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Abstract

We show that a general purpose clusterization algorithm, deterministic annealing, can be adapted to the probl
identification in particle production by high energy collisions. In particular, we consider the problem of jet searching in eve
generated at hadronic colliders. Deterministic annealing is able to reproduce the results obtained by traditional jet algorithm
and to exhibit a higher degree of flexibility.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In high energy hadron–hadron collisions, eve
with high transverse energy are characterized
highly collimated particle jets, reflecting hard scatt
ing processes at parton level. Radiation and pair p
duction processes hide the information on the orig
partons momenta. To bridge the gulf between exp
imental results expressed in terms of hadron pro
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ties, and the theory, whose ingredients are quarks
gluons, a reconstruction processes is needed. By
process hadrons in the final states are grouped in
and many dedicated algorithms have been propose
this purpose. These algorithms, that shall be revie
in Section2, appear to be reasonable recipes tak
into account geometrical considerations and theo
ical prescriptions. It can be guessed that in this w
one is solving an optimization problem, trying to mi
imize some cost functions. This is exactly at the ba
of the so-called clustering problem. Here one looks
the optimal partition of a given set of objects in clas
.

http://www.elsevier.com/locate/physletb
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on the ground of some similarity property. This task
performed minimizing a prescribed cost function th
is to be adapted to the problem under investigat
In a recent paper[1] it has been shown that a parti
ular clustering algorithm, the so-called determinis
annealing (DA)[2–4], can be adapted to the study
the hadronic jets in high energye+e− scattering. Es-
sentially, DA can give the same results of the stand
Durham algorithm in a faster way, as a consequenc
a lower computational complexity. In this work we t
to extend the use of DA to hadron–hadron collisio
taking into account the peculiarities of the jet produ
tion in this type of interaction. In particular, in th
kind of interactions only a part of the particles in t
final state can be associated to partons coming from
hard scattering process. Deterministic annealing,
version that allows data analysis in terms of a num
of clusters either fixed or variable, will be presented
Section3. In Section4 results from the application o
this method to simulated events will be presented
compared with those obtained by a Cone algorith
Section5 is dedicated to comments and conclusion

2. Jet clustering algorithms

The need to associate energy and momentum
particles in the final state to the four-momentum
unobservable partons is realized through jet cluste
algorithms.1 The most common of them can be clas
fied in two categories:

• Association algorithms that use an iterative p
cedure. For every pair of particles with fou
momentumpi and pj , a test variableyi,j =
f (pi,pj ) is calculated. This test variable is the
compared to a given threshold parameterycut and
the pair is recombined into a new pseudo-part
k of four-momentumpk = pi + pj (E scheme,
but other schemes have also been conside
provided thatyij � ycut. The algorithm is then
reiterated to the new set of (pseudo) particles
it stops when, for all pairs,yij � ycut. The num-

1 For a review of these and other jet algorithms see[5]. For a
review of the Monte Carlo generators and their connections with th
jet algorithms see[6].
ber of pseudoparticles at the end of the algorit
counts the number of jets, which is therefore fix
by ycut. This scheme has been implemented
various algorithms: JADE[7,8], Durham[9–11]),
Cambridge[12].

• To a second class belong algorithms that assoc
particles in a jet only on the ground of geomet
cal properties. The prototype for them is the Co
algorithm defined in the Snowmass Convent
[13]. Here in the first step the few particles havi
a transverse energyET greater than a fixed thresh
old E0

T are selected asseeds for jets. Subsequentl
the particles lying in a cone of given radiusR0
in the pseudorapidity-azimuth plane around eac
seed are associated with a jet, whose directio
fixed by an iterative procedure. More refined a
proaches consider the possibility of recombinat
and splitting of these proto-jets.

Here we stress an important difference between th
two categories. While for the algorithms of the fir
kind jets include all the particles and their number c
be fixed a priori, for the algorithms of the second ki
the number of jets is essentially determined by
number of particles used as seed and a varying pa
particles is excluded from the classification. This is
reason why the former scheme is used in the cas
electron–positron scattering and the latter in the c
of hadronic diffusions, where not all the particles a
produced in hard interactions.

3. Deterministic annealing

Deterministic annealing is a general purpose c
tering algorithm inspired by an analogy to the anne
ing procedure that consists of maintaining a system
thermal equilibrium while gradually lowering the tem
perature. The process assures that, in the limit of
temperature, the global free energy minimum is
tained. The worddeterministic refers to the fact that, a
we shall see, thermal equilibrium is obtained minim
ing directly the free energy, in opposition to the s
chastic simulation used by simulated annealing[14].
We introduce here a formulation of DA called mas
constrained clustering (MCC)[3,4] that is particularly
suitable for our application. In effect in this formul
tion the number of clusters is not fixed a priori, as
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happened in the precedent application of DA to the
searching problem[1], but is the result of the calcula
tion.

For each event we are analyzing we consider
sets, the set of the particle momenta that we denotxk

and the set of the momenta of the jets denotedyi . The
MCC approach introduces an infinite number of ten
tive jets; at each stage of the annealing process on
limited portion of them are distinct, so one introduc
the frequencypi of jets with momentumyi . One de-
fines also a distanced(xk,yi ) between each particl
and each effective jet. The global distortionD is de-
fined as

D =
∑

k

∑

i

p(xk,yi)d(xk,yi)

(1)=
∑

k

p(xk)
∑

i

p(yi |xk)d(xk,yi ),

wherep(xk,yi) is the joint probability distribution
p(xk) is the probability of particlek andp(yi |xk) is
the conditional probability relating particlek with jet
i, i.e., the probability to associatexk with jet i. A pos-
sible choice for the momentaxk andyi is represented
by (η,φ,ET ), whereη is the pseudorapidity,φ the az-
imuth andET the transverse energy. In this case
the distance one can use the squared error distorti

(2)d(xk,yi) = (ηk − ηi)
2 + (φk − φi)

2,

and, to give more emphasis to highET particles that
have more information about the correct jet directi
the following definition for the particle weightp(xk)

in Eq.(1)

(3)p(xk) = Ek
T∑

k Ek
T

.

Following the analogy with a statistical physics sy
tem,D plays the role of the internal energy which,
the limit of zero temperature, one wants to minimi
In this limit one obtains the hard clustering solutio
in which the association probabilities are zero or o
At finite temperature, instead, it is the minimum of t
Helmholtz free energyF that determines the distrib
ution at thermal equilibrium. This minimum is give
by:

(4)F ∗ = −T
∑

k

lnZk,
whereZk is the partition function for the single part
cle

(5)Zk =
∑

i

pie
−d(xk,yi )/T .

As a consequence the conditional probabilities
given by the Gibbs distribution

(6)p(yi |xk) = pie
−d(xk,yi )/T

Zk

.

Imposing the free energy minimization under the c
straint

∑
i pi = 1, one obtains that the optimal set

jet vectors{yi} must satisfy the equations

(7)
∑

k

p(xk)p(yi |xk)∇yi d(xk,yi ) = 0,

while

(8)pi =
∑

k

p(xk)p(yi |xk) = p(yi ).

From Eq. (7) one obtains that the jet momenta a
determined, for a squared error distortiond(xk,yi ) =
|xk − yi |2, by

(9)yi =
∑

k xkp(xk)p(yi |xk)

p(yi )
.

The annealing process starts at high temperature. F
(6) it is clear that the association probabilities are u
form, the system is completely disordered and the
set collapses to a single point. This unique jet
p(y1) = 1, every particle is associated with this
with probability 1, p(y1|xk) = 1, and Eq.(9) gives
the position of the centroid of the momenta sety1 =∑

k p(xk)xk . During the cooling process one encou
ters phase transitions which consist of an increas
the number of effective jets through a sequence o
splitting. The temperature plays the role of the reso
tion parameter at which thedata set is clustered and
complete hierarchical clustering can be obtained up t
the extreme situation at zero temperature when th
is a jet for each particle. This process is descri
in Fig. 1 where the behavior of the free energyF as
a function ofβ = 1/T is shown for a typical even
among those analyzed in the next section.

From a practical point of view, mass constrain
clustering can be implemented by an algorithm t
here we briefly sketch. Starting from a low value
β one introduces two jets with coordinates sligh
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Fig. 1. The phase diagram for a simulatedp–p scattering event (se
Section4).

perturbed with respect to the centroid coordinates
equal probability for every point to be associated w
each cluster. Then one minimizes the free energy
ating the equations:

(10)p(yi ) =
∑

k

p(xk)p(yi |xk),

(11)p(yi |xk) = p(yi )e
−βd(xk,yi )

∑
j p(yj )e

−βd(xk,yj )
,

(12)yi =
∑

k xkp(xk)p(yi |xk)

p(yi )
,

until one finds convergence inyi . These equations co
respond to the description given by Eqs.(5), (6), (8),
(9). If β is low enough, it comes out that these tw
clusters are coincident. The next step is to cool
system,β → αβ (α > 1), always iterating equation
(10)–(12)until a solution corresponding to two di
ferent jets (the first phase transition) is encounte
Subsequently one goes on by introducing, for each
location, two perturbed jets which share the asso
tion probability of each particle, raisingβ and deter-
mining the new jets momenta. Each pair of jets w
be merged until a criticalβ is reached, in which cas
one of the pairs will originate two effective jets. Th
process will be stopped when a sufficient resolut
(β value or number of jets) is reached. We need to p
turb the solution found at the(n−1)th step inβ before
using it as a starting point for thenth step. The reaso
is that it is still a fixed point for Eqs.(10)–(12)even if
the phase transition has been crossed; however, it
responds to a local minimum of the free energy, no
a global one.

In the next section we present our results compa
with the Cone algorithm. For the time being we o
serve that the definitions(2), (3) have the interesting
property that the coordinates of a jet, as defined by
Cone algorithm,

ηj = 1

E
j
T

∑

k∈j

Ek
T ηk, φj = 1

E
j
T

∑

k∈j

Ek
T φk,

(13)E
j
T =

∑

k∈j

Ek
T ,

are exactly recovered by the DA algorithm in the lim
of hard clustering (β → ∞) with a fixed number of
jets. In this limit, indeed, the association probabilit
of each data point (particle) to a jet in Eq.(11)become
0 or 1 and from Eq.(12)one obtains exactly Eq.(13).

4. Results and discussions

We are now in position to explore the possibil
of applying the mass constrained clustering versio
deterministic annealing to the problem of jet sea
in hadronic colliders. To this purpose we genera
2000 events from proton–proton scattering at 14 T
by the PYTHIA[15,16]Monte Carlo generator; a bia
in the transverse energyET of the initial partons was
introduced, corresponding toET = 100 GeV for 1000
events (sample A) andET = 200 GeV for the othe
1000 events (sample B); initial and final state rad
tion was allowed. With thisbias, a clear back-to-bac
two jet structure is expected. Results from application
of DA where systematically compared with those o
tained by the Cone algorithm described in Section2:
the Cone algorithm parameters, the transverse en
thresholdE0

T and the cone radiusR0 have been fixed
to 2 GeV and 0.7, respectively.

We calculated first two quantities that can be ea
used for a comparison with the Cone algorithm. T
first quantity is the mean distance of each particle fr
a jetj , defined as

(14)

〈d〉 = 1

Nc

Nc∑

j=1

1

p(yj )

∑

k

√
d(xk,yi )p(xk)p(yi |xk),
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Fig. 2. First results from the application of DA algorithm to sim
lated events. Left side:〈d〉, averaged over all the events, vs.β. Right
side: the mean clusters number〈Nc〉, vs.β.

whereNc is the number of clusters found.〈d〉 is a de-
creasing function ofβ attaining its maximum value a
β = 0, when there is only one cluster, and its mi
mum value, that is zero, atβ = ∞ when every particle
is a cluster by itself. This quantity, averaged over
the events, is shown, as a function ofβ in the left part
of Fig. 2. We can see that there is no practical diff
ence between the two analyzed samples: in either cas
〈d〉 decreases quickly for low values ofβ , due to the
growth in the number of clusters, then the descent
comes very slow. This behavior is the signal that
particle distribution in the events we are analyzing
such that the initial partition in few clusters is pr
served whenβ is increased, apart from fragments
low weight. This robustness is confirmed by the s
ond quantity we calculated, that is the mean num
of clusters〈Nc〉, whose behavior, as a function ofβ ,
is shown in the right part ofFig. 2. We see that the re
gion of extreme fragmentation, that ends the cluste
process, is far away atβ = 4.

How to determine the two jet nature of our even
To answer this question we note that the DA rec
cannot be yet considered complete, because we
have two problems. The first problem is that the
nealing process must be stopped at someβ value to
avoid the extreme cluster fragmentation produced
theβ → ∞ limit. The second problem arises becau
only part of the clusters can be attributed to the s
tered partons. Therefore, once we chooseβ , we need
also a criterion to select real jets from clusters. In
Cone algorithm these questions are controlled, as m
tioned before, through two parameters: the transv
Fig. 3. The probability distributions for the five most probable cl
ters atβ = 1.4.

energy thresholdE0
T and the cone radiusR0. The anal-

ogous role in DA algorithm is played by the parame
β and by a cut-offp0 in the jet probability. We re-
member that DA introduces a probability measure
the clusters, the expression(10). A peculiarity of these
probabilities is that the two jet nature of the events h
analyzed produces, in theβ region where〈d〉 has a
smooth behavior (β � 1), two clusters of high prob
ability, while to the remaining clusters only a sm
fraction of unity is assigned. To illustrate this featu
the probability distributions for the five most probab
clusters atβ = 1.4 are shown inFig. 3 for the events
from sample A. A small value of cluster probability r
flects the fact that the particles assigned to this clu
with a good association probability are few and ha
a small weight (transverse energy). So it is natura
consider jets only the clusters that survive a cut in
probability value. For example, we see inFig. 4 how
a threshold atp0 = 0.15 influences theβ dependence
of the mean number of clustersNc. Now this quantity
goes rapidly to a value close to 2, i.e., the expec
value for our sample.

At this point we are ready to illustrate how DA
able to reproduce the results obtained by the Cone
gorithm. We performed the annealing process up
β value of 1.4 and accepted only clusters with pro
ability greater thanp0 = 0.025. With these value
we obtained〈d〉 = 0.69± 0.11, close to the value o
R0 = 0.7 used for the Cone algorithm. This could
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Fig. 4. The mean clusters number〈Nc〉, vs.β. Only clusters having
probability greater thanp0 = 0.15 have been considered.

Fig. 5. The clusters number distribution (top) and the clusters tr
verse energy distribution (bottom) for the DA algorithm (solid lin
and the Cone algorithm (dashed line). (Events are from sample

expected becauseβ has an effect on the associati
probability of a particle to a cluster (see(11)) that is
comparable to thatof the parameterR0 for the Cone
algorithm, if one putsβ ∼ 1/2R2

0. No fine tuning of
these parameters was performed, because this is no
the aim of this Letter.

The comparison between the two algorithms is
ported inFig. 5 for two observables: the number
clusters and their transverse energy distribution. S
differences can be noted, in particular there is a m
pronounced tail in theET distribution for the DA al-
gorithm. This can be easily explained by the fact th
assuming〈d〉 ∼ R0, R0 is a sharp threshold for th
Cone algorithm, while for the DA algorithm〈d〉 is
the mean cluster radius. Another minor discrepa
is in the Nc-distribution that, for the DA algorithm
is slightly shifted to higher values ofNc . We could get
rid of these differences modifying the values ofβ and
p0, but, as we said, we found this job useless, not le
because we used a very simple Cone algorithm, wh
for example, no recombination or splitting mechani
for proto-jets have been considered. A more interest
ing question to ask is which algorithm better rep
duces the properties of the partons originating the j
To this purpose we introduced two variables for ea
parton participating in the hard initial scattering a
for the cluster nearest to it in direction. The first va
able describes the ability to identify the parton dire
tion:

(15)δ = 1− cosα

2
,

whereα is the angular separation between parton
jet axis. The other quantity measures the ability
trace the transverse energy of the parton:

(16)� = ET,p − ET,c

ET,p

whereET,p and ET,c are the transverse energies
the parton and the jet, respectively. Their distribu-
tions for the two algorithms and the two data sa
ples are shown inFig. 6. We can see that, while fo
the δ distribution there are no practical differenc
between the two algorithms, DA seems to be m
efficient in recovering the hard parton transverse
ergy.

5. Conclusions

We have compared the results found by the C
algorithm with those obtained by a clustering alg
rithm based on the deterministic annealing procedure
The latter has been adapted to the process studie
this Letter, i.e., jet identification in particle productio
by high energy hadronic collisions, by introducing a
suitable distortion measure and using temperature
cluster probability as parameters. Other choices
possible. For example, one could take into account
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Fig. 6. The distribution of the angular distance between partons
jets (left) and the clusters transverse energy distribution (right)
the DA algorithm (solid line) and the Cone algorithm (dashed lin

the phase transition producing the splitting of a cluste
occurs at a temperature proportional to the varianc
the cluster itself[4]. So a characteristic of well define
clusters is that they are stable for a wide range of t
perature and this stability property could be used in
recognition.

From this preliminary analysis we cannot conclu
that the DA algorithm should be preferred to the Co
algorithm, even if the good results for the number
clusters(4) and on the parton transverse energy sho
not be neglected. In any case we think that the
physics community should consider DA as a poss
and serious alternative. The use of a geometrical de
ition of jet appear indeed too simplifying with respe
to the theoretical descriptions. On the other hand,
DA algorithm looks at the properties of the density d
tribution in the momentum space, which is the rea
why the recombination and splitting mechanisms
automatically incorporated.

Moreover, there is another general question t
could be solved in this calculation scheme. It is tr
that the choice of jet definition is a matter of conve
tion and that the important thing is to use the sa
definition in theoretical predictions and in experime
tal analysis. However, it cannot be considered sa
factory that, while there is a unique theory explain
jet production and properties, different definitions a
used in hadronic and in leptonic collisions. The p
pose of this Letter is to demonstrate that this difficu
could be overcome using the same algorithm, so
one can focus all the efforts in the most importa
question, i.e., the similarity property used to decid
two particles should be assigned to the same jet.
ing a correct definition of this quantity, indeed, o
can take into account important theoretical pecul
ities, as infrared and collinear safety or formation
“ghost” and “junk” jets[17,18]. These kinds of simi-
larity measure have been used, until now, only fore+–
e− collisions and embodied in algorithms with po
performance, since they have to loop on all the pa
cles’ pairs. We hope to have clarified (see also[1]) that
they could be used for any kind of interaction, witho
giving up the reduced computational complexity th
geometrical algorithms share with the method we p
pose.
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