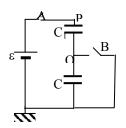

Esercitazione di riepilogo. A.A. 2007/08

- 1) Due sfere conduttrici S_1 e S_2 , di raggi R_1 = 6cm e R_2 = 12cm rispettivamente, hanno la stessa carica $q = 6 \cdot 10^{-8}$ C e sono molto distanti. Le due sfere vengono collegate tra loro con un filo sottile. Ad equilibrio elettrostatico raggiunto, calcolare: a) la carica presente su ciascun conduttore.
- 2) Un sistema è costituito da una sfera conduttrice, di raggio R_1 =1mm, avente carica Q, e da uno strato non conduttore, concentrico alla sfera, di raggio interno R_1 e raggio esterno R_2 =2mm, avente carica Q' distribuita uniformemente. Il campo elettrico sulle superfici che delimitano lo strato vale E_1 =1kV/m ed E_2 =2kV/m. Determinare le cariche Q e Q'.

La sfera conduttrice viene eliminata. Determinare: a) L'espressione del campo elettrico in tutti i punti dello spazio; b) il potenziale nel centro O dello strato.

- 3) Una sfera conduttrice S di raggio R_1 =5cm è posta all'interno di una sfera cava conduttrice S', avente raggi R_2 =10cm ed R_3 =15cm, concentrica con S. S' viene portata ad un potenziale ϕ_S =300V rispetto al potenziale nullo fissato all' ∞ e poi isolata. Determinare: (a) la carica sulla sfera S e sulla superficie interna e su quella esterna della sfera cava; (b) Il potenziale di S.
- Si porta la sfera S al potenziale di 200V, mantenendo costante il potenziale di S'. Determinare:
- (1) l'espressione del campo elettrico in tutti i punti dello spazio; (2) le cariche presenti sulle superfici dei conduttori. Determinare l'energia elettrostatica del sistema nei due casi:
 - c_1 ') si colleghi la sfera S alla sfera cava S'; c_2 ') si colleghi la sfera S' a terra mentre S è isolato.
- 4) Si consideri la situazione fisica schematizzata in figura: C_1 =30pF, C_2 =60pF, mentre C_3 è la capacità di un condensatore piano, avente armature quadrate di lato ℓ =10cm, distanti d=1cm. Inizialmente l' interruttore S_1 è chiuso e fra i punto i E ed F è applicata una differenza di potenziale di 100V. Determinare:
- a) le cariche presenti su ciascun condensatore; il potenziale del punto B. Successivamente l'interruttore S₁ viene aperto e le armature di C₃ vengono allontanate fino alla distanza d'=2d. Ad equilibrio elettrostatico raggiunto, determinare il potenziale del punto B.

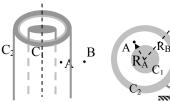


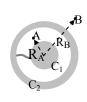
- 5) Un cilindro conduttore indefinito di raggi R_1 =2cm è circondato da un guscio conduttore scarico di raggi R_2 =4cm e R_3 =10cm. Il potenziale, riferito a quello nullo in r=1m, nel punto P a distanza R_P =3cm dall'asse vale 500V. Determinare: l'espressione del campo in tutti i punti dello spazio; la densità lineare di carica sulla superficie del conduttore cilindrico.
- Si fornisca al guscio conduttore una carica per unità di lunghezza λ_1 =-210⁻⁸C/m. Determinare il potenziale elettrostatico in P.

Si colleghi a terra il guscio, determinare: la capacità per unità di lunghezza del sistema; l'energia immagazzinata nel sistema, supponendo i conduttori di lunghezza unitaria.

6) Nel circuito mostrato in figura C_1 è un condensatore piano (S=10 cm², d=1 mm) mentre C_2 è un condensatore cilindrico (R_1 =1 cm, R_2 =2 cm, L=30 cm). Al tempo t=0 viene chiuso l'interruttore A mentre B rimane aperto; assumendo ϵ = 100V determinare: a regime, il valore del potenziale nei punti P e Q.

Successivamente viene aperto l'interruttore A e chiuso B. Determinare, a regime (1) il valore del potenziale nei punti P e Q; (2)la variazione di energia elettrostatica fra le due situazioni.




7) Una cilindro indefinito conduttore C1, di raggio R1=10cm, è circondato da un guscio cilindrico indefinito conduttore C2, concentrico con C_1 , di raggi R_2 =20cm ed R_3 =25cm. Il potenziale elettrostatico, riferito al potenziale nullo a distanza 1m dall'asse del sistema, nei punti A e B, distanti rispettivamente RA=15cm ed RB=30cm, vale φ A=2,2 kV e φ B = 1kV. Determinare: l'espressione del campo elettrostatico in tutti i punti dello spazio; il valore delle densità lineari di carica sulle superfici conduttrici di raggi R_1 , R_2 , R_3 .

Determinare, ad equilibrio elettrostatico raggiunto, il potenziale nei punti A e B nei seguenti casi:

 c_1) il conduttore C_1 è isolato mentre il conduttore C_2 viene collegato a terra; c_2) il conduttore C_2 è isolato mentre il conduttore C_1 viene collegato al conduttore C_2 con un sottile conduttore.

Assumendo i conduttori C_1 e C_2 di lunghezza L=1m, per la configurazione del punto c_1 determinare: d) l'energia elettrostatica del sistema.

