ELETTROSTATICA

Ing. delle Telecomunicazioni 14- Aprile 2008 Ing. dell'Autom + Informatica 15 aprile 2008

Un conduttore sferico A, inizialmente scarico, presenta due cavità sferiche. Nel centro di una delle due cavità è posta una carica puntiforme q_1 e nel centro dell'altra è posta un'altra carica puntiforme q_2 . Un'altra carica puntiforme q_3 è posta a notevole distanza dal conduttore. Quale forza agisce su ognuno dei quattro oggetti: q_1, q_2, q_3 e A?

In un conduttore sferico, inizialmente scarico, avente raggio R=15cm, sono praticate due cavità sferiche uguali, di raggio R'=2cm, i cui centri distano di 10cm. Una cavità è concentrica col conduttore e non contiene alcuna carica; l'altra decentrata contiene una carica distribuita con densità volumetrica ρ = $2 \cdot 10^{-8} \text{C/m}^3$. Determinare: 1) l'espressione del campo elettrico nelle due cavità; 2) la differenza di potenziale tra i due centri delle cavità; 3) il potenziale sulla superficie esterna del conduttore.

All'interno di una sfera conduttrice cava (R1 =12 cm, R2 =14 cm), inizialmente scarica, viene posta concentricamente una sfera isolante di raggio a=10 cm, carica uniformemente con densità ρ =80 nC/m3. Successivamente alla sfera conduttrice viene fornita una carica q ed in queste condizioni il potenziale in un punto distante 30 cm dal centro del sistema risulta di 100 V. Determinare: 1) l'espressione del campo elettrico in funzione di r, per 0<r< ∞ ; 2) il potenziale in un punto distante 5 cm dal centro del sistema.

Una carica $q = 10^{-6}$ C è distribuita uniformemente all'interno di una sfera di raggio R = 5 cm.

- Calcolare il campo e il potenziale elettrostatico nei punti interni ed esterni della sfera.
- Determinare campo e potenziale nel caso che la carica sia distribuita all'interno della sfera con densità che varia con r secondo la legge: $\rho(\mathbf{r}) = A/r$ con $A=10^{-9}$ C/m².

Un filo rettilineo indefinito è carico con densità lineare $-\lambda$; una superficie cilindrica indefinita, di raggio R_0 =2cm, avente il filo come asse, è carica con densità superficiale σ . Determinare l'espressione del campo elettrico in tutti i punti dello spazio (0<r< ∞). Sapendo che la d.d.p. tra un punto P_1 distante r_1 =1cm dall'asse ed un punto P_2 distante r_2 =4cm dall'asse è nulla determinare : a) il valore del rapporto σ/λ ;

<u>b) l'energia elettrostatica del sistema contenuta in un guscio cilindrico, coassiale con il sistema, di altezza unitaria e raggi r_1 ed R_0 .</u>

Una sfera conduttrice S_1 di raggio R_1 =5 cm viene portata al potenziale ϕ_0 =18KV e poi isolata. Viene quindi circondata da un guscio sferico conduttore S_2 , di raggi R_2 =10 cm ed R_3 =12 cm, concentrico con S_1 , inizialmente scarico. Una terza sfera conduttrice S_3 , di raggio R_4 =8 cm, collegata a terra, viene portata a distanza d=1 m dal centro di S_1 . Assumendo le distribuzioni di carica uniformi, determinare: a) le cariche affacciate sulle superfici conduttrici di raggi R_1 , R_2 , R_3 , R_4 ; b) il potenziale della sfera S_1 ; c) le forze esercitate sui conduttori S_1 , S_2 ed S_3 .

