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Abstract
We study a binary mixture of Bose–Einstein condensates, confined in a
generic potential, in the Thomas–Fermi approximation. We search for the zero-
temperature ground state of the system, both in the case of fixed numbers of
particles and fixed chemical potentials. For generic potentials, we analyze the
transition from mixed to separated ground-state configurations as the inter-
species interaction increases. We derive a simple formula that enables one to
determine the location of the domain walls. Finally, we find criteria for the
energetic stability of separated configurations, depending on the number and
the position of the domain walls separating the two species.

PACS numbers: 67.85.Hj, 67.85.Bc, 03.75.Hh, 67.60.Bc

(Some figures may appear in colour only in the online journal)

1. Introduction

Binary mixtures of Bose–Einstein condensates are of great interest due to their complex
dynamical features and their role in the emergence of macroscopic quantum phenomena.
Mixtures are usually made up of two species that can also be hyperfine states of the same
alkali atom [1]. They generally display repulsive self-interaction and are confined by different
potentials. Depending on the inter-species interaction, two classes of stable configurations are
possible: mixed and separated. The latter are more interesting, since they allow the observation
of phenomena such as symmetry breaking, e.g., in harmonic potentials and macroscopic
quantum tunneling [2, 3]. Binary mixtures in harmonic traps have been investigated in a
number of interesting experiments [4–6].

Different approaches are possible in order to study the ground state of these systems. The
binary mixture of two species of bosons can be rigorously described in a second-quantization
formalism [7]. However, if the number of particles in the condensate is very large compared to
the number of particles in the excited states, the fields associated with the two species can be
treated as classical wavefunctions. This approach leads to the Gross–Pitaevskij (GP) equations
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[8] that are obtained by minimizing the zero-temperature grand-canonical energy of the system.
The ground state of the system can be thus determined by solving the GP equation [9–12], or
equivalently by analytically or numerically minimizing the grand-canonical energy functional
[2, 3, 13]. Analytical results are obtained only in particular cases, such as confinement by a
hard wall trap [14], harmonic or lattice potentials [15] and axisymmetric traps [16], also in
the presence of the gravitational force [17]. A simplified approach is often used, based on the
Thomas–Fermi (TF) approximation, that consists in neglecting the kinetic energy with respect
to the self- and inter-species interaction energies [8]. This reduces the problem of finding the
ground state of the binary mixture of condensates to a classical problem, related to the stability
of a system of two interacting fluids.

In this paper, we shall investigate this problem by adopting the following approach: given
a system of two interacting condensates, confined in a generic external potential (that can
be different for the two species), we will find general tools to determine the ground state of
such a system in the TF approximation. The paper has the following structure. In section 2,
we set up the problem and introduce notation. In section 3, we find a threshold value of the
inter-species interaction parameter, above which mixed configurations cannot be the ground
state of the system. In section 4, we establish those conditions that determine which one of
the possible separated configurations is the ground state. We conclude with an outlook in
section 5. Throughout this paper, both cases of (i) fixed numbers of particles and (ii) fixed
chemical potentials will be considered.

2. Gross–Pitaevskij equations and Thomas–Fermi solutions

We consider a system made up of two species of indistinguishable particles, labeled 1 and 2,
confined by generally different external potentials V1(x) and V2(x). Self-interaction and inter-
species interaction are assumed to be repulsive. An example of such a system is a mixture
of alkali atoms in two different hyperfine states [4, 5]. The two subsystems are described in
a quantum field theoretical framework, by associating with each species the field operators
ψ̂1(x) and ψ̂2(x). However, since we are searching for the zero-temperature ground state, we
assume that all particles condense in the same wavefunction, and thus apply a Bogoliubov
shift [18] and treat ψ1(x) and ψ2(x) as classical fields, normalized to the average numbers of
particles N1 and N2. The grand-canonical energy functional is

E = T + U − µ1(N1 − N1)− µ2(N2 − N2), (1)

where

T =
∫ (

!2

2m1
|∇ψ1|2 + !2

2m2
|∇ψ2|2

)
dmx,

U =
∫ (

V1|ψ1|2 + V2|ψ2|2 + U11

2
|ψ1|4 + U22

2
|ψ2|4 + U12|ψ1|2|ψ2|2

)
dmx, (2)

Nk = N (|ψk|2) =
∫

|ψk(x)|2 dmx, k = 1, 2

and m is the dimension of the system. By requiring that the energy is stationary, one obtains
the coupled GP equations

(
− !2

2m1
" + V1(x) + U11|ψ1(x)|2 + U12|ψ2(x)|2

)
ψ1(x) = µ1ψ1(x), (3)

(
− !2

2m2
" + V2(x) + U22|ψ2(x)|2 + U12|ψ1(x)|2

)
ψ2(x) = µ2ψ2(x). (4)
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In the above equations U11 and U22 are the self-interaction parameters between atoms of the
same species, while U12 is associated with inter-species interaction. Each of these parameters
is assumed to be positive, since we are considering repulsive interactions. The solutions of
(3) and (4) depend on the value of the chemical potentials µ1 and µ2, which are Lagrange
multipliers. If µ1 and µ2 are fixed, the average particle numbers are free to vary. If, on the
other hand, the particle numbers N1 and N2 are fixed, the chemical potentials are chosen in
such a way that the wavefunctions satisfy the normalization constraints Nk = Nk, for k = 1, 2.

For the sake of simplicity, our analysis will be focused on one-dimensional systems, with
the main results generalizable to higher dimensions. Moreover, it will be assumed that the
potentials be continuously differentiable, Vk ∈ C1(R). This class of potentials schematizes
very well those used in trapping cold atoms.

The TF approximation, which will be applied in the following, consists in neglecting the
kinetic energy contribution T to the energy functional (1). This approximation is justified if the
numbers of particles in the system are sufficiently large. More precisely, in three-dimensional
traps the TF approximation is applicable if the parameter Nkak, where ak is the s-wave scattering
length of species k, is very large compared with the typical trapping length aT (=

√
!/mωho for

a harmonic trap of frequency ωho). In standard experimental configurations, ak/aT is typically
of order 10−3 [8], and thus Nk is of order 104–6 (see [19] for a single condensate and [4–6] for a
mixture), ensuring that the parameter Nkak/aT is indeed large, and thus the TF approximation
is valid. In one-dimensional configurations, one should require that Nkaka$/a2

⊥ & 1, where a$

and a⊥ are the longitudinal and transverse trapping lengths, respectively, provided Nk and ak

are not large enough to excite the transverse degrees of freedom. A realization of a quasi-one-
dimensional Bose system was achieved in [20], where a highly anisotropic harmonic potential
of frequencies ω⊥ = 2π×360 Hz and ω$ = 2π×3.5 Hz traps sodium atoms (s-wave scattering
length a = 2.8 nm). In this case, the one-dimensional TF applicability condition is already
verified if the number of atoms is 103–4.

Under these conditions, for a single condensate, as Nk increases, the kinetic energy
contribution to (1) becomes vanishingly small with respect to both the potential and interaction
energy ETF [8]. For binary mixtures, another relevant contribution to the kinetic energy can
arise if the density profiles have rapidly varying parts, corresponding to domain walls sharply
separating the two species. This extra term is due to the exponential penetration of one species
into the other one through the domain wall [21], but it results in O

(
N−1/2

k

)
with respect to the

self-interaction energies, and can thus be neglected as a first approximation for large Nk.
The TF approximation provides a very accurate tool to determine the ground-state density

profiles of single condensate and mixtures. Nonetheless, the kinetic energy plays an important
role for finite Nk in the case of binary mixtures, by limiting the number of domain walls. Thus,
the TF approximation is a good starting point for very large numbers of particles.

As a consequence of the TF approximation, the grand-canonical energy becomes
dependent only on the densities ρ1(x) = |ψ1(x)|2 and ρ2(x) = |ψ2(x)|2, and will be indicated
in the following as ETF(ρ1, ρ2).

Note that, without loss of generality, one can reduce the analysis to the particular case
U11 = U22 = 1. Indeed, by scaling

ρk → ρk/
√

Ukk, Nk → Nk/
√

Ukk, Vk → Vk

√
Ukk, µk → µk

√
Ukk (5)

one obtains

ETF(ρ1, ρ2) = U (ρ1, ρ2)− µ1 (N (ρ1)− N1)− µ2(N (ρ2)− N2), (6)

with

U (ρ1, ρ2) = 1
2

∫ (
ρ2

1 + ρ2
2 + 2αρ1ρ2

)
dx +

∫
(V1ρ1 + V2ρ2) dx (7)
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and

α = U12√
U11U22

. (8)

Incidentally, note that the above reduction to a single parameter α applies also to the full
energy functional (1), by also scaling the masses mk → mk/

√
Ukk.

The critical points of the TF grand-canonical energy functional are the solutions to the
algebraic equations

ρ1(x) + αρ2(x) + V1(x) = µ1, ρ2(x) + αρ1(x) + V2(x) = µ2 (9)

and will be called the TF density profiles. Moreover, for fixed particle numbers Nk, they are
supplemented by the normalization conditions

∫
ρk dx = Nk, k = 1, 2, (10)

which fix the values of the chemical potentials µk.
In the following, the supports of the TF densities ρk will be denoted by Sk. By assuming

that α )= 1, in S12 = S1 ∩ S2, where both condensates are present, the TF density profiles are

ρ1(x) = µ1 −V1(x)− α (µ2 −V2(x))

1− α2
, ρ2(x) = µ2 −V2(x)− α (µ1 −V1(x))

1− α2
. (11)

In the regions S11 = S1 − S2 and S22 = S2 − S1, occupied by only one of the two species, the
solutions are respectively

ρ1(x) = µ1 −V1(x), ρ2(x) ≡ 0, (12)

and

ρ2(x) = µ2 −V2(x), ρ1(x) ≡ 0. (13)

The TF density profiles (11)–(13) are defined independently of the dimensionality of the
system.

Note that the TF equations (9) uniquely determine the functional dependence of the
densities at a point x on the external potentials at the same point, the chemical potentials and
the interaction parameters, once the supports S1 and S2 are given. On the other hand, large
freedom is left in the choice of the supports of the density profiles, for which uniqueness
fails. Thus, extremely irregular configurations can be solutions of the TF equations. Among
all possible solutions, one should pick up the minimizers.

The rest of this paper will be devoted to deriving general rules for finding the minimizing
configuration of the supports, in order to determine the ground state of the system, both if the
numbers of particles and the chemical potentials are fixed.

3. Mixed versus separated configurations

The configurations of the binary mixture can be divided into two fundamental parts: separated
and mixed. The TF densities are mixed in S12 = S1 ∩ S2, where both species are present, and
are separated in S11 ∪ S22 = S1 ∪ S2 − S1 ∩ S2, where only one species is present at one time.
A configuration is said to be separated if it does not contain mixed parts, and mixed otherwise.
We proceed by treating separately the two cases (i) fixed numbers of particles and (ii) fixed
chemical potentials.

4
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3.1. Solutions are confined

We will first prove that under the assumption that the C1 potentials are confining, i.e.

Vk(x) →+∞, for |x| → ∞, (14)

with k = 1, 2, all TF density profiles are compactly supported. We will see that this is a straight
consequence of the positivity of the densities

ρk(x) ! 0. (15)

We will prove that the supports Sk are bounded, by separately considering the sets with
separated phases, S11 = S1−S2 and S22 = S2−S1, and that with mixed phases, S12 = S1∩S2.
By requiring that the solutions (12) and (13) be non-negative we obtain

S11 ⊂ {x ∈ R |V1(x) " µ1} = V−1
1 (−∞, µ1],

S22 ⊂ {x ∈ R |V2(x) " µ2} = V−1
2 (−∞, µ2],

(16)

which are bounded by hypothesis. On the other hand, from (11) we obtain that every point
x ∈ S12 satisfies the conditions
µ1 −V1(x)− α (µ2 −V2(x))

1− α2
! 0,

µ2 −V2(x)− α (µ1 −V1(x))

1− α2
! 0. (17)

They are easily proved to be equivalent to

min{α, α−1} (µ2 −V2(x)) " (µ1 −V1(x)) " max{α, α−1}(µ2 −V2(x)), (18)

which in turn imply that

S12 ⊂ V−1
1 (−∞, µ1] ∩V−1

2 (−∞, µ2], (19)

so that S12 is compact. As a consequence, S1 = S11 ∪ S12 and S2 = S22 ∪ S12 are compact.

3.2. Fixed numbers of particles

If the numbers of particles N1 and N2 are kept fixed, the chemical potentials are functionally
dependent on the density profiles, since they have to be tuned in order to preserve the
normalization conditions (10). The search for the zero-temperature ground state of the system
reduces to the minimization of the TF grand-canonical energy functional (6) that, evaluated at
the TF solutions, reduces to the internal energy functional (7).

3.2.1. Square well. We start from the well-known case study of a binary mixture confined
in a square well, corresponding to a bounded interval of the real axis S = [a, b] (with b > a).
This example will be proved useful in the following.

The internal energy of a completely mixed configuration is fixed by the TF prescription
for the density profiles (with Vk(x) ≡ 0) and the normalization conditions. On the other hand,
the energy of a separated configuration with N1 particles of the first species in a subset S1 ⊂ S
and N2 particles of the second in S2 = S − S1 is a function of the length |S1|. It can be easily
verified (see e.g. [8]) that the minimization of the internal energy of a separated configuration
is attained for supports S̄1 and S̄2 = S− S̄1 (corresponding to densities ρ̄1 and ρ̄2) verifying

N1

|S̄1|
= N2

|S̄2|
(⇐⇒ ρ̄1 = ρ̄2). (20)

Since the difference between the internal energy of the optimal separated configuration Us and
the one of the mixed configuration Um reads

"U = Us − Um = N1N2

b− a
(1− α), (21)

5
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the minimizing separated configurations are energetically favored if α ! 1, while the mixed
configurations are less energetic than all separated configurations if α < 1. For a binary
mixture in a square well, this proves the well-known role of

αth = 1
(
U th

12 =
√

U11U22
)

(22)

as a threshold value.

3.2.2. Selection principle and regularity of solutions. Note that the minimizers have
a very high degeneracy, since every sets S̄1 whose measures satisfy (20) correspond to
possible TF configurations. Among them, despite the regularity of the potentials, there
are extremely irregular configurations with highly entangled supports and infinitely many
points of discontinuity (domain walls). However, such a phenomenon is a consequence of
the TF approximation that, by neglecting the kinetic energy part T in (1), is also deprived
of its regularizing effect on the densities. The kinetic term favors smooth density profiles.
Indeed, due to the presence of the kinetic energy, the grand-canonical energy functional (1)
is defined on functions with square integrable (distribution) derivatives, and TF solutions are
approximations thereof. In particular, in the one-dimensional situation, a domain wall is a
discontinuous approximation of a (absolutely) continuous function that changes between two
values in a very short transition region with a large derivative.

Thus, each domain wall of the TF solution would correspond to an additional cost, in
terms of kinetic energy of the true solution, and the above-mentioned degeneracy would be
lifted; among the TF degenerate minimizers, T would select those one(s) with the minimum
number of domain walls. In the following, we will make use of this selection principle and,
in particular, we will only consider densities in the class of piecewise differentiable functions,
ρk ∈ C̃1. This means that there is a finite subdivision of Sk such that the restriction of ρk to
each subinterval [t j, t j+1] is continuously differentiable. Incidentally, note that the potentials
themselves can be assumed to be piecewise differentiable, without modifying our results.

Going back to the square-well case, by the selection principle, for α ! 1, we end up with
only two degenerate minimizers: one with S1 = [a, c], where c = (aN2 + bN1)/(N1 + N2),
and the other with S1 = [d, b], where d = (aN1 + bN2)/(N1 + N2). Both configurations are
separated and have a single domain wall.

3.2.3. Generic potential. We now extend the above result to the case in which the mixture
is not confined in a square well, but rather by generic continuously differentiable confining
potentials Vk(x) with k = 1, 2. We will prove that, if α ! 1, the ground state of the system is
a separated configuration, and thus we can restrict our attention to the separated ones.

Let the TF densities have a mixed configuration in S12 = S1 ∩ S2, given by equation
(11). Since the densities ρk are assumed to be piecewise continuously differentiable, and their
supports are compact, S12 is the union of a finite number of compact intervals in which the
ρk are C1. Choose a segment ω = [x0, x1] of length |ω| = ε > 0 included in some of those
intervals. The interval ω contains

n j =
∫

ω

ρk(x) dx = ε〈ρk〉 (k = 1, 2) (23)

particles, where 〈·〉 denotes the average on ω. Since the potentials are C1, we can express them
in ω as

Vk(x) = Vk(x0) + V ′k (ξk(x))(x− x0), k = 1, 2, (24)

for some ξk(x) ∈ ω.

6
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Since the ρk are continuous in ω, two points x̄k exist in this segment, in which the functions
equal their averages:

ρk(x̄k) = 〈ρk〉. (25)
Moreover, since the density functions are continuously differentiable in [x0, x1], taking into
account (25) we can express them in each point of the segment as

ρk(x) = 〈ρk〉 + ρ ′k(ηk(x))(x− x̄k), (26)
for some ηk(x) ∈ ω. The first derivatives appearing in (24)–(26) are all bounded in ω. Thus,
the internal energy of particles in the set ω reads
um = ε

[ 1
2 〈ρ1〉2 + 1

2 〈ρ2〉2 + α〈ρ1〉〈ρ2〉 + V1(x0)〈ρ1〉 + V2(x0)〈ρ2〉
]
+ O(ε2). (27)

We now divide ω into two subintervals ω1 = [x0, y] and ω2 = [y, x1]:
ω = ω1 ∪ ω2, (28)

and replace the TF mixed densities in ω with flat and separated density profiles, preserving
the particle numbers

ρ̄1 = n1

|ω1|
for x ∈ ω1, (29)

ρ̄2 = n2

|ω2|
for x ∈ ω2. (30)

As a rule in choosing the bipartition of ω, we assume that the stationarity condition (20) for
the internal energy in an infinite potential well is satisfied

|ω2|
|ω1|

= n2

n1
. (31)

Taking into account the result (21), concerning the self-interaction and inter-species interaction
parts, the potential energy of the set ω with separated densities (29)–(30) can be expressed,
after a straightforward manipulation, as
us = ε

[ 1
2 〈ρ1〉2 + 1

2 〈ρ2〉2 + 〈ρ1〉〈ρ2〉 + V1(x0)〈ρ1〉 + V2(x0)〈ρ2〉
]
+ O(ε2). (32)

The net change in the total potential energy, due to the replacement of the mixed densities in
[x0, x1] with the separated ones, is

δU = us − um = ε (1− α) 〈ρ1〉〈ρ2〉 + O(ε2). (33)
For sufficiently small ε, the sign of δU is determined by the first term in (33), unless α = 1.

If α > 1, the result δU < 0 implies that, given a point of a mixed configuration, there
always exists a neighborhood in which one can construct a separated configuration with lower
energy. Since S12 is compact, we can find a finite subdivision S12 = [x0, x1]∪ . . .∪ [xn−1, xn],
such that the above construction can be performed in each segment [x j−1, x j]. Thus, the
minimizers are separated configurations, if the particle numbers are fixed. Analogously, one
can show that if α < 1 the internal energy of a separated configuration is always larger than
the energy of a mixed configuration with the same particle numbers. Thus, even in the case
of varying external potentials, the value (22) acts as a threshold between mixed and separated
ground states.

3.3. Fixed chemical potentials

If the chemical potentials µ1 and µ2 are fixed, the average particle numbers are free to vary.
In order to find the ground state of the system, one has to find the minimizers of the grand-
canonical energy ETF(ρ1, ρ2). As in the case of fixed particle numbers, the elementary case
of a binary mixture in an infinite square well will be analyzed first. Then, we will try and
find general results in the case of different piecewise continuously differentiable confining
potentials.

7
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3.3.1. Square well. It is clear from (11)–(13) that fixing the chemical potentials corresponds
to fixing the density functions, with the choice of the supports leading to different numbers of
particles. We will neglect a nonessential annoying constant in (6) by setting N1 = N2 = 0.

In the simple case of an infinite square well S with V1 = V2 = 0 inside the well, the
only values of the chemical potentials that have physical meaning are the positive ones, as it
emerges from (16) and (19). In the following, we shall set µ2 " µ1 without loss of generality.
Let us first consider a completely mixed configuration in the well with density profiles

ρm
1 = µ1 − αµ2

1− α2
, ρm

2 = µ2 − αµ1

1− α2
. (34)

Such a configuration has a physical meaning if both densities are non-negative. Thus, if α < 1
the numerators in (34) must be non-negative, while if α > 1 the numerators must be non-
positive. Conditions on the positivity of the densities set a bound on the values of α which are
compatible with the chosen chemical potentials:

α /∈
(

µ2

µ1
,
µ1

µ2

)
. (35)

The problem of non-physical values of α does not arise in the case

µ2 = µ1, (36)

which will prove to be a very relevant physical situation. If (36) holds, the boundaries
(35) coincide, and the densities are well defined for all α. Note that condition (36) exactly
corresponds to the minimum condition of the internal energy in the separated phase, since, by
taking into account (12)–(13), it implies ρs

1 = ρs
2.

If the solutions (34) are plugged in the definition of the grand-canonical energy, it is
possible to express it in terms of interaction parameters and chemical potentials:

Em = |S|
[
µ2

1 + µ2
2 − 2µ1µ2α

2(α2 − 1)

]
. (37)

If instead separated solutions are considered, with the first condensate confined in a region S1

and the second in S2 = S− S1, the grand-canonical energy is a function of the length |S1| and
reads

Es(|S1|) = −|S1|
µ2

1

2
− |S− S1|

µ2
2

2
. (38)

Since (38) is linear in the length |S1|, it is clear that its minimum value is

Ēs = −|S|
µ2

1

2
. (39)

Hence, if µ2 < µ1 the minimum of the grand-canonical energy for separated configurations
corresponds to S1 = S. (In the same way, if µ2 > µ1, it corresponds to S2 = S.) In this
case, the minimizer is in fact a single condensate configuration. Only if (36) holds, separated
configurations are allowed. Moreover, their energy is stationary with respect to changes in the
partition of S.

The energy in the mixed configuration and that in the minimizing separated configuration
will now be compared in detail. In the case µ2 < µ1, for 0 " α < µ2/µ1 energy Em (37)
increases, but it is always lower than Ēs, and thus the TF ground state corresponds to the mixed
configuration. For µ2/µ1 " α " µ1/µ2, separated configurations (not only the minimizing
one) are the only ones that have a physical meaning. In the range α > µ1/µ2, the mixed
configurations become physical again, but their energy that vanishes like α−1 for α → ∞ is
always greater than Ēs; thus, the TF ground state is the configuration with a single condensate
(of species one).

8
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We now consider the case µ2 = µ1. It was observed that this is the only case in which
real separated states minimize the grand-canonical energy Es, and thus it is possible for such
configurations to be the ground state of the system. By plugging condition (36) into equation
(37), we find that the grand-canonical energy of the mixed configuration reads

Em = −|S|
µ2

1

1 + α
. (40)

If (40) is compared with Ēs in equation (38), mixed configurations are found to be favored if
α < 1, while separated configurations have smaller energy if α > 1. Thus, even in the case of
fixed chemical potentials, with µ1 = µ2, and infinite square-well external potential, the value
(22) proves to be the discriminant value between mixed and separated ground states.

3.3.2. Generic potential. Consider TF density profiles ρk(x). In S11 = S1 − S2, we obtain
(with the convention N1 = N2 = 0)

E (1)
s = 1

2

∫

S11

(µ1 −V1)
2 dx−

∫

S11

(µ1 −V1)
2 dx = −1

2

∫

S11

(µ1 −V1)
2 dx (41)

and in S22 = S2 − S1

E (2)
s = −1

2

∫

S22

(µ2 −V2)
2 dx. (42)

Therefore,

Es = −1
2

∫

S11

Ṽ1(x)2 dx− 1
2

∫

S22

Ṽ2(x)2 dx, (43)

with

Ṽk(x) = µk −Vk(x) (k = 1, 2). (44)

In S12 = S1 ∩ S2, we obtain

Em = − 1
2(1− α2)

∫

S12

(Ṽ1(x)2 + Ṽ2(x)2 − 2αṼ1(x)Ṽ2(x)) dx. (45)

Compare a mixed TF configuration in a set S with a configuration with only one species, say
ρ1,

δE = E (1)
s − Em = 1

2

∫

S
Ṽ 2

1 dx + 1
2(1− α2)

∫

S
(Ṽ 2

1 + Ṽ 2
2 − 2αṼ1Ṽ2) dx

= − 1
2(1− α2)

∫

S
(Ṽ2 − αṼ1)

2 dx. (46)

Thus, when α > 1 one obtains δE " 0 and separated configurations are energetically favored.
Therefore, in this condition, we have to search for the ground state among the separated
configurations, which is the aim of the following section.

3.4. Remarks

From the results obtained in this section, it clearly emerges that, if α ! 1, that is, U12 ! U th
12,

the ground state is in a separated configuration. Moreover, according to the selection principle
introduced in section 3.2.2, the following analysis will be restricted to piecewise continuously
differentiable solutions of the TF equations, ρk ∈ C̃1, whose discontinuities can be due to the
presence of a finite number of interfaces.

9
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4. Minimizing separated configurations

In section 3, it was shown that separated configurations are energetically favored if

α > 1, (47)

for generic continuously differentiable confining potentials. We will now find a way to
determine which of these configurations is the ground state of the system, and which can
be regarded to be locally stable or unstable. We shall again discuss separately the cases of
fixed numbers of particles and fixed chemical potentials, underlining analogies and differences
between them.

When only piecewise continuously differentiable density profiles are considered, a
separated configuration can be characterized by the property that the supports S1 and S2

do not intersect, except at a finite set of points. The intersection points correspond to a set of
domain walls separating the first and the second species. S1 and S2, being compact, are thus
unions of intervals, which can be bounded by (i) two domain walls, (ii) a domain wall and a
zero of the TF density profile, or (iii) two zeros. From (12) and (13), the possible zeros ζ (k)

j ,
with j = 1, . . . , m and k = 1, 2, of the densities ρk are subject to the condition

µk = Vk
(
ζ (k)

j

)
. (48)

In general, if we search the ground state among the separated configurations, we have to deal
with the minimization of the sum of two decoupled functionals of the kind

U (ρ1, ρ2) = V (ρ1) + V(ρ2). (49)

We remark that, except for condition (47) that enables one to establish that the ground state is
a separated configuration, the parameter α plays no role in the search for minimal separated
configurations.

We will proceed by fixing the number n of domain walls and determine the set of positions
!R = (R1, . . . , Rn) for which the considered functional, internal or grand-canonical energy,
is, at least locally, minimized. We will then compare the minima corresponding to different
numbers of walls.

4.1. Fixed numbers of particles

In this case, our aim is to find the stationary configurations of the internal energy

U (ρ1, ρ2) = 1
2

∫

S1

(ρ1(x)2 + 2V1(x)ρ1(x)) dx + 1
2

∫

S2

(ρ2(x)2 + 2V2(x)ρ2(x)) dx (50)

with respect to small variations of !R, under the condition that the numbers of particles Nk

remain fixed,
∫

Sk
ρk dx = Nk. Then, conditions will be set for these stationary configurations

to be local minima. It can easily be inferred that the chemical potentials in (12) and (13),
which are used as Lagrange multipliers to normalize the density profiles and thus depend on
the supports S1 and S2, are the functions of the domain wall positions !R. We re-express the
separated TF density profiles, explicitly showing this additional dependence:

ρk(x; !R) = µk(!R)−Vk(x) (k = 1, 2). (51)

The zeros ζ (k)
j , subject to condition (48), are also functions of !R. Since the choice of the

position of the domain walls completely defines the density profiles and their supports, the
internal energy (50), evaluated at stationary TF densities, can be viewed as a function of !R:

U (ρ1(·; !R), ρ2(·; !R)) := U (!R). (52)

10
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x

x f

Figure 1. Stationary configuration for a binary mixture of two species confined in different external
potentials. The (blue) dashed line represents the external potential V1(x) and the (black) dotted line
potential V2(x) in arbitrary units. The (brown) solid line is the difference ϕ(x) = V1(x)−V2(x) that
appears in equation (55). The density profile of the first species is in dark gray (red in the online
version), while the density profile of the second one is in light gray (green in the online version).
All the plotted quantities are rescaled according to equation (5). As prescribed by the condition
(54), the densities ρ1 and ρ2 at the edges of domain walls are equal. The domain walls are placed
at those points where the function ϕ(x) has the same value.

We now assign to each domain wall a dichotomic variable s j: s j = +1 if it is the upper border
of an interval containing the first species (and thus the lower border of an interval containing
the second one) and −1 in the complementary case.

By taking the first derivative of (52) with respect to a generic Rj and using normalization
conditions, one obtains

∂U (!R)

∂Rj
= s j

2
(ρ2(Rj; !R)2 − ρ1(Rj; !R)2). (53)

The stationarity condition is obtained by setting to zero the derivatives (53) with respect to all
the positions of the n domain walls, yielding

ρ1(Rj; !R) = ρ2(Rj; !R) ∀ j = 1, . . . , n. (54)

These are clearly analogous to the minimum conditions (20) in the case of an infinite potential
well. If the densities in (54) are expressed as functions of the external potentials and the
chemical potentials, it becomes clear that the position of the domain walls in a stationary
configuration is characterized by the fact that the potential

ϕ(x) := V1(x)−V2(x) (55)

is equal for all Rj:

ϕ(Rj) = µ1(!R)− µ2(!R). (56)

Let us consider the equation

ϕ(x) = f , (57)

with f a constant. The number of its solutions fixes the maximal number of walls in a stationary
configuration. An example of stationary configuration for different confining potentials is
reported in figure 1.

The case in which the external potentials for the two species are proportional is particularly
interesting:

V2(x) = βV1(x) =: βV (x), (58)

11
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V x V x

xxx

(a) (b)

Figure 2. Examples of maximal stationary configurations in a symmetric double-well potential.
The (blue) dashed line represents the external potential V1(x) ≡ V (x), confining particles of
first species, in arbitrary units. Particles of the second species are subjected to the potential
V2(x) =

√
U11/U22 V (x), with U11 < U22. This situation corresponds to equal physical (not

scaled) trapping potentials. The density profile of the first species is in dark gray (red in the
online version), while the density profile of the second one is in light gray (green in the online
version). The scaled densities at the edges of a domain wall satisfy condition (54). In (a), the
minima of the potential are occupied by the first species, which is the less self-interacting one.
In (b), the minima are occupied by the second species. It is evident that the domain walls in both
stationary configurations (a) and (b) are placed at points with the same value of the potential V (x)
(see equation (60)). Computation of the second derivatives shows that, since U11 < U22, only
configuration (a) is (at least locally) stable.

with β > 0. This occurs, e.g., when the two condensates feel the same potential before the
scaling (5), and in such a situation

β =

√
U11

U22
. (59)

In the case of proportional potentials (58), equation (57) specializes to

V (x) = v, (60)

with v being a constant. If (60) has at most n solutions, there cannot exist stationary
configurations with more than n domain walls. In this case, the domain walls are placed
at positions characterized by the same potential, which must be equal to

V (Rj) = µ1(!R)− µ2(!R)

1− β
, ∀ j = 1, . . . , n. (61)

As a consequence, the densities of the same species must be equal at the edge of each domain
wall. The values of the densities at the edge of all domain walls in the case of proportional
potentials will be indicated as ρ̃ = ρ1(Rj) = ρ2(Rj).

Henceforth, we shall call maximal stationary configurations those ones in which a domain
wall is placed in each of the real solutions of (61), except for the case in which one of the
solutions is a stationary point for V (x). Two different examples of such configurations are
shown in figure 2. In the following, it will be shown that for β ≈ 1 the ground state of the
system is usually in a maximal configuration.

In order to determine if the stationary configurations are in fact minima of (52), the Hessian
matrix H at the stationary solution has to be computed. By deriving (53) once more with respect
to Rj, we find that ∂2U/∂R2

j has two contributions: the first one is related to the dependence of
the external potentials on the point Rj and the second one to the dependence of the chemical
potentials on the position of the domain walls !R. On the other hand, if (53) is derived with
respect to Rk with j )= k, only the second one of the above-mentioned contributions survives.
By taking into account conditions (54), the diagonal elements of the Hessian matrix in the

12
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stationary configurations read

Hj j = s jρ1(Rj; !R)ϕ′(Rj) +
(

1
|S1|

+ 1
|S2|

)
ρ1(Rj; !R)2, (62)

while the non-diagonal elements are

Hjk = s jsk

(
1

|S1|
+ 1

|S2|

)
ρ1(Rj; !R)ρ1(Rk; !R). (63)

For a large number of particles, so that |Sk| are sufficiently large, all terms depending on the
inverse length can be neglected, and conditions for the Hessian matrix are positive definite,
and hence for the corresponding stationary configuration to be a local minimum, are easy to
find

ϕ′(Rj) > 0 ⇔ V ′1(Rj) > V ′2(Rj) if s j = +1,

ϕ′(Rj) < 0 ⇔ V ′1(Rj) < V ′2(Rj) if s j = −1.
(64)

For smaller numbers of particles, the complete Hessian matrix has to be diagonalized (e.g. in
a numerical way). A simpler and relevant case is that of equal external potentials, in which
we have already remarked that in a stationary configuration the values of the densities of each
species must be equal at all the domain walls. We obtain

Hpp
jk = δ jka j + (−1) j+kC, (65)

where we have taken into account that s jsk = (−1) j+k and defined

a j = s jρ̃ (1− β)V ′(Rj) (66)

as the intensive and purely diagonal part, and

C =
(

1
|S1|

+ 1
|S2|

)
ρ̃2 (67)

as the length-dependent term, which vanishes for large numbers of particles. In this limit, when
β < 1 the condition for a stationary configuration to be locally stable is that the potential V (x)

be increasing at all the Rj that are the upper (right) border of an interval containing particles
of the first species (s j = +1), and decreasing at all the Rj that are the lower (left) border of an
interval of the same kind (s j = −1). Intuitively, the less self-interacting condensate (since we
supposed that β < 1 in equation (59)) tends to occupy regions of the real axis in which the
potential is lower, while the most self-interacting one is pushed into regions where the external
potential is higher. For small numbers of particles, such configurations continue to be minima
for (52), since if the potential is increasing when s j = +1 and decreasing when s j = −1, Hpp

jk
in equation (65) is the sum of two positive definite matrices, and hence it is positive definite.
Moreover, it is possible that even a configuration in which

a j " 0 for some j ∈ {1, . . . , n} (68)

becomes stable, which is impossible in the thermodynamic limit. However, bounds on the
stability of such configurations can be found if some necessary conditions for (65) to be
positive definite are tested. First, since

∣∣Hpp
i j

∣∣ "
(
Hpp

ii + Hpp
j j

)/
2 for all pairs of indices, then

ai + a j ! 0, ∀i, j = 1, . . . , n, (69)

which implies that only one of the {aj}, say a j̄, can be non-positive for a stable configuration,
and moreover

|a j̄| " min
j )= j̄

a j. (70)
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V x V x

x xx

(a) (b)

Figure 3. Non-maximal configurations in a double-well potential. Lines and shades have the same
meaning as in figure 2. Both configurations refer to the case U11 < U22. In (a), the first species
occupies a region around the potential barrier, where the potential is higher than its value in the
domain walls. In (b), the second species occupies the region around one of the minima of the
external potential, where it is lower than its value in correspondence of the domain walls. Although
locally stable, density profiles (a) and (b) are not ground states.

On the other hand, by applying the necessary condition det H > 0, another constraint can be
established,

|a j̄| <
C

1 + C
∑

j )= j̄ a−1
j

, (71)

with the upper bound vanishing in the thermodynamic limit.
There are two kinds of maximal stationary configurations: the first one is characterized by

the fact that the external potential at each point of S1 is smaller than the potential at each point
of S2, while the second one is characterized by the opposite situation. The latter, however, is
not stable, since the diagonal part of its Hessian matrix contains ai < 0 for all i = 1, . . . , n.
We can thus limit our attention to the first kind of profiles, which we call the maximal stable
configurations (see figure 2). We will now prove that if a locally stable configuration is not
maximal, there are conditions ensuring that it cannot be the ground state of the system. The
proof is based on the fact that in a non-maximal and locally stable configuration one of the
following situations emerges: either the potential at a point of S1 is greater than the potential
at the domain walls or the potential at a point of S2 is smaller than its value at the domain
walls. Examples of non-maximal configurations are represented in figure 3. We remark that
both these situations can be present in the same configuration. We start by considering the first
one. Let

v = V (Rj) (72)

be the potential at the domain walls. Assume that the potential at a point x0 ∈ S1 be such that

V (x0) =: V̄1 > v. (73)

We exclude the case V̄1 = µ1, implying a vanishing density at x0. (This case will be eventually
considered as a limit.) We now consider a subinterval ωε of S2 of length ε > 0, with a domain
wall as one of its edges, and an interval ωη of length η > 0, which is a neighborhood of x0, and
impose that the number of first-species particles in ωη be equal to n0 and that of second-species
particles in ωε be n0/β. Since the potential is regular and the densities are supposed to be
regular between each pair of domain walls, one obtains

n0 = ηρ1(x0) + O(η2) = εβρ2(Rj) + O(ε2). (74)

This equality implies a relation between the length of the considered intervals, depending on
the ratio of the densities, which can be expressed in terms of the potentials by using condition
(54):

η(ε) = εβ
ρ2(Rj)

ρ1(x0)
+ O(ε2) = εβ

µ1 − v

µ1 − V̄1
+ O(ε2). (75)
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The potential energy of the two selected intervals is given by the sum of the contributions

u(2)
ε = vn0 + 1

2
n2

0

εβ2
+ O(ε2), (76)

u(1)
η = V̄1n0 + 1

2
n2

0

η(ε)
+ O(ε2). (77)

We now replace the original density profiles with flat density profiles which preserve the
numbers of particles. In particular, we fill ωε , which initially belonged to S2, with the first-
species condensate with a density

ρ̄1 = n0

ε
, (78)

and ωη with the second-species particles with a density

ρ̄2 = n0

η(ε)β
. (79)

With these new density profiles, the internal energy of the intervals becomes the sum of the
terms

u(1)
ε = vn0 + 1

2
n2

0

ε
+ O(ε2), (80)

u(2)
η = V̄1n0 + 1

2
n2

0

η(ε)β2
+ O(ε2). (81)

The total variation of the internal energy induced by this change is

δU = u(1)
ε + u(2)

η − u(2)
ε − u(1)

η =
n2

0

2

(
1
β2
− 1

) (
1

η(ε)
− 1

ε

)
+ O(ε2). (82)

Since β < 1, we find that if η(ε) > ε, i.e. up to first order in ε,

µ1 − v

µ1 − V̄1
>

1
β

, (83)

and it is always possible, for sufficiently small ε, to find a density profile that preserves
the numbers of particles, whose energy is smaller than the energy of a non-maximal stable
configuration. It can be observed that if the limit V̄1 → µ1 is taken, condition (83) is certainly
satisfied. This means that in the ground-state configuration the intervals of the support S1 of
the less self-interacting species cannot be bordered by a zero.

If the case in which there exists a point in x0 ∈ S2, where the external potential is lower
than its value in the domain walls,

V (x0) =: V̄2 < v, (84)

we find, with the same procedure as in the previous case, that if the following inequality is
satisfied:

µ2 − v

µ2 − V̄2
< β, (85)

then the considered non-maximal configuration can never be the ground state of the system.
Since usually β2 = U11/U22 7 1 (see, e.g., the hyperfine states of 87Rb, [2]), conditions
(83)–(85) set a very stringent limitation on the possibility that a non-maximal stable
configuration can be the ground state of the binary mixture.
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4.2. Fixed chemical potentials

The results in the case of fixed chemical potentials are very similar to that of fixed numbers
of particles in the thermodynamical limit. The functional to be minimized by the separated
configuration is (we set N1 = N2 = 0)

E (ρ1, ρ2) =
∫

S1

(
1
2
ρ2

1 + V1ρ1 − µ1ρ1

)
dx +

∫

S2

(
1
2
ρ2

2 + V2ρ2 − µ2ρ2

)
dx. (86)

An important difference with respect to the previous case is that, since the chemical potentials
are fixed and not subject to normalization conditions, the TF density functions are completely
independent of the positions of the domain walls. Thus, the functional (86) depends on !R
only through the domains of integrations, which are determined by the supports of the density
profiles, and it can be seen again as a function of the domain wall positions:

E (ρ1(·; !R), ρ2(·; !R)) := E(!R). (87)

The stationarity conditions are exactly the same as in the case of fixed numbers of particles,
since the first derivative with respect to a generic Rj reads

∂E(!R)

∂Rj
= s j

2
(ρ2(Rj; !R)2 − ρ1(Rj; !R)2). (88)

However, the Hessian matrix in the stationary configurations is diagonal, as in (62). The
absence of the non-diagonal part lies in the fact that the first derivative (88) depends on the
position of the domain walls only through the external potentials. The stability criteria for
a stationary density profile are the same as in the case of fixed numbers of particle, if the
thermodynamical limit is considered: a configuration is stable if and only if conditions (64)
are satisfied for all j. If the two species lie in the same external potential, these conditions
reduce to s jV ′(Rj) > 0.

Even in the case of fixed chemical potentials, it is possible to show that if the potentials
are proportional (58), there are limitations on the possibility that a non-maximal stable
configuration can be the ground state. Indeed, if at the domain walls we have V (Rj) = v, it
can be shown that if there exists a point in S1, where the potential is V̄1 > v and satisfies

µ2 − V̄1

µ1 − V̄1
>

1
β

, (89)

then the grand-canonical energy of the configuration is higher than the energy of another
configuration corresponding to the same chemical potentials. We observe that the stationarity
condition (54) (with the chemical potentials independent of !R) implies that the chemical
potential µ2 is greater than µ1. Thus, the left-hand side of (89) is an increasing function of
V̄1. Moreover, the equality is saturated for V̄1 = v. We remark that if the limit V̄1 → µ1 is
considered, that is if the density profile of the first-species condensate has a zero, condition
(89) is certainly verified, and then such a configuration cannot be the ground state of the
system. On the other hand, if there exists a point in S2 where the potential is V̄2 < v, satisfying

µ1 − V̄2

µ2 − V̄2
> β, (90)

then there exists another configuration corresponding to the same chemical potentials, which
has a lower grand-canonical energy. In this second case, the left-hand side of (90) is a decreasing
function of V̄2, and the equality is again satisfied by V̄2 = v.

Here, we sketch the proof in the first case, the second case being analogous. Let us suppose
that at a given point x0 ∈ S1 the potential satisfies V (x0) = V̄1 > v, and consider two intervals
ω and χ of the same length ε, ω lying in S2 and bordered by a domain wall, and χ lying in S1

16



J. Phys. A: Math. Theor. 44 (2011) 505305 P Facchi et al

and containing x0. The chemical potentials are fixed; thus, the functional form of the density
functions does not depend on the positions of the domain walls. We now replace in ω the first
species with the second one, and in χ the second species with the first one, using again TF
density functions. Taking into account condition (54), we find that the difference between the
energy of the final and the initial configurations is

δE = ε
(µ1 − V̄1)

2

2

[

1−
(

β
µ2 − V̄1

µ1 − V̄1

)2]

+ O(ε2). (91)

For sufficiently small ε, the final configuration is energetically favored with respect to the initial
one, if condition (89) applies. We finally note that, unlike in (83)–(85), the conditions (89) and
(90) are independent of the value of v. Even in this case, since usually β2 = U11/U22 7 1,
conditions (89) and (90) preclude any non-maximal stable configuration from being the ground
state.

4.3. Outlook

Let us give a brief summary of the results obtained and the strategy adopted in this paper.
The main objective is to determine the stationary (separated) configurations of the mixture.
Let us focus on the case in which the particle numbers N1 and N2 are fixed, since this case
is complicated by the normalization conditions on the density profiles. Let us suppose that
equation (57), ϕ(x) = f , has at most n solutions, and let us fix the number of domain walls
m " n. Condition (54), together with normalization, yields a set of three equations:

µ1 − µ2 = V1(x)−V2(x) ≡ ϕ(x),

N1 = µ1
∣∣S(m)

1

∣∣−
∫

S(m)
1

dxV1(x),

N2 = µ2
∣∣S(m)

2

∣∣−
∫

S(m)
2

dxV2(x),

(92)

where S(m)
k are the supports of the density profiles. The solutions of equations (92) completely

determine the stationary configurations that can be conveniently found in this way, rather than
by directly minimizing the energy functional. Once the stationary configurations are identified
for different numbers of domain walls, it is possible to compute their energy and determine
the ground state.

In the case of proportional trapping potentials, it emerges that configurations with a
maximal number of domain walls are usually energetically favored, and the less self-interacting
species tends to occupy the minima of the potential. In this case, condition ϕ(Rj) = f
specializes to V1(Rj) ≡ V (Rj) = v. Thus, a convenient procedure to find the ground-state
configuration would be (refer to figure 2 for concreteness) to choose an initial small value of
v and start with the maximal number of domain walls satisfying V (Rj) = v; then adjust v

until the normalization conditions are satisfied. If normalizations cannot be fulfilled, v must
be increased (so that the number of domain walls is reduced) and the procedure should be
repeated, until a solution is found.

The approach and procedure are self-consistent and must (physically) stop and yield
a solution when there are at least two domain walls (in the present working hypotheses—
regularity and confinement (14)—for the potentials). The method is applicable for general
regular potentials and its relative simplicity is one of the main results of this paper.

5. Conclusion

We have studied the Thomas–Fermi equations for a system of two Bose–Einstein condensates
confined in generic potentials. We have emphasized the role of the limiting value
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U12 =
√

U11U22 in determining if the ground state of the system is a mixed configuration
or a separated one by assuming that the external potentials are regular. We determined a set
of conditions to be satisfied by locally stable separated configurations. We then looked for
the ground state among the possible locally stable configurations and found that those with a
maximal numbers of domain walls are usually energetically favorite. The results presented in
this paper enable us to find the ground state of binary mixtures in multi-well potentials, given
either the numbers of particles or the chemical potentials.

It would be interesting to analyze the changes that a correction to the TF approximation,
including the kinetic energies, would introduce in such a picture. If the numbers of particles
are sufficiently high, the TF approximation is very accurate. Nonetheless, TF density profiles
correspond to diverging kinetic energy, due in particular to the discontinuities at the domain
walls. The kinetic parts intervene by regularizing the TF solutions, at the expense of an increase
in the potential energy, especially in a neighborhood of a domain wall. This could lead to an
inversion in the energetic diagram, in which configurations with few domain walls could
become energetically favorite with respect to maximal stable configurations. This inversion
has already been numerically studied in the simple case of a harmonic potential [2], but the tools
introduced in this paper uncover the possibility of extending this kind of analysis to generic
multi-well potentials, such as arrays of optical traps, which are now within experimental reach.
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