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Abstract

The quantum “Zeno” time of the 2P11S transition of the hydrogen atom is computed and found to be approximately
3.59 × 10−15 s (the lifetime is approximately 1.595 × 10−9 s). The temporal behavior of this system is analyzed in a
quantum field theoretical framework and compared to the exponential decay law. c© 1998 Published by Elsevier Science
B.V.

PACS: 03.65.Bz; 31.30.Jv; 31.30.+w

Unstable systems decay according to an exponen-
tial law. Such a law has been experimentally verified
with very high accuracy on many quantum mechanical
systems. Yet, its logical status is both subtle and del-
icate, because the temporal behavior of quantum sys-
tems is governed by unitary evolutions. The seminal
work by Gamow [1] on the exponential law, as well as
its derivation by Weisskopf and Wigner [2] are based
on the assumption that a pole near the real axis of the
complex energy plane dominates the temporal evolu-
tion of the quantum system. This assumption leads to
a spectrum of the Breit1Wigner type [3] and to the
Fermi golden rule [4]. However, it is well known that
a purely exponential decay law can neither be expected
for very short [5] nor for very long [6] times. The
domain of validity of the exponential law is limited:
The long-time power tails and the short-time quadratic
behavior are unavoidable consequences of very gen-
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eral mathematical properties of the Schrödinger equa-
tion [7].

The short-time behavior [8], in particular, turns out
to be very interesting, due to its apparently paradoxical
consequences leading the so-called quantum Zeno ef-
fect. Recent theoretical and experimental work [9] has
focused on the temporal behavior of a two-level sys-
tem whose Rabi oscillations, induced by an r.f. field,
are hindered by another, “measuring” field of differ-
ent frequency. It should be noticed, however, that the
idea of making use of an oscillating system to test
the quantum Zeno effect is at variance with the orig-
inal proposals, based on truly unstable systems [8].
For this reason, alternative schemes were recently pro-
posed [10,11], that do not require any reinterpretation
of the experimental data [12].

The purpose of this Letter is to investigate the char-
acteristic features of the short-time nonexponential re-
gion of a truly unstable system. Our attention will be
focused on a transition of the hydrogen atom: We shall

0375-9601/98/$19.00 c© 1998 Published by Elsevier Science B.V. All rights reserved.
PII S0375-9601(98) 00 14 4-3

PLA 7871



140 P. Facchi, S. Pascazio / Physics Letters A 241 (1998) 1391144

endeavor to give an accurate estimate of the “Zeno”
time for this system. Our general conclusions, how-
ever, will be valid for any two-level system interacting
with a quantum field (as far as the theory is renormal-
izable).

Let us start by outlining the main features of the
problem. Let |p0〉 be the wave function of a given
quantum system at time t = 0. The evolution is gov-
erned by the unitary operator U(t) = exp(−iHt/}),
where H is the Hamiltonian. The “survival” or nonde-
cay probability at time t is the square modulus of the
survival amplitude,

P(t) = |〈p0|e−iHt/}|p0〉|2 = 1− t2/τ2
Z + . . . , (1)

τ−1
Z ≡ DH

}
=

1
}

(〈p0|H2|p0〉−〈p0|H|p0〉2)1/2. (2)

The short-time expansion is quadratic in t and there-
fore yields a vanishing decay rate for t→ 0. This
quadratic behavior is in manifest contradiction with
the exponential law that predicts an initial nonvanish-
ing decay rate (the inverse of the lifetime). The quan-
tity τZ will be referred to as “Zeno time” in the present
Letter.

Unfortunately, when one considers quantum field
theory, things do not work out that easily. In the above
(naive) derivation, one assumes that all moments ofH
in the state |p0〉 are finite and (implicitly) that |p0〉 is
normalizable and belongs to the domain of definition
of H [13]. If the volume of the box containing the
system is not finite, the spectrum of the Hamiltonian is
continuous and the Zeno time turns out to be inversely
proportional to some power of a frequency cut-off Λ:
τZ ∝ 1/Λα. This is a very general property, essen-
tially due to the singular nature of the product of local
observables when computed at short distances [14].

However, if the theory is renormalizable, this di-
vergence can be tamed by introducing a natural cut-
off for the system. In the present Letter we shall just
concentrate our attention on such a situation: We will
show that it is indeed possible to compute the value of
τZ for the 2P11S transition of the hydrogen atom. The
result is finite. This confirms that a quantum Zeno re-
gion is not simply a phenomenon peculiar to the quan-
tum mechanics of finite systems; rather, it is present
even in the more general framework of quantum field
theory, at least for a renormalizable theory.

We start from the total Hamiltonian (} = c = 1)

H = Hatom +HEM +Hint

=
2∑
i=1

Ei|i〉〈i|+
∑
β

∞∫
0

dωωa†ωβaωβ

+
∑
β

∞∫
0

dω[ϕβ(ω)a†ωβ|1〉〈2|

+ ϕ∗β(ω)aωβ|2〉〈1|], (3)

where the first term is the free Hamiltonian of a two-
level atom, the second term the Hamiltonian of the
free EM field and the third term the interaction Hamil-
tonian. We considered only the linear part of the inter-
action (in the so-called rotating wave approximation)
and expanded it in the energy-angular momentum ba-
sis for photons [15], with

∑
β =

∑∞
j=1

∑j
m=−j

∑1
λ=0,

where |i〉(i = 1, 2) are the atomic states (of energy
Ei), λ defines the photon parity P = (−1)j+1+λ, j is
the total angular momentum (orbital + spin) of the
photon, m its magnetic quantum number and

[aωjmλ, a
†
ω′j′m′λ′] = δ(ω− ω′)δjj′δmm′δλλ′ . (4)

The quantities ϕβ(ω) are the matrix elements of the
interaction Hamiltonian between the states

|1; 1ωβ〉 ≡ |1〉 ⊗ |ω, j, m, λ〉,
|2; 0〉 ≡ |2〉 ⊗ |0〉, (5)

where the first ket refers to the atom and the second
to the photon. We now concentrate our attention on
the 2P11S transition of hydrogen, |1〉 ≡ |n1 = 1, l1 =
0, m1 = 0〉, |2〉 ≡ |n2 = 2, l2 = 1, m2〉. Conservation of
angular momentum and parity ensures the validity of
the selection rules j = 1, m = m2, λ = 1. This reduces
the sum over β in the interaction Hamiltonian to the
single term β̄ = (1, m2, 1). In this case, the matrix
elements were exactly evaluated by Moses [16] and
Seke [17]

ϕβ(ω) = 〈1, 1ωβ|Hint|2, 0〉 = ϕβ̄(ω)δββ̄

= i(χΛ)1/2 (ω/Λ)1/2

[1 + (ω/Λ)2]2
δj1δmm2δλ1, (6)

with

Λ = 3
2αme ' 8.498× 1018 rad/s,
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χ =
2
π

(
2
3

)9

α3 ' 6.435× 10−9, (7)

where α is the fine structure constant and me the elec-
tron mass. Λ is the natural cut-off defining the atomic
form factor and taking into account all retardation ef-
fects: in natural units, Λ = 3/2a0, where a0 is the Bohr
radius, so that wavelengths shorter than a0 do not con-
tribute significantly to the interaction. The physical
origin of Λ is ascribable to the exponential behavior of
the atomic orbitals, which fall off like exp(−r/na0)
(where r is the radial coordinate and n the princi-
pal quantum number): for the 2P11S transition, the
orbitals overlap like exp(−r/a0) · exp(−r/2a0) =
exp(−rΛ). Notice that Λ is not put “by hand”, like in
analysis involving the dipole approximation, but nat-
urally emerges from calculation [16,17].

We assume that the system is initially (at time
t = 0) in the eigenstate |2, 0〉 of the unperturbed
Hamiltonian H0 = Hatom +HEM, whose eigenvalue is
ω0 = E2 − E1 = 3

8α
2me ' 1.550 × 1016 rad/s. We

shall set E1 = 0. It is now straightforward to compute
the Zeno time, according to the definition (2),

1
τ2

Z

= 〈2, 0|H2
int|2, 0〉

=
∑
β

∞∫
0

dω |〈2, 0|Hint|1, 1ωβ〉|2 =

∞∫
0

dω|ϕβ̄(ω)|2

= χΛ2

∞∫
0

dx
x

(1 + x2)4
=
χ

6
Λ2. (8)

Inserting the values (7) of Λ and χ we obtain

τZ =

√
6
χ

1
Λ

= (3π)1/2

(
3
2

)7/2 1
α5/2me

' 3.593× 10−15 s. (9)

This is our first result. It is an estimate of the duration
of the Zeno region for a truly unstable system.

Observe that for hydrogen-like atoms of nuclear
charge Z , the Zeno time scales (unfavorably) like
Z−2. This is because Λ ∝ Z/a0 and χ ∝ Z 2α3.

It is also worth stressing that the value of τZ, due
to its very structure, would not be modified by the
presence of counter-rotating terms in the Hamiltonian
(3), whose contribution to Eq. (8) vanishes. Even

the introduction of additional atomic levels would not
modify this result, within the framework of the rotating
wave approximation [whose validity is discussed after
Eq. (27)]. On the other hand, a straightforward but
rather lengthy calculation shows that the introduction
of the other atomic levels and of counter-rotating terms
in the interaction HamiltonianH′int yields the following
expression for the Zeno time,

1
τ′2Z

= 〈2, 0|H′2int|2, 0〉

=
∑
ν,β

∞∫
0

dω |〈2, 0|H′int|ν, 1ωβ〉|2 '
1.4210
τ2

Z

,

(10)

where ν is the set of atomic quantum numbers charac-
terizing the intermediate state and matrix elements are
computed as in Ref. [17]. Eq. (10) yields a −20%
correction to the value of the Zeno time.

It is now interesting to look at the temporal behavior
of our system at longer times. There is previous related
work [18122] on this subject. The survival amplitude
and its Laplace transform read

y(t) = 〈2, 0|e−iHt|2, 0〉,

ỹ(s) =

∞∫
0

dt e−sty(t) = 〈2, 0| 1
s+ iH

|2, 0〉. (11)

We make use of the identity

1
s + iH

=
1

s+ iH0
− i

1
s+ iH0

Hint
1

s + iH0

− 1
s+ iH0

Hint
1

s+ iH0
Hint

1
s+ iH

(12)

and by introducing a complete orthonormal set of
eigenstates of the unperturbed Hamiltonian H0 (note
that the interaction Hamiltonian Hint has nonvanish-
ing matrix elements only between the states (5)), we
easily obtain

ỹ(s) =
1− Q(s)ỹ(s)

s+ iω0
⇒ ỹ(s) =

1
s+ iω0 +Q(s)

,

(13)

Q(s) ≡
∞∫

0

dk |ϕβ̄(k)|2 1
s+ ik

. (14)
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By inverting the transform we get

y(t) =
1

2πi

∫
B

ds
esΛt

s+ i(ω0/Λ) + χQ̄(s)
, (15)

Q̄(s) ≡ 1
χΛ

Q(sΛ) = −i

∞∫
0

dx
x

(1 + x2)4

1
x− is

,

(16)

where B is the so-called Bromwich path, i.e. a ver-
tical line at the right of all the singularities of ỹ(s),
and we used Eq. (6). Notice that Q and Q̄ are self-
energy contributions. It is straightforward to integrate
Eq. (16) to get

Q̄(s) =
−15πi− (88− 48πi)s− 45πis2 + 144s3

96(s2 − 1)4

+
15πis4 − 72s5 − 3πis6 + 16s7 − 96s log s

96(s2 − 1)4
.

(17)

The quantity Q̄(s) has a logarithmic branch cut ex-
tending from 0 to−i∞, and no singularities on the first
Riemann sheet (physical sheet). Indeed, the fourth or-
der zeros of the denominator s = ±1 are also zeros of
the numerator and Q̄(±1) = (±32 − 5πi)/256. On
the second Riemann sheet the function Q̄(s) becomes

Q̄II(s) = Q̄(se−2πi) = Q̄(s) + 2πi
s

(s2 − 1)4
, (18)

where the additional term represents the discontinuity
across the cut. It is easy to show that ỹ(s) has a pole
on the second Riemann sheet. From the denominator
in Eq. (15), by expanding Q̄II(s) around−i(ω0/Λ)−
0+ = −i(α/4) − 0+, we get a power series whose
convergence radius is α/4, because of the branching
point at the origin. Therefore

spole = −i
α

4
− χQ̄II

(
− i

α

4
− 0+

)
+ O(χ2)

= −i
α

4
− χQ̄

(
− i

α

4
+ 0+

)
+ O(χ2) (19)

≡ −i
α

4
+ i

DE

Λ
− γ

2Λ
, (20)

because Q̄II(s) is the analytical continuation of Q̄(s)
below the branch cut. By Eq. (16) we get

γ = 2π|ϕβ̄(ω0)|2 + O(χ2)

= 2πχ
ω0

[1 + (α/4)2]4
+ O(χ2)

' 6.268× 108 s−1, (21)

DE = P

∞∫
0

dω|ϕβ̄(ω)|2 1
ω− ω0

+ O(χ2) ' 0.5χΛ,

(22)

which are the Fermi “golden rule” (yielding the life-
time τE = γ−1 ' 1.595×10−9 s) and the second order
correction to the level energyE2. Notice that DE is not
the Lamb shift, but only the shift of the 2P level due
to its interaction with the ground state [23,17]. Ob-
serve that for hydrogen-like atoms of nuclear charge
Z , τE ∝ (χω0)−1 scales like Z−4, so that the ratio
τZ/τE has the favorable scaling Z 2. This might be im-
portant for experimental observation of the Zeno re-
gion.

The exponential law is readily obtained by deform-
ing the original Bromwich path into a new contour
C = C1 + C2, composed of a small circle C1 turning
anticlockwise around the simple pole spole on the sec-
ond Riemann sheet and a path C2 starting from −∞
on the second sheet, turning around the branch point
s = 0 and extending back to−∞ on the first sheet. We
get

y(t) = ypole(t) + ycut(t), (23)

where

ypole(t) = Ze−(γ/2)te−i(ω0−DE)t+iζ , (24)

Zeiζ ≡ 1

1 + χQ̄′II(spole)
= 1 + O(χ), (25)

and the prime denotes the derivative. Notice that
χ = O(α3) and ζ ' −2.02× 10−8. As is well known,
the exponential law is obtained by neglecting the con-
tribution arising from the branch cut. Let us estimate
the latter. From Eq. (15),
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ycut(t) =
1

2πi

∫
C2

ds esΛt
(

1

s+ i(ω0/Λ) + χQ̄(s)

)

= χx2
0

∞∫
0

dξ[ξe−ξ(ξ2x2
0 − 1)−4]

×
[(
ξx0 − i

ω0

Λ
− χQ̄(−ξx0)

)
×
(
ξx0 − i

ω0

Λ
− χQ̄II(−ξx0)

)]−1

, (26)

where x0 = 1/tΛ. At times t � Λ−1 (so that
x0 → 0),

ycut(t) ∼ χx2
0

∫∞
0 dξ ξe−ξ

[−i(ω0/Λ)− χQ̄(0)]2

= −χ C
(ω0t)2

, (27)

C ≡
(

1− 5
8
π
χ

α

)−2

= 1 + O(χ). (28)

Expressions (17)1(28) are robust against the intro-
duction of counter-rotating terms in the Hamiltonian
(3), which can be shown to contribute only first order
corrections in χ = O(α3) in Eq. (17) and therefore
second order corrections in Eqs. (20), (25) and (28).

Summarizing, the general expressions (valid ∀t >
0) for the survival amplitude y(t) and survival prob-
ability P(t) = |y(t)|2 are, respectively,

y(t) = Ze−(γ/2)te−i(ω0−DE)t+iζ

− χ C
(ω0t)2

h(t)eiη(t), (29)

P(t) = Z2e−γt + χ2 C2

(ω0t)4
h2(t)− 2χ

CZ
(ω0t)2

× e−(γ/2)th(t) cos[(ω0 − DE)t+ η(t)− ζ],
(30)

where h(t) and η(t) are real functions satisfying

lim
t→0

h(t)
(ω0t)2

=

√
1 + Z2 − 2Z cos ζ

χC ,

lim
t→∞

h(t) = 1,

η(0) = arctan

(
Z sin ζ
Z cos ζ − 1

)
,

lim
t→∞

η(t) = 0. (31)

Notice the presence of an oscillatory term in Eq. (30).
Physically, this represents an interesting (fully quan-
tum mechanical) interference effect between the cut
and the pole contribution to the survival amplitude
(29).

For short and long times, Eq. (30) yields

P(t) ∼ 1− t2

τ2
Z

(t� τZ) (32)

P(t) ∼ Z2e−γt + χ2 C2

(ω0t)4
− 2χ

CZ
(ω0t)2

× e−(γ/2)t cos[(ω0 − DE)t− ζ] (t� Λ−1).

(33)

Numerical investigation of Eq. (30) shows that the
“long-time” expansion is already valid for rather short
times t & 2 × 10−17 s. For even shorter times, the
system undergoes a rapid initial oscillation, of dura-
tion about 200Λ−1 ' 2.3× 10−17 s, and then quickly
relaxes towards the asymptotic expression (33). The
initial convexity of the curve is given by Eq. (32),
which agrees extremely well with the numerical in-
vestigation.

The above analysis clarifies an important point:
In contrast with a widespread, naive expectation, the
short time behavior, yielding a vanishing decay rate,
is nothing but the first of a series of oscillations,
whose amplitude vanishes exponentially with time,
eventually leading to a power law. The asymptotic
frequency of the oscillations is essentially ω0 (see
Eq. (33)): Any correction (like our DE, or the total
Lamb shift, or fine structure effects, not considered in
our analysis) is at most of order 10−6ω0. The transi-
tion to a power law occurs when the two summands in
Eq. (29) are comparable, so that (ω0t)2e−(γ/2)t ≈ χ,
namely for t ' 98 lifetimes [19121,18].

The above conclusions, derived for the hydrogen
atom in interaction with the EM field, are generally
valid for a renormalizable (or superrenormalizable)
theory: Any interaction Hamiltonian of the type (3),
which does not contain derivative couplings in the
fields, yields similar results. One should notice, how-
ever, that the evaluation of the duration of the Zeno
region depends on the frequency cut-off: In general,
one expects a dependence on some inverse power of
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Λ [14]; for example, in our case τZ = O(Λ−1), as
in Eq. (9). An accurate estimate of Λ can in general
pose a difficult problem.

An interesting problem is to understand whether the
initial quadratic behavior (32) is experimentally ob-
servable. This is an experimentally challenging task,
that raises interesting theoretical and experimental
questions about the problem of state preparation. The
time scales involved are very small, so that a sharp
initial state preparation, even by modern pulsed-laser
techniques, appears to be difficult. On the other hand,
state preparation by means of indirect excitation pro-
cesses, e.g. by electron or ion collision, seems more
realistic.

It is also worth stressing that the problem of sharply
defining the initial moment of excitation might be cir-
cumvented: Close scrutiny of Eqs. (29)1(33) sug-
gests that experimental observation of the probability
oscillations would not only provide direct evidence of
the cut contribution to the survival amplitude, but also
an indirect, yet convincing, proof of the presence of
the Zeno region, in the light of the discussion follow-
ing Eq. (33).
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