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1 – INTRODUCTION

The QCD vacuum state is characterized by a few fundamental proper-
ties which are not predictable by perturbation theory and which rule the
phenomenology of strongly interacting matter at the low energy scale

Color Confinement
Experimental evidence gives an upper limit to the presence of free quarks which is a
factor 10−15 lower than what expected from the standard Cosmological model.
=⇒ Fundamental fields of QCD do not correspond to asymptotic states.

That’s what we call Color Confinement: it emerges as an absolute property of strongly
interacting matter. The natural attitude is to search for an interpretation of it in terms
of the realization of some exact symmetry. Which symmetry is yet not clear.



Chiral Symmetry Breaking
The symmetry under flavour symmetry SUL(3)⊗SUR(3), which is exact in the zero
mass limit, is spontaneously broken. In particular the axial generators

ψ → eiωaTaγ5ψ

are broken by a non-zero chiral condensate 〈ψ̄ψ〉. Light mesons play the role of
(pseudo)Goldstone bosons

Fate of UA(1) symmetry
The symmetry under axial transformations ψ → eiαγ5ψ is explicitely broken by the
axial anomaly

∂µj
5
µ = 2NfQ(x) ; j5

µ =

Nf∑

i=1

ψ̄iγµγ5ψi

where Q(x) is the topological charge density. The presence of topological fluctua-
tions (instantons) populating the QCD vacuum links the axial anomaly to important
properties of hadron phenomenology, like the mass of the η ′ particle, which is related
to the topological susceptibility χ = 〈Q2〉quench/V by the Witten-Veneziano formula.
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For a system of strongly interacting matter in equilibrium at temperature T , those
non-perturbative properties are expected to disappear as the perturbative regime is
reached at high temperatures.
How that happens is the subject of theoretical and experimental investigations.
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The interrelation among the three distinct phenomena is still not clear. In principle,
three different transitions could take place at three different temperatures. The nature
of the transitions and their mutual positions could be understood in terms of the
structure of the QCD vacuum, or could help in understanding vacuum symmetries.
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In practice, numerical lattice simulations show that, at least in ordinary QCD, a single
transition takes place. The question whether it corresponds to a true phase transi-
tion or to a simple crossover and, in the first case, about which is a sensible order
parameter, is still debated. The problem is a fundamental one.
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Chiral Symmetry is exact as mq → 0. A phase transition is surely expected in that
limit, with the chiral condensate 〈ψ̄ψ〉 being a possible order parameter.
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Color Confinement: a definite answer about the underlying symmetry is still lacking.
Z3 Center symmetry is exact only in the pure gauge theory, i.e. as all quark masses
mq →∞: the Polyakov loop is a good order parameter only in that limit.
Models of Color Confinement =⇒ better symmetries and order parameters
A deconfinement crossover would be puzzling: Is it compatible with our view of con-
finement as an absolute property? Should we change our mind?
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The answer reveals particularly interesting when considering the QCD phase diagram
in presence of a finite baryonic chemical potential.
Models predict a first order transition at T = 0

crossover at µ = 0 =⇒ critical endpoint TE with clear experimental signatures.



Understanding the structure of the QCD vacuum state is therefore strictly
linked to clarifying the structure of the QCD phase diagram.

• Structure and symmetry of the vacuum =⇒ guidance and order
parameters for studying the phase transition(s)

• Numerical study of the QCD phase diagram =⇒ precious informa-
tion for clarifying the structure and the symmetry of the vacuum.

The activity of our group has been dedicated to various interrelated
aspects of this subject since many years, by studying both the prop-
erties of the vacuum state and the nature of the deconfinement tran-
sition. I will review in the following the status and the prospects of
a few projects which, being particularly demanding in terms of com-
puter power, are strictly dependent on the availability of the apeNEXT
machines.



2 – OUTLINE

• Order of the chiral transition for Nf = 2

• Topology and the η′ mass across the deconfinement transition

• Deconfinement and chiral phase transitions in QCD with adjoint fermions

• Deconfinement in finite density QCD

Not touched (pure gauge projects running on APEmille or on PC clusters)

• Confinement in theories with different gauge groups (G2)

• Field strength correlators and confinement

• Phenomenological parameter of the Dual Superconductor Model

People involved: C. Bonati, G. Cossu, A. Di Giacomo, G. Lacagnina, E. Meggiolaro, G. Paffuti (Pisa)
S. Conradi, A. D’Alessandro, M. D’E. (Genova)
B. Lucini (Swansea), C. Pica (Brookhaven)



3 – CHIRAL TRANSITION FOR Nf = 2

G. Cossu (Pisa), M. D’E. (Genova), A. Di Giacomo (Pisa), C. Pica (Brookhaven)

The order of the phase transition for QCD with two flavors (Nf = 2) in
the chiral limit (mq = 0) is still an open problem.

It is quite relevant for various reasons

• It is quite close to the physical case

• Its properties determine the nature of the phase transition for finite masses

• It is a testground for clarifying important properties of the phase diagram and of
the QCD vacuum



In the chiral limit 〈ψ̄ψ〉 is a good order parameter
We are sure that a phase transition takes place: predictions about its nature can then
be obtained by a renormalization group analysis of the effective chiral model:
R. D. Pisarski and F. Wilczek, Phys. Rev. D 29, 338 (1984)

φ̃ : φij ≡ 〈q̄i(1 + γ5)qj〉 (i, j = 1, . . . , Nf )

Under chiral and UA(1) transformations of the group UA(1)⊗SU(Nf )⊗SU(Nf ), φ̃ transforms as

φ̃→ eiαU+φ̃U−

so that by the usual symmetry arguments, and neglecting irrelevant terms

Lφ =
1

2
Tr{∂µφ†∂µφ}−

m2
φ

2
Tr{φ†φ}−π

2

3
g1

(
Tr{φ†φ}

)2−π
2

3
g2Tr{(φ†φ)2}+c

[
detφ+ detφ†

]

The last term describes the anomaly: indeed it is SU(Nf ) ⊗ SU(Nf ) invariant, but
not UA(1) invariant.



For Nf = 2

• UA(1) anomaly effective (no light η′) =⇒ the model has a fixed point
chiral transition could be second order in O(4) universality class (not exclusive
of different possibilities: first order, mean field, ...).

• UA(1) anomaly not effective (η′ is light) =⇒ the model does not have a fixed
point =⇒ first order but see also F. Basile, A. Pelissetto, E. Vicari, 2005

Different scenarios are open by the two possibilities
• Second order at mq = 0 =⇒ crossover at finite small quark masses =⇒

critical point in the T, µ plane.

• First order =⇒ first order also away from the chiral point.
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The problem can be settled by numerical lattice computations and a Finite Size Scal-
ing (f.s.s.) analysis. There are however a few difficulties

• Simulations on large volumes and with light quark masses are necessary for a
reliable f.s.s. analysis =⇒ huge computational power required

• f.s.s. behavior is given in terms of two different scales

free energy density scaling =⇒ L
kT
' L−ds φ

(
τL

1/ν
s , amqL

yh
s

)

Ls is the spatial size
τ is the reduced temperature,
ν is the critical index of the correlation length (ξ ∼ τ−ν )
yh is the magnetic critical index

specific heat =⇒ CV−C0 ' L
α/ν
s φc

(
τL

1/ν
s , amqL

yh
s

)

order parameter susceptibility =⇒ χ−χ0 ' L
γ/ν
s φχ

(
τL

1/ν
s , amqL

yh
s

)



The problem has been investigated in the past by different groups
Staggered quarks (where O(2) could be more appropriate - Karsch, 1994)

M. Fukugita, H. Mino, M. Okawa and A. Ukawa, PRL 65, 816 (1990); PRD 42, 2936 (1990)
F. R. Brown, et al, PRL 65, 2491 (1990)
F. Karsch, PRD 49, 3791 (1994)
F. Karsch and E. Laermann, PRD 50, 6954 (1994)
S. Aoki et al. (JLQCD collaboration), PRD 57, 3910 (1998)
C. Bernard et al, PRD 61, 054503 (2000)
J. B. Kogut and D. K. Sinclair, PRD 73 (2006) 074512

Wilson fermions
A. A. Khan et al. (CP-PACS collaboration), PRD 63, 034502 (2001)

Main strategies adopted:

Search for metastabilities
Scaling of pseudocritical temperatures with the quark mass
Approximate scaling for susceptibilities (assuming the infinite volume limitLs →∞)
Equation of state for the order parameter

No clear answer in favour or disfavour of O(4) or O(2) critical behaviour



Our contribution
M. D’E, A. Di Giacomo and C. Pica, PRD 72, 114510 (2005)

We have approached the problem for the case of staggered fermions, obtaining some
progress by using a novel strategy for the f.s.s., together with the availability of rele-
vant resources of computer power (APEmille).

• We have performed series of runs at variable Ls and quark mass amq, keeping
amqL

yh
s fixed. That reduce the problem again to one scale.

Assume one particular behavior (fix yh) =⇒ check it carefully.
Our choice has been for O(4) (O(2)) =⇒ yh = 2.49

• We have reanalyzed the scaling of pseudocritical temperatures and considered
also the dependence of T on the quark mass, T = 1/(Nta(β,mq)).

• We have taken into special consideration the specific heat, as it always reveals
the correct critical behavior, indipendently of the nature of the order parameter

yt yh ν α γ

O(4) 1.336(25) 2.487(3) 0.748(14) -0.24(6) 1.479(94)

O(2) 1.496(20) 2.485(3) 0.668(9) -0.005(7) 1.317(38)

MF 3/2 9/4 2/3 0 1

1stOrder 3 3 1/3 1 1



Main results

Pseudocritical couplings alone are not enough to discern the order of the transition
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The scaling of susceptibilities is not compatible with O(4) (O(2))
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On the other hand, approximate scaling laws are marginally compatible with first order
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The equation of state for the order parameter gives similar results
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Data are not compatible with O(4) (O(2)) scaling, but suggest instead a first order
transition.



We have achieved some progress, but several questions are still left open ...

• We have used a non exact R algorithm =⇒ check with exact algorithm

• We should directly test 1st order =⇒ new run series with yh = 3

• If the transition is 1st order also at finite mass, we should find metastabilities on
large enough volume

• The complete specific heat should be reconstructed, not only the most singular
pieces

• We should check for finite cutoff effects: we have used standard gauge and stag-
gered actions with Nt = 4 (a ∼ 0.3 fm) =⇒ repeat the analysis for Nt = 6

and/or improved action

... which we are considering and hope to settle in the near future. Some
points will be particularly computer expensive, apeNEXT will be a pre-
cious resource.



We have achieved some progress, but several questions are still left open ...

• We have used a non exact R algorithm =⇒ check with exact algorithm DONE

• We should directly test 1st order =⇒ new run series with yh = 3 DONE

• If the transition is 1st order also at finite mass, we should find metastabilities on
large enough volume

• The complete specific heat should be reconstructed, not only the most singular
pieces

• We should check for finite cutoff effects: we have used standard gauge and stag-
gered actions with Nt = 4 (a ∼ 0.3 fm) =⇒ repeat the analysis for Nt = 6

and/or improved action

... which we are considering and hope to settle in the near future. Some
points will be particularly computer expensive, apeNEXT will be a pre-
cious resource.



We have compared our old results with an exact RHMC at our lowest
mass, amq = 0.01335

5.265 5.27 5.275 5.28
β

0.49

0.495

0.5

0.505

0.51

0.515

P σ

Hyb R
RHMC

Ls=16

Ls=32

5.265 5.27 5.275 5.28
β

0.05

0.1

C V

Hyb R
RHMC

Ls=16

Ls=32

5.27 5.275 5.28
β

0.3

0.4

0.5

0.6

<ψ
ψ

>

Hyb R
RHMC

Ls=16

Ls=32

5.27 5.275 5.28
β

0

10

20

30

40

50

60

χ m

Hyb R
RHMC

Ls=16

Ls=32

no significat discrepancy has been found



Direct test of the first order hypothesis
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Chiral susceptibility shows some deviations: probably we are too far
from the chiral limit. We are considering other possible systematic ef-
fects
The specific heat shows a quite good scaling



Looking for alternative order parameters ...

Can we study the transition with order parameters directly related to
Color Confinement ? Dual Superconductivity of the QCD vacuum (’t Hooft, Man-

delstam) =⇒ Confinement is related to the spontaneous breaking of an abelian
magnetic symmetry.

An order parameter can be constructed in that framework, which is the expectation
value of an operator with a non trivial magnetic charge, 〈µ〉
µ can be for instance the creation operator of a magnetic monopole.

Such an operator has been developed and studied on the lattice by the Pisa group,
extensively for the pure gauge theory. Similar parameters also in Bari, Moscow.

Measuring 〈µ〉 is like measuring the expectation value of a dual variable (imagine a
kink in Ising 2d) in the original theory (where it appears as a topological defect).
In this case we do not know the theory which is dual to QCD, but we can try guessing
the form of the dual variables.



µ is written as a translation operator which shifts the quantum gauge field by the
classical field of a monopole.

µ(~x, t) = exp

»
i

Z
d~y ~E⊥ diag(~y, t)~b⊥(~x− ~y)

–

On the lattice it can be written as the ratio of two partition functions

〈µ〉 =
Z̃

Z
, Z =

Z
(DU) detM(µ)e−βS , Z̃ =

Z
(DU) detM(µ)e−βS̃

Determining the ratio of two partition functions is difficult. One usually measures

ρ =
d

dβ
ln〈µ〉 = 〈S〉S − 〈S̃〉S̃

from which the order parameter can be reconstructed

〈µ〉(β) = exp

„Z β

0

ρ(β′)dβ′
«

d/d β ln <MU>ρ = 

C β

<MU>

β



〈µ〉 is a good order parameter also in presence of dynamical fermions
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and it scales according to first order around the chiral transition
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4 – TOPOLOGY AND THE η′ MASS

B. Alles (Pisa), G. Cossu, M. D’E. (Genova), A. Di Giacomo (Pisa), C. Pica (Brookhaven)

The fate of the UA(1) symmetry may influence the order of the chiral transition for
Nf = 2. A new light pseudoscalar degree of freedom changes the renormalization
group analysis of the effective chiral model, favouring a first order.
see also a recent strong coupling calculation: S. Chandrasekharan, A.C. Mehta, hep-lat/0611025

A study of the behavior of mη′ across the transition is therefore a due
complement to our previous analysis.

Determinations of the η′ mass on the lattice are notoriously difficult, because of dis-
connected diagrams entering the η′ propagator which are very noisy.
for recent determinations see:
K. Schilling, H. Neff and T. Lippert, Lect. Notes Phys. 663 (2005) 147, [hep-lat/0401005]
C. R. Allton et al, Phys. Rev. D70 (2004) 014501, [hep-lat/0403007]
CP-PACS Collaboration, Phys. Rev. D67 (2003) 074503, [hep-lat/0211040] and [hep-lat/0610021]
E. B. Gregory, A. C. Irving, C. McNeile, C. M. Richards, [hep-lat/0610044].

We follow a different approach, based on the study of topological charge
correlators.



The two point function of the topological charge density operator

Q(x) =
g2

64π2
εµνρσF

a
µν(x)F a

ρσ(x) = ∂µKµ(x) ,

is dominated at large distances by the lightest physical state coupled to Q, that is a
pseudoscalar singlet meson ( η′) in presence of dynamical fermions.

In particular we can write for the temporal correlator at zero momentum

lim
t→∞

∫
d3x〈Q(~x, t)Q(0)〉 ∼ Ae−mη′ t

with the constant A < 0 by reflection positivity.

mη′ can thus be determined by studying topological charge correlators



Any definition of the discretized topological charge density QL(x) can be adopted,
with proper care about renormalizations and contact terms

In the simplest approximation 〈QL(x)QL(0)〉 is related to 〈Q(x)Q(0)〉 by

〈QL(x)QL(0)〉 = Z2〈Q(x)Q(0)〉+ cL(x)

Z is a multiplicative renormalization and cL(x) a delta-like positive contact term: a
similar term is present also in the continuum definition, ensuring χ = 〈Q2〉/V > 0.
Actually, mixings with other pseudoscalar fermion operators are present, which do
not change the asymptotic behaviour of 〈QL(x)QL(0)〉, since they all couple to the η′

cL(x) 6= 0 in a finite region of size SOL around x = 0, where reflection positivity
〈QL(x)QL(0)〉 < 0 is violated. SOL depends on the extension of QL(x). Therefore

C(t) ≡
∑

~x

〈QL(~x, t)QL(0)〉 ∼ Z2Ae−mη′ t

for large enough t, provided also t > SOL . Z2 is not relevant for determining mη′



Our choice for QL(x) is that of a simple discretization of Q(x) given in terms of
gauge fields only. We consider for instance the sequence of smeared operators

Q
(i)
L (x) =

−1

29π2

±4∑

µνρσ=±1

ε̃µνρσTr
(
Π(i)
µν(x)Π(i)

ρσ(x)
)
,

where Π
(i)
µν(x) is the plaquette operator constructed with i–times smeared linksU (i)

µ (x),
which are defined as

U (0)
µ (x) = Uµ(x) ,

U
(i)

µ (x) = (1− c)U (i−1)
µ (x) +

c

6

±4∑

α=±1
|α|6=µ

U (i−1)
α (x)U (i−1)

µ (x+ α̂)U (i−1)
α (x+ µ̂)†,

U (i)
µ (x) = U

(i)

µ (x) / (
1

3
TrU

(i)

µ (x)†U
(i)

µ (x))1/2

The asymptotic behavior of the correlator is independent of the operator and solely
related to the η′ mass. However, comparison of determinations of mη′ obtained with
different operators gives an estimate of systematic errors.



Smearing damps UV fluctuations: noise is reduced and the multiplicative Z2 renor-
malization increases, with a great improvement in the signal/noise ratio. Also, the
overlap with the lowest energy state may be enhanced.

But smearing also increases the size (in lattice units) of the operator OL(x), hence
the size SOL of the region where the correlator C(t) is still affected by contact terms.

=⇒ look for optimal balance between the two opposite effects
The problem can be critical because of the large value of mη′ or limited number of
lattice sites available at finite T
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Our choice in order to make the problem less critical =⇒ anisotropic lattices

• a smaller temporal lattice spacing at leads to a larger value of temporal lattice sites
Nt for a fixed temperature T = 1/(Ntat), therefore to an increased number of
useful determinations for the correlatorC(t). That without an unbearable increase
in the required computer power, since as can be kept relatively large.

• a side (desirable) effect is that T = 1/(Ntat) can be fine tuned by simply chang-
ing Nt, i.e. without changing the physical scale and/or the spatial volume, thus
isolating effects purely due to a change of T .

Therefore we have started a pilot study with two degenerate staggered flavors, using
the action parameters provided in
L. Levkova, T. Manke, R. Mawhinney, Phys. Rev. D 73, 074504 (2006).

• standard gauge and staggered action, β = 5.3, amq = 0.008, ξ0 = 3.0

• mπ/mρ ∼ 0.3 ; as ' 0.34 fm, at ' 0.085 fm =⇒ ξ ≡ as/at ' 4



Preliminary results

We are performing numerical simulations on lattices with s Ns = 16 (Nsas ∼ 5 fm)
and variable Nt. We have so far results with Nt = 24 =⇒ T ∼ 100MeV : we want
to check for all systematic effects in this case, before studying the region around Tc
The following results refer to a statistics of about 18K molecular dynamics trajecto-
ries of unit length, which have required approximately 1 month on a apeNEXT crate.
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We have performed fits to
C(t) = A exp(−mη′)

taking only data with t ≥ tstart

Results for 1 and 2 smearing are
shown in the figure as a function
of tstart.
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• 1 and 2 smearing determinations tend to coincide as tstart increases. The 2-
smeared operator has probably a better overlap with the η ′ ground state.

• Our present estimate is atmη′ ∼ 0.40(6) =⇒ mη′ ' 930± 140MeV

That seems a very good result (m′η = 960 MeV from experiment)
but take into account Nf = 2, mπ

mρ
∼ 0.3 , etc.: it’s just a reasonable number ...

• A 5% accuracy would roughly require 8 further months on a crate apeNEXT.
The use of more improved operators might slightly lower that estimate.
Reliable determinations around Tc (Nt ∼ 14 − 16) will require a similar amount
of CPU time.



5 – DECONFINEMENT IN QCD WITH ADJOINT FERMIONS

G. Cossu (Pisa), M. D’E. (Genova), A. Di Giacomo (Pisa), G. Lacagnina (Pisa), C. Pica (Brookhaven)

In the analysis of the QCD phase transition it is not clear which are the relevant de-

grees of freedom regulating the nature of the transition

Chiral degrees of freedom?
Gauge degrees of freedom related to confinement?

There are cases where two different and well separated phase transition take place:
they can be the ideal theoretical testground for clarifying some ideas about decon-
finement and chiral symmetry restoration.

=⇒ QCD with 2 flavors in the adjoint representation
F. Karsch and M. Lutgemeier, NPB 550 (1999) 449

S = Sgauge[U(3)] +
(
q̄, D(U(8))q

)

Uab(8) =
1

2
Trc(λ

aU(3)λ
bU†(3))



The Polyakov loop is one possible order parameter (Z3 exact) and show
a first phase transition at a lower temperature TP .

The chiral transition happens at an higher temperature Tχ and it is in
the O(2) universality class at the chiral point
J. Engels, S. Holtmann and T. Schulze, NPB 724 (2005) 357

What can we say about other order parameters directly related to con-
finement?

We are trying to clarify that issue by studying the order parameter for
dual superconductivity, 〈µ〉.



Preliminary results

We are simulating the theory at two different masses, amq = 0.04 and amq = 0.01.
At the larger mass only the first order Z3 transition is clearly visible

where the disorder parameter for confinement shows the correct scaling behavior



At the lower quark mass also the chiral transition is visible



The disorder parameter 〈µ〉
seems to be insensitive to the
chiral transition, but only to the
Z3 transition, which we can then
be linked to the disappearance of
dual superconductivity - confine-
ment
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We are now on the way of refining our analysis on the 163 × 4 lattice
which is running on apeNEXT
Simulations with the modified monopole action are particularly expensive (C ∗ bound-

ary conditions =⇒ Gorkov formalism)

Final results with a f.s.s. scaling analysis will be hopefully ready in a
few months



6 – DECONFINEMENT IN QCD AT FINITE DENSITY

S. Conradi (Genova), A. D’Alessandro (Genova), M. D’E. (Genova)

Our goal is to investigate the fate of confining properties of QCD as the finite density
phase transition is crossed at low temperatures. That is relevant in order to:

• understand the nature of deconfinement at high densities and compare it to what
happens at high temperatures;

• characterize the nature of matter in compact astrophysical objects

Indications about deconfinement at high density and about its relation to chiral restora-
tion (M. D’E and M.P. Lombardo, PRD 70, 074509 (2004)) or to diquark condensation ( S. Hands,

S. Kim and J. I. Skullerud, arXiv:hep-lat/0604004) so far have been based on the analysis of the
Polyakov loop, which however is not a true order parameter for confinement in pres-
ence of dynamical fermions.



Our plan is to study the behaviour of order parameter for dual superconductivity in
the whole T−µ plane, in order to characterize the confining properties of the various
phases in the QCD phase diagram.

β

µ

<MU> =/= 0

<MU> = 0

<MU> = ?

confined phase

vacuum is a dual superconductor

deconfined phase

vacuum is not a dual superconductor

deconfined quark matter ?

We start our investigation for the theory with 2 colors, where numerical simulations
at real values of the chemical potential are feasible.
No sensible changes are expected for the confining properties when going fromNc =

2 to Nc = 3: our results could therefore be relevant also for real QCD.



〈µ〉 can be studied as a function of µB by introducing the new parameter

ρD ≡
d

dµB
ln〈µ〉 =

d

dµB
ln Z̃ − d

dµB
lnZ = 〈Nf 〉S̃ − 〈Nf〉S

from which the value of the order parameter can be reconstructed:

〈µ〉(β, µB) = 〈µ〉(β, 0) exp

(∫ µB

0

ρD(µ′B)dµ′B

)

µd/d ln <MU>Dρ = 

µ

<MU>

Cµ

If the starting point at µB = 0 is in the confined phase, the behaviour expected for ρD
in the case of a deconfinement transition at high density is analogous to that showed
by ρ across the finite T transition.



NUMERICAL SIMULATIONS

Staggered fermions and Nf = 8 flavors of mass am = 0.07. We have used an exact
HMC algorithm and standard actions both in the gluonic and in the fermionic sector.

Lattices with a fixed temporal extent Lt = 6 and a variable spatial size (only Ls =

8, 16 so far) in order to make a finite size scaling analysis of the phase transition.

The critical value of β at µ = 0 is βc ' 1.59. We have varied the chemical potential
µ at a fixed value of β = 1.5 < βc.

Due to a severe critical slowing down around and aboveµc, the availability of APEnext
has been essential in order to carry out simulations on the larger lattice (Ls = 16).



PRELIMINARY RESULTS

ρD shows a clear peak at a critical
µc ' 0.3.
The peak deepens as the lattice
volume is increased, suggesting
the presence of a true phase tran-
sition at which 〈µ〉 drops to zero
and confinement (dual supercon-
ductivity) disappears.
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FINITE SIZE SCALING ANALYSIS

At fixed T we can assume the following general scaling form for 〈µ〉 around µc

〈µ〉 = L−β/νs Φ((µ− µc)L1/ν
s ) =⇒ ρD = L1/ν

s φ((µ− µc)L1/ν
s )

Our data show a nice scaling with
ν ∼ 0.66, which is compatible
with a second order phase tran-
sition in the universality class of
ISING3D
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 SU(2) with Nf = 8, β = 1.5, am = 0.07       Data are compared using ν = 0.66

We are now running at a lower value of the temperature, where the inter-
play with a possible phase transition to superfluidity could be clarified.
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SUMMARY
We are approaching a number of problems. with the aim of clarifying the nature of
confinement, of deconfinement and its relation to other QCD transition

A few of them are particularly computer expensive (those including dynamical fermions):
apeNEXT is a very good collaborator

Realizability
Part of the projects will be completed in a relatively short time (hopefully in 1 year)

• mη′ around Tc

• Deconfinement with adjoint fermions

• Deconfinement at finite density
Chiral transition for Nf = 2

• the problem it is critical for understanding the QCD phase diagram

• it is critical in terms of computer power (in particular for checking the continuum
limit)

Times grow to a few years, depending also on the available resources.


