introduce the quantity « such that

€ = yw with 0<e<1 .7

due to (3.11). Then, (5.5) can be written in the form of a cubic equation in the
variable w?. It turns out that there exists one and only one solution of this equation
which is positive and continuous for &, Yis ¥ € (0,1). The value of the parameter
w, 0 determined, will be denoted by w”. It is a function of «, vy, vy, fOr which we
have

0 < w'e,v,vy) < 1. (5.8

Some typical behaviour of w*, as a function of &, is shown in figure 1.

We can see now the role of the coupling constant B. Without this parameter,
(5.5) cannot be satisfied.

Having implemented our trial Hamiltonian A (o, 7), we proceed to impose the
condition (5.2). From (5.3), (5.4) and (5.5) we obtam

2ey(e, v, 1) + eo(e,v,15)2Y = 0 (5.9)
where

cole, v, 1) = (W', e, vy, 1) — vy (W', €)

c2(€1Ul!u2) = TS(""’*aEaVl’Uz) - ”3(‘*'»’*,5)-



5434 L Angelini et al

0.6

w'(e,K,0)

0.5 I

0.4

0.2

0.1

Figure 1. The solution w* of (5.5) as a function of £, for p = 1.

It is useful to consider (5.9) as an equation for z. As we see, we always have the
solution z,, = 0 (that is A = +o0). However (5.9) can also have a solution, which
we call z4,, such that z, is positive and small.

In order to state the existence of z,,, we make use of the parameters i = K,
and p = K,/ K,. Then, we consider the ¢; as functions of e, K, p. As we see from
(3.9), the existence of 2z is controlled by the quantity cy(e, K, p).

Now, for fixed p, co(s K, p) has the following property: there exists a value
K(p) of K, which is umque, such that for K > K(p) cle, K, p) is nega-

tiua fry o 11+ fn " o~ Ifn s T AY tha or l
tive 10T uvu:y E € lU,lJ, 0 < ll\P}, vul ncar FARNA T tnere j.a an uj.u:lval

I(K,p) = (e(K,p),e,(K,p)) of &, with 0 < &,(K,p) < £,(K,p) < 1, such
that for € € I( K, p), ¢y(e, K, p) is positive, while for e ¢ I( K, p) is negative. The
e;(K,p) (i = 1,2) are the unique solutions of the equation

cole, K,p) =0 (5.10)

for K < K(p). The difference «,( K, p) — £,( K, p) goes to zero as K — K{p), so
that

lim e,(K,p)= lim &(K,p)=e(K(p))=¢. (5.11)
K—K(p) K—FK(p)

Then, for K near and below K(p) and ¢ € I{ K, p), c4(e, K, p) is positive and
small.

For fixed p, it can be concluded that there is a unique set S in the (JK,¢)
plane, where c,(e, K, p) is as small as we want (positive or negative). We can write
S = Ix x I, where I3 is an interval of values of K which is a neighbourhood of
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K(p) , while I is an interval of values of ¢ , which is a neighbourhood of 2. A
typical behaviour of cy(e, K, p) is shown in figure 2, while typical regions in the
(K, <) plane, where cy(e, K, p) is positive, with the boundary determined by the
e;( K, p), are given in figure 3,

0.0050
p=1 . ) p=1 b p=1
1 K=0.310 b K=0.31 : K= 0.312
G. 0025 - -
/) :
0
3 C C
x [ L
2 -0.0025 - -
= ' i [
i - I
-0.0050 - -
-0.0075 | s -
BY e 3+ N 1 P N | N L. i
: 0 0.5 10 0 0.5 10 0 0.5 1.0
£ E £

Figure 2. The behaviour of co in (5.9), as a function of &, for p =1 and three values
of K, which include K(1)=0.311.

1.2

0.8

06 r

0.2

o L I .
o 0.1 0.2 0.3 C.4 y 045

Figure 3. The domains in the (e, K') plane, for three values of p, bounded by the e
and K axis and by the continuous lines, where ¢, is positive. The dashed line breaks
the continuous curves into two branches, which give the solutions £, and ¢ of (5.10).

Now, (5.2) can be satisfied by small values of z, only if (K,e) € S. We can say
that for (K, ) € S, we are in a neighbourhood of T {or K). Furthermore we have
that c,(e, K, p) is distinct from zero at the point (K (p),%). In fact it turns out that

¢y = ¢,(%, K(p), p) is finite and negative. This function of p is given in figure 4.

So we can conclude that there is a point (A (p),%)_in the (K, ) plane, which

is unique, such that there is a neighbourhood S of (K{(p),€) where (5.2) can be
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Figure _;4. The coefficient cz. of (5.9), as a function of p, when calculated at &£ = € and
K = K(p}.

satisfied by small values of z, which can be obtained through (5.9). Furthermore

for KK > k'f n\ and f f( =-\ c 5. (5.0 has onlv one accentahle {ie, non-nesativel

Avi Eh Toidy (el ) Gidlas aiay vaie Guvaapluih jieve “pHiEvY )

solution gwen by zor(e K , p) = 0 . This type of solution exists also for K < K K(p),
if e € I{ K, p). However for K < K(p), there is also a positive small solution

co(e,ff,p))‘“

zds(ss I\",p) = (_02(8 I ,0)

provided e € I( K, p).

From the previous results we deduce that for K > K (p), we are in the ordered
phase, so that K, < K(p). For K < K(p), the kind of phase of our system is
related to the value of the parameter . If e ¢ I{ K, p) we are again in the ordered
phase, while if e € I( ¥, p) we are in the disordered phase.

As we see the spectral gap equality gives a right framework for the analysis of a

sacond order "}hase translucn He‘l‘reuer’ in nrrlpr tn ohtain an nnnmhugnne rlper-np\hnn

for K < K(p), we have to fix . The variational method allows us to complete our
analysis within the above framework.

(5.12)

6. The critical curve and the correlation length, above and near T, along a vertical
section

We come back to the RR quotient of section 2 which, for our trial Hamiltonian, is
given by

(¥, LY,,)

e = 6.1)
(¥, ¥y,) (

In the limit m — oo, we have

{(\l'“,L\I’")} - ™ = 1 ﬁl‘ (62)

(W10 ¥1e)
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For K < K(p), we consider the sup of this quantity, with respect to the residual
parameter € not fixed by the spectral gap equality. This is a constrained variational
procedure with equality constraints given by (5.5) and (5.2). It is equivalent to some
marginality condition at short distances, but not to the full set of short distance
equations in the first line of (2.16).

Now, for K < K (p), but near K(p), we can write

11.:....*_’14,4_(_&2 (e, K,p) (6.3)
Al ()2 ( 1—vrie? )
where z*(¢, K, p) is the non-negative solution of (5.9). This equation is obtained by
expanding 77, /A, in powers of 22 and by taking the leading term.

So we see that the sup of 7, /), automatically selects the solution 2, (e, K, p)

given by (3.12), so that

™
sup —
;e(o M

4 4(evyry)? (_ (e, K, P))%] (6.4)

p —_—
ccl(K,p) (h¥)? [ 1 -y v3e? (e, K, p)

The last sup gives for K < T("(p) a strictly positive value to 2*(e, K, p} and it

allows to fix in a um-.luc way the value of , where the maximum is attained. We

denote this values by e*( K, p). For K’ < K(p), but near K(p), we can write
e*(K,p)~ %(5,(!\',p)+52(1{,p)). 6.5)
From (5.11) we have

lim e*(K,p)=E¢&. {6.6)
K—K(p)

So, from the above procedure we deduce that, for K < K(p), we are in the
disordered phase, with z having the positive value z,,(e* (K, p), K, p) and such that

K

LR |

m = z4,(e"(K,p), K,p) = 0. 6.7

Then we conclude that the critical point is given by
K. =TK(p). (6.8)

Furthermore, for K below and near K, we obtain, from (3.8), (3.14) and (5.4),
the correlation length £( K, p) along a vertical section

1 48 4200 (1-7)
f(klap)—h 1-¢&

where only the leading term has been taken into account, and & is the value of w*
at e =7F,

It can be verified that, if the parameters 2 or A are unconstrained and we
consider the sup of 7, /A, when they are freely varied, the maximum is attained
aiways for values of z which are not small. The standard unconstrained variational

z235(e" (K, p), K, p) (6.9)
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method, giving preference to regions where z is not small, is incompatible with the
mathematical mechanism of a second order phase transition [3] and, as a consequence,
with the CLE condition in the critical region, On the other hand, it can also be verified
that, in the set .S, each of the short distance conditions in the first line of (2.16),
cannot be satisfied separately.

We give in table 1 some values of K (p) predicted by (6.8). In figure 5 we give
also the critical curve, expressed as an equation

K. = f(Ky) (6.10)

where the critical value of the vertical coupling is considered as a free parameter in
the range (0, +o00).

Table 1. Numerical values of the critical point K.{p), predicted by (6.8), for several
values of p.

P K.

0.0 0.440687
0.2 0.380650
0.4 0.353656
0.6 0.334150
0.8 0.320901
1.0 0.311067
2.0 0.278453
4.0 0.246 777

X (.44

0.4

038 [

028 [

0.24

Olz_A L I ! !

Figure 5. The critical curve K. = f{K32.)} of the two-layer Ising film, obtained from
(6.8).

If we denote by

I{::? = _% log(ﬁ _ ]_) = (0.440 687
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the critical point of the two-dimensional isotropic Ising model, we obtain from (6.8)

~d=2
hc

lim  f(K,. )= K*=*? clim f(K) = (6.11)

Ka.—0
in accord with the expected rigorous results.

Besides these limiting values, correctly given by our approach, there are no rig-
orous results about the critical curve of a two-layer Ising film. Numerical estimates
of the critical temperature have been obtained in the two particular cases p = 1 and
p = 2. The last case corresponds to periodic conditions in the vertical direction. It
is useful to make a comparison between our predictions and these estimates.

In the case p = 1, that is K, = K, = K, by analysing the high-temperature
series expansion of the susceptibility through the standard ratio or Padé approximant
methods [10), the following value is obtained

(tanh K)oz = 0.3020 £ 6. (6.12)

There is also, for p = 1, a result based on the Monte Carlo calculation of the
magnetization [11], which gives

(tanh K )pye = 0.2980. (6.13)

We have a small discrepancy between the two estimates, whose origin has not been
clarified. It has been argued that the uncertainty in the series calculations is bigger
than that quoted in (6.12) [11]. For p = 1, our constrained variational approach gives

(tanh K)oy = 0.30141 (6.14)

which agrees completely with the series estimate.
In the other case p = 2, that is K, = 2K, = 2K, there is only the estimate of
T, deduced from the expansion of the susceptibility [10]

(tanh K )gg = 0.2682 111 (6.15)

{(tanh K)oy = 0.27147. (6.16)

If we were sure of the uncertainty reported in (6.15), then we have a discrepancy,
but very small (~ 0.4%), between the two calculations. It would be interesting to
see what kind of result the Monte Carlo approach gives in this case.

By making use of (5.12), the correlation length {( X, p), given by (6.9), can be
written in the form

145+ 20 (1) (- e(e*(K,p), K, p)
(Kp) ~  1-# ( e3(%, Kor ) ) (K<K) (617)

with *( K, p) given by (6.5).
Now, for fixed p, as K goes to K, we have that ¢ (¢*( K, p}, K, p) tends to
zero linearly, so that we obtain

UC
§(K,p) = K-K (6.18)
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for K below and near K, where o is a constant which depends on p. From (6.18)
it follows that the critical exponent v, which describes the singular behaviour of £
near K, is given by

v=1 6.19)

in accord with the expected two-dimensional value which is exactly known [8).

The above result raises a problem if there is some contact of our approach with
the renormalization group (RG) method [12]. Eventually, a proper comparison could
be made with the phenomenological renormalization [13] where, in the absence of a
magnetic field, only a thermal field is considered. As a matter of fact, we note that in
our analysis the parameter z has the role of a thermal field, the critical point being
given by the equation z = 0. Morcover, if we refer to the effective Hamiltonians
on £, and ¥, UZX!, we can argue that 2 = 0 (that is A(T.) = oo) gives also the
condition for a fixed point of the renormalization transformations, according to the RG
treatment of the onc-dimensional Ising model [14). However, no scale factor related
to RG transformations does appear in our approach. Then, on the one hand, we have
an equation (i.e. (5.1)) for the thermal field, on the other hand the link between this
quantity and the correlation length is obtained through a further equation (i.e. (6.9)).

Coming back to (6.18), we see that the divergence of £( K, p) at K, is controlled
aiso by the amplitude o, which can be deduced from (6.17). This quantity, considered
as a function of K, is given in figure 6. As we see, we have a sharp maximum
of o, for a particular value K3, of K, with K3 ~ 0.201. This behaviour of o,
predicted by our approach, is related to a transition from the weak to the strong
coupling regime, which will be discussed in the next section.

¢ 04 F
0.35 |
0.3

0.25 f

o 1 1 PR | L L L 1

0 c.4 0.8 1.2 1.8 2 2.4 2.8

Figure 6. The ampiitude o of the correlation length, as a function of K.

7. The weak and strong coupling regimes

A relevant aspect of our approach is that, in the two regions of weak or strong vertical
coupling, the analysis can be made in a complete analytical way and the results can be
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given by simple expressions. In the following we will call simply coupling the vertical
coupling K, which is associated with the interaction between two Ising planes or two
fermionic fields.

In the strong coupling regime we obtain for the critical curve

K3=? 2-1 2542 — 36
K= f(K) = 2 + v2- e~ ?Ka 4 v2 ety

2 4
= 0.220343 + 0.207 107e~ 52 ~ 0.161 165e 4 4 ... (1.1
while, in the weak regime, we have
- \/ 251/2 -
lczf(K'.’c):I(::i - VI(2C m—-—s———ch-f-
= 0.440 687 — 0.153 842\/ e ~0.40841K, +---. (7.2)

From the last equation it follows that there is a singularity at zero coupling, which
is predicted to be of square root type.

We note that, if we give the critical temperature as a function T_(J,) of the
vertical coupling and write, for small J,

T,(Jy) - T.(0) x J37¥

where ¢ is the shift exponent [15, 16], we obtain that, in our approach, 1 = 2, On the
other hand, on the basis of the generalized homogeneity postulate [16], the behaviour
near J, = 0 can be described in terms of a crossover exponent ¢, which is associated
with a crossover temperature. It can be argued that ¢ = 1. Renormalization group
arguments [17, 18] give support to this equality and allow us to obtain, as can also be
deduced from dimensional considerations, ¢ = vy = 1.75 (the susceptibility exponent
of the two-dimensional square Ising model).

As we see in (7.1), the behaviour of the strong coupling expansion is very different,
being given in terms of very different analytic functions. As a consequence, we can
expect that there is a value of K, around which a transition occurs between the
strong and weak coupling regimes. The problem is how to characterize this transition
and what its physical implication is.

If we ook at the critical curve, which is a smooth monotonous decreasing function
of K,_, there is no signal of such a transition. The situation is different if we analyse
the behaviour of the effective coupling parameters of our trial Hamiltonian &,(a, 7).
We fix the attention on the critical point, where A — o0, and denote by B, and
C. the values of B and C at this point. In the strong coupling regime we have

2B, = K, — 280 - 3v2) | 71\/57- 122 oo .

= K, + 0.138959 — 3.084 405e 2K 4 ... (7.3)
20, = Ky - log(2 (\55— 1)) (o7 5v/B)em 2K ..

= K, + 0.-694 1132+ 0.0710878e~ 22 ... (7.4)

We see that, at the critical point, for large values of the coupling K,  between
the two horizontal planes of our model, the parameters 2 B, and 2C,, which describe
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the effective vertical coupling between the two horizontal lines of a section Y, have
nearly the same value of X,.. There is only a small additive renormalization effect.
In this respect, the strong coupling regime exhibits a simple behaviour. On the other
hand, for small K, , with

= log(1 — 3@)
we obtain
31/7 (675 + 251v2) 231332 + 95 829,/2
=_Y0 JE
2B, = 2 + 392 Ko+ 76 832 Ko+
=0.613974 4 0.649824/K, — 4.774 764K, + - (7.5)
and
5¢/7(19 + 3v/2) 6483./2 — 130784
=V, VK K
2C. ot 196 2t 38416 2t
= —1.22795+ 0.32539/K,_+3.1656755K,_+ ... (7.6)

Again there appears the square root singularity at K, = 0. But we have a further
relevant phenomenon which makes the weak regime more complex and interesting.
First of all we note that, for sufficiently small values of K, _, the effective vertical
coupling 2C, involving pairs of nearest-neighbour spins, becomes antiferromagnetic,
while the other vertical coupling 2B, involving the necxt-nearest-neighbour spins,
remains ferromagnetic. As a consequence some kind of frustration appears near
K,. = 0. However the ferromagnetic component is dominant, in the sense that, for

K, # 0, we have always
2C. 4+ 4B, >0 X))

in agreement with (3.15), so that the global effective interaction between the two
horizontal lines of a section }_,

2Bc Z(siui+l + us“si-l-l) + 2Cc Z S;uy

i=1 i=1

is ferromagnetic.
The second aspect of (7.5) and (7.6), which is related in some way to the first
one, is the finite value of B, and C_ as K,., — 0

2B.(0) = llm 2B, =- %

2c—0
2C.(0) = lim 2C.=V,.
e

Thin sani 14 io 11 nnnésncd anth tha nai
LIS TESuil 18 ifl CONrast wiln e

tends to zero, the effective coupling B, and C, both also tend to zero. However,
happens that

2C.(0) + 4B,(0) =0 (7.9)
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so that, when the two horizontal planes become uncoupled, the net effective interac-
tion energy between the two horizontal lines of a section },, tends to zero. We can
say that the effective vertical coupling of longer range, 2B, is always ferromagnetic
and remains finite as K, — 0%, due to some hysteresis mechanism. This fact, how-
ever, forces the other effective coupling 2C, to become antiferromagnetic, in order
to have a vanishing effective interaction energy when K, tends to zero. The math-
ematical origin of this phenomenon is the equation (5.5), which cannot be satisfied
for w=1 (that is B = 0).

From the analysis of the effective parameters, a physical picture emerges, which
is quite different for the weak and strong coupling regime. It is very interesting, then,
to determine where and how the transition between the two regimes occurs. In the
figures 7(a) and 7(b) we give 2B_ and 2C, as functions of K,.. Both curves show
clearly an upper and a lower branch associated with the strong and weak regimes,
respectively. The transition from the upper to the lower branch happens in a very
steep way, around the point K73 ~ 0.220, where both the derivatives of 2C_( K,.)
and of 2B _( K,.) get their maximum value. We see also that the transition, which
looks like a smoothed jump, starts from the point K. ~ 0.270 where C. is zero.

R .
& !

—
[
=

1

0.9

2.8

0.7

1 1 L L Atnk

[ 0.1 0.2 03 0.4 0.5 0.6 o] 0.1 0.2 0.3 0.4 0.5 C.6
Ky ) LY

0.6

Figure 7. The effective coupling paramelers 2 B: (a) and 2C; (5)J at the critical point,
as functions of K.

Now we note that, in the interval where the behaviour of both 2B, and 2C,
indicates the above transition from the weak to the strong coupling regime, we have
also the point K3, where o gets its maximum. This maximum is an imitation of a
mechanism analogous to the divergence of the correlation length at the critical point.
It refers, however, to the rapidity o  with which the correlation length diverges at
K. This further phenomenon of the appearence of the maximum, provides us with
a physical means through which, in principle, the transition from the weak to the
strong coupling regime can be detected and located.

For small values of K, , o, is given by

o _3+\/§+ 54 — 38y/2
<7 32 1254

245+196\/§ -
— VK, + -
><(12701+9652\/2—+l (\/5 1)) 2¢c

=0.137944 + 1.046 83/, + - -- (1.10)
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while, in the strong coupling regime, we have

85 + 1612 69v2 — 53 Y
O = - 1(2 e 3<
392 98log(1 + v/2)

4701v/2 - 6928
2744
=0.27465—0.516 132K, e™?%2 1 0.101961e" 2= ... . (7.11)

a—2Ka. + -

We note that, if we take initially X, = 0, we deduce from the equation [8]
E%:L’(K*—K) (7.12)

that 00 = 1/4. Here £° = £(K, = 0) and e~2X" = tanh K.
On the other hand, from (7.10) we obtain

KET(H g, =~ 0.138 # o (7.13)

This result is a physical manifestation of the finiteness of the effective parameters
B, and C, when K,_ tends to zero, as expressed by the limits (7.8).

8. Conclusions

The approach proposed in this paper allows us to obtain quite reliable results which,
on the one hand, are under control from the analytical point of view, and on the other
hand are carriers of interesting qualitative physical pictures. This is a consequence of
the particular role of the eigenvector ¥,(e, ) of the transfer matrix, on which we
have focused our attention. From the point of view of quantum field theory ¥ (o, 1)
has the role of the vacuum state. So our results on the effective parameters B, and
C, can be useful with regard to the problem of the non-perturbative aspects of the
structure of the vacuum state.

A nl mntivatinn nf th alia
A physical motivation of the reliability of cur approach can be the analogous pro-

cedure followed in the low-energy quantum physics, where simple effective potentials
(harmonic oscillators, double wells, ...) are introduced, in order to obtain a good
description of the low part of the spectrum. As a matter of fact we consider in this
paper, through h,(o,7), a kind of effective potential of the simplest form, having
the property to reproduce the energy gap between the ground state and the first
excited state. However, it would be relevant to have, besides the heuristic arguments
developed in this paper, a more rigorous basis with some control on the results. We
will be faced with this problem in future work.

For T > T, besides the correlation length it would be interesting to calculate also
the other important physical quantities, like the heat capacity and the susceptibility.
With regard to the latter quantity, we have to introduce a small external magnetic field
and, as a consequence, we need a modification of our trial Hamiltonian. The same
procedure is required for T < T, if we want also to calculate the magnetization.

However, the heat capacity could be determined approximately through the second
derivative, with respect to T, of the log of the RR quotient (6.1), which gives an
approximation to the free energy. But, even if %, and A, are singular at the same
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point, we obtain a poor approximation to the free energy near the critical point.
In fact, from (6.3) and (6.8) we see that we would obtain a free energy whose
singular part does not satisfy the scaling relation ~ (1/£)¢ [12). The Rayleigh-Ritz
approximation to the free energy, while allowing us to get stability for K < K(p)
with respect to the residual parameter e, seems incompatible with the full content of
the scaling hypothesis.

In order to obtain a reliable heat capacity we need an improvement upon the
RR quotient which we have considered. In principle, if we consider the Hamiltonian

ﬁ’t(cr, ) given by (5.6) and the vector

b (o,7) = exp(hi(o,7) ~ Lh,(a,7)) x (L, )(a,7) @.1)
(ﬁi’in L~¢1t) 8.2)
(b100H10)

would lead to an improved calculation of the free energy [19]). However, we have to
check that the numerator and denominator in (8.2) have the same correlation length.
This problem can be avoided if we consider an intermediate step. Let us write (5.6)
in the form

Z \'I‘}“(U,T)L(O',T’G',T’)\—I‘;lt(o", ™) = Mﬂlexi(mr) (8.3)
(W9,, ¥

of,r!
with

(Wi, Wh) = Do ehon),
o,T

Now, to the extent that E;( o, 7) is effectively described by E,(o, 7) as far as we are
concerned with spin configurations having long range correlations, we are led to infer
from (8.3) that

(W, LYy)

(W30, ¥1e)
manld ha 0 menra Aanwmoictant
LUUIU Uvw 4 LHIVIW WAL LWL
course, the numerator and the denominator in (8.4) have the same correlation length.
This and the other problems mentioned above, as well as the case of higher

dimensions, will be investigated elsewhere.
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