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QCD VACUUM DYNAMICS
AND CONFINEMENT

A conclusive explanation of confinement is still lacking

understanding QCD vacuum and color confinement

| |IT is important to explore any new path to get hints for

‘ An external field could be useful to probe the QCD dynamics




To investigate the vacuum structure of lattice gauge theories we introduced
[Cea-Cosmai-Polosa, PLB392(1997)177; Cea-Cosmai, PRD60(1999)094506] a

lattice effective action for the external

background field Aext r

Z[A™Y] = / DU e 5w
Ui (&2 =0)=U* ()

1, Z[A] | K v@e=0=Uz@. k=123,
n

F[A’ext] —

Lt Z [0] spatial lattice links belonging to a fixed time

. slice (and to spatial boundaries) are
\ vacuum energy

constrained
in presence of the external field:

T[AX] —  Eo[A] — Eo[0]




=0 slice other slices

spatial links are constrained spatial links exiting from sites
belonging to the spatial boundary
are constrained

N— —
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temporal links are not constrained



At finite temperature T = 1/(aL;)
free energy functional defined as

:F[jeXt] —

1
— In
L

Z[A]
Z7[0]

Zr |A™] =

/Uk (L1 &) =Ui (0,8)=U*" (@)

/Uk (Lt ,&)=Uy (0,8)=Ug"* ()

DU D Dipe (5w +5¢)

DUe 5" det M,

the relevant quantity is the

Sw :Wilson action

Sr :fermionic action

M :fermionic matrix

hermal partition functional in presence of the the background field for a system
in equilibrium at temperature T

NOTE THAT:

e temporal links are not constrained

e fermionic fields are not constrained



We can evaluate by numerical simulations the derivative of the free
energy functional with respect to the gauge coupling

OF (B)

F(B)= "5

p— V |:< UIJ,I/ >jext:O - < UIJ,V >A’ext¢0

Using this method we have investigated
the response of the vacuum to external background fields:

=) abelian monopole field [Cea-Cosmai, PRD62(2000)094510; JHEP11(2001)064]
. ) [Cea-Cosmai-D'Elia, THEP0402(2004)018]
=) gbelian vortex field (2008)

m) constant abelian chromomagnetic field [Cea-Cosmai, PRD60(1999)094506;
JHEP02(2003)031]
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SU(3) at finite temperature
in a constant

abelian chromomagnetic field:




Abelian chromomaagnetic field SU(3

j(;xt (53») — A’ext(c—c»)aa’& on the
lattice
I
AZXt(f) == (sk,zw]_H

- _J/

Y

gauge potential for a constant

(in space and time)

abelian chromomagnetic field
(directed along spatial direction 3
and direction ¢, in the color space)

Uy () = U™ (&%) =1,
exp(igH%) 0 0
U (&) = 0 exp(—igH;’l) 0
0 0 1
—
—~—

SU(3) constrained lattice links (@ =3)

(spatial lattice links belonging to a fixed time
slice (and to spatial boundaries) are
constrained)

Since our lattice has the topology of a torus:

~gH 27
a _

2 L4

Thext s Tlext 1Dteger .

field strength is
quantized




For a constant abelian background field the relevant quantity is the
density of the free energy

- 1 -
f[Aext] — VF[AeXt] V — L:z

The numerical (Monte Carlo) evaluation
of the derivative with respect to the gauge coupling ﬁ

, 1 1 1 1
fl[Aext] — <5 Z g Re Tr Up,y(w)> o <5 Z g RGTI'UIJJ/(m)> )
O Aext

xz,pu<v z,p<v

The free energy density may be eventually obtained by a numerical integration
f[A™] =0at 3 =0

— ’8 —
f[Aext] — /O fl[Aext] d,@’ .
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SU(3) in (3+1) dimensions e—
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deconfinement temperature

the strength of the externadl

abelian chromomagnetic field




deconfinement temperature

X
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N\

the deconfinement temperature
depends

on the strength of an external
abelian chromomagnetic field.

N

the deconfinement temperature
decreases when the strength of the
applied field is increased and
eventually goes to zero

SU(3) quenched

N Y IS [ N [ N S [ S S N Ny B |
0 0.5 1 1.5 2 2.5

Gh IS

(compact quark stars: P.Cea, JCAP03(2004)011)
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We performed (*) the same analysis in case of:

» Non Abelian gauge theories:
= different number of colors (N=2, N=3)
= different space-time dimensions (3+1 dim, 2+1 dim)

> Abelian gauge theory
= U(1) in 4 dim
= U(1) in (2+1) dim

(*) [Cea-Cosmai, JHEPO8(2005)079]
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Our numerical results can be summarized as follows:

SU(3), SU(2)
(3+1) dim
(2+1) dim

U(1) 4 dim
U(1) 2+1 dim

( ) No evidence in the case of an Abelian monopole backgroound field [Cea-Cosmai-D'Elia JHEP02(2004)018]

The deconfinement
temperature

on the strength of the
constant
chromomagnetic
background field

No evidence for a
dependence of the
critical coupling from
the strength of the
external magnetic field

(*)
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What happens including

dynamical fermions ?

numerical simulations for
finite temperature N;=2 QCD
in an external abelian chromomagnetic field.

simulations have been done using the computer facilities at
INFN apeNEXT Computing Center in Rome
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SU(3) Nf=2: numerical results

® The derivative of the free energy and the chiral condensate at
fixed external field strength
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® The peak of the free energy by varying the strength of the external field

free energy derivative
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depends on the
strength of the
applied field
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® The critical temperature versus the strength of the external field

two-loop scaling
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® In order to reduce the effect of the scale Lambda previously introduced
we can consider the ratios
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® The chiral condensate by varying the strength of the external field
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chiral condensate
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summary

Gauge Theories

We probed the dynamics of U(1) , SU(2) , and SU(3) l.g.t.'s by means of an external
constant abelian (chromo)magnetic field.

We find that (both in (2+1) and (3+1) dimensions):
> for non abelian gauge theories the deconfinement temperature depends on the

strength of the chromomagnetic background field and there is a critical field gH,.
such that for gH > gH. the gauge system is in the deconfined phase

> for abelian gauge theories the critical coupling does not depend on the strength of
the external constant magnetic field
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QCD with 2 dynamical flavors

@ Evidence for dependence of Tc on the external field even in full QCD.

Assuming a linear dependence on . /g7  as in the quenched case:

VgH:(Nf = 2) < \/gH:(quenched) ~ 1.1GeV

@ The chiral critical temperature seems to be consistent with the
deconfinement temperature and both depend on the strength of the
external chromomagnetic field

@ The chiral condensate increases with the strength of the external
chromomagnetic field

24




Outlook

> simulations with larger temporal sizes for a better control of
systematic effects and a better estimate of
the deconfinement temperature

> study of the effect of the background field on the EOS of QCD
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