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The generation of Greenberger-Horne-Zeilinger (GHZ) states is a crucial problem in quantum

information. We derive general conditions for obtaining GHZ states as eigenstates of a Hamiltonian.

We find that a necessary condition for an n-qubit GHZ state to be a nondegenerate eigenstate of a

Hamiltonian is the presence of m-qubit couplings with m � ½ðnþ 1Þ=2�. Moreover, we introduce a

Hamiltonian with a GHZ eigenstate and derive sufficient conditions for the removal of the degeneracy.
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The use of quantum mechanics for improving tasks such
as communication, computation, and cryptography [1] is
based on the availability of highly entangled states [2–5]. It
is therefore of primary importance to obtain reliable strat-
egies for their generation. Among others, Greenberger-
Horne-Zeilinger (GHZ) states [6] represent a paradigmatic
example of multipartite entangled states. In particular, in
the case of three qubits, these states contain purely tripar-
tite entanglement [7] and do not retain any bipartite en-
tanglement when one of the qubits is traced out, thus
maximizing the residual tangle [8].

The experimental realization of GHZ states [9–12], most
recently with 14 qubits [13] has paved the way towards
realistic implementation of quantum protocols. In these
experiments a bottom-up approach is employed, whereby
individual quantum systems (trapped particles, photons,
cavities) are combined and manipulated. As the number
of controllable qubits increases, the generation of GHZ
states requires the use of quantum operations, whose
feasibility strongly depends on the physical system used
(optical, semiconductor, or superconductor based [14,15]).
In the case of the recent trapped-ion implementation [13],
the problem is additionally complicated by the presence of
correlated Gaussian phase noise, that provokes ‘‘superde-
coherence,’’ by which decay scales quadratically with the
number of qubits. It becomes therefore necessary to ma-
nipulate and control state fidelity and dynamics over suffi-
ciently long time scales.

In principle, an alternative scheme for the implementa-
tion of GHZ states would consist in its encoding into one of
the eigenstates (possibly the fundamental one) of a suitable
Hamiltonian. For instance, in [16] it was shown that for the
quantum Ising model in a transverse field the ground state
is approximately a GHZ state if the strength of the field
goes to infinity. Moreover, a proper choice of local fields
for an Heisenberg-like spin model can yield a ground state
which is, again, approximately GHZ [17,18].

On the other hand, it would be interesting to understand
what are the requirements to obtain an exact GHZ state as

an eigenstate of a quantum Hamiltonian. In this Letter we
will address this problem and find rigorous conditions for
the encoding of GHZ states into one of the eigenstates of a
Hamiltonian that contains few-body coupling terms.
Let

jGn�i ¼
1ffiffiffi
2

p ðj0i�n � j1i�nÞ (1)

be GHZ states, where �zjii ¼ ð�1Þijii defines the compu-
tational basis, with i ¼ 0, 1, and �z the third Pauli matrix.
As a preliminary remark, we notice that it is trivial to find
Hamiltonians involving n-body interaction terms, whose
nondegenerate ground state is jGnþi: the simplest example
isE0jGnþihGnþj, with E0 < 0. On the other hand, we can ask
whether it is possible for jGnþi to be the nondegenerate
ground state, even if the Hamiltonian involves at most
m-body interaction terms (with m< n). One can easily
see that this is not possible. The reason lies in the fact
that jGnþi and jGn�i share the samem-body reduced density
matrices, and thus the same expectation values on m-body
interaction terms. If jGnþi is a ground state, also jGn�i must
be a ground state. This is a special case of a result proved in
[19] and of a theorem concerning graph states in [20].
Thus, we relax our initial requirement and try to under-

stand whether jGnþi can be a nondegenerate excited eigen-
state for some m-body Hamiltonian. More specifically, we
search for a limiting value m�

n, depending on the number n
of qubits in the system, such that, if the Hamiltonian
involves m-body interaction terms (with m<m�

n), jGnþi
cannot be a nondegenerate eigenstate, otherwise the task
becomes possible. The most generic m-body Hamiltonian
acting on the Hilbert space of n qubits can be written as

HðmÞ ¼ X
j1<j2<���<jm

X
�1;...;�m

J�1...�m

j1...jm
��1

j1
. . .��m

jm
; (2)

with �i ¼ 0, x, y, z, �0
i � 1i being the identity operator,

��
i the Pauli matrices acting on the Hilbert space of qubit i

and J’s real numbers. Terms involving only identities and
an even number of�z ’s map jGnþi on the subspace spanned
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by itself. On the other hand, terms involving other (prod-
ucts of) Pauli matrices map jGnþi onto an orthogonal sub-

space. The action of HðmÞ on jGnþi is
HðmÞjGnþi ¼ �jGnþi þ j�ðmÞi; (3)

where � is a multiplicative constant and j�ðmÞi is an
unnormalized state vector satisfying

h�ðmÞjGnþi ¼ 0: (4)

The vector j�ðmÞi can be expressed in a convenient way in
an appropriate basis. For example, for a system of 5 qubits

we can take basis states such as ðj00101i � j11010iÞ= ffiffiffi
2

p
.

We will introduce a new notation for these states. Let

N ¼ ð1; 2; . . . ; nÞ (5)

be the ordered set of naturals from 1 to n, and

I ¼ ði1; i2; . . . ; ilÞ (6)

denote a multi-index, whose elements range from 1 to n
and satisfy i1 < i2 < . . .< il. The cardinality jI j ¼ l
satisfies

1 	 jI j 	 m< n: (7)

We now define a set of normalized state vectors, depending
on the choice of the multi-index I and on the sign s ¼ �1:

j ~Gn
s;I i ¼

1ffiffiffi
2

p ð1þ s�x
1 . . .�

x
nÞ
�O
i2I

j1ii
O

j2N =I

j0ij
�
: (8)

The state j ~Gn
s;I i differs from jGnþi in that spins correspond-

ing to the indices in I are reversed in both computational
basis vectors in the superposition jGnþi. This means that

j ~Gn
�;I i ¼ jGn�i if I is the empty set. Moreover, the relative

phase of the two vectors can be positive or negative,
according to the sign s.

Terms in the HamiltonianHðmÞ which are not the identity
or the product of an even number of �z can act on jGnþi by
(i) flipping some spins (at most m), (ii) changing the
relative sign of the linear superposition, (iii) multiplying
the state by an overall constant.

Thus, the vector j�ðmÞi in Eq. (3) can be expressed as

j�ðmÞi ¼ b0jGn�i þ
X

jI j	m

ðaI j ~Gn
þ;I i þ bI j ~Gn

�;I iÞ; (9)

where the multi-indices I are referred to the spins being

flipped by the terms in HðmÞ.
The coefficients aI , bI , and b0 are functions of the

parameters of the Hamiltonian (2). It is obvious that, if

they can all be set to zero by a proper choice ofHðmÞ, jGðmÞ
þ i

will be an eigenstate of the Hamiltonian. A problem arises,
however, if we take into account the antisymmetric state

jGðmÞ� i. The action of HðmÞ on this vector reads

HðmÞjGn�i ¼ �jGn�i þ j�ðmÞi; (10)

where j�ðmÞi is orthogonal to jGn�i and can be decomposed
as

j�ðmÞi ¼ b0jGnþi þ
X

jI j	m

ðaI j ~Gn
�;I i þ bI j ~Gn

þ;I iÞ: (11)

If all the coefficients in Eq. (9) are set to zero, this will

result in the cancellation of j�ðmÞi. As a consequence, jGnþi
and jGn�i will be degenerate eigenstates (with eigenvalue
�). Thus, if the sufficient conditions

b0 ¼ 0; (12)

aI ¼ 0; bI ¼ 0 (13)

are also necessary for jGnþi to be an eigenstate of HðmÞ,
degeneracy is unavoidable. We notice that, since the fol-
lowing equality holds

hGn�j ~Gn
s;I i ¼ 0 8I and 8s; (14)

Eq. (12) is always a necessary condition.
Let us start considering the case in which the

Hamiltonian (2) contains interaction terms up to m body
such that

m<m�
n � ½ðnþ 1Þ=2�; (15)

with ½�� denoting the integer part. Following Eq. (7), the

sum in the decomposition of j�ðmÞi and j�ðmÞi runs over all
the multi-indices whose length satisfies

1 	 jI j 	 m<m�
n: (16)

If this inequality holds, the following orthogonality rela-
tions are verified:

h ~Gn
s1;I1

j ~Gn
s2;I2

i ¼ 0 if I1 � I2 or s1 � s2: (17)

Thus, Eq. (13) is a necessary condition to cancel j�ðmÞi and
make jGnþi an eigenstate of HðmÞ. In this case, however,
jGnþi and jGn�i are eigenstates corresponding to the same
eigenvalue. We can conclude that, if the Hamiltonian con-
tains terms that couple less than m�

n ¼ ½ðnþ 1Þ=2� spins,
the GHZ state jGnþi, and any equivalent state by local
unitaries, cannot be a nondegenerate eigenstate. If jGnþi
is an eigenstate for some Hamiltonian HðmÞ, it must be at
least twofold degenerate.
On the other hand, if m ¼ m�

n degeneracy can be
avoided. Actually, in this case some conditions in
Eq. (13) are no longer necessary and, therefore, the or-
thogonality relations in Eq. (17) hold if inequality (16) is
satisfied. However, a new relation emerges connecting

j ~Gn
s;I i states corresponding to multi-indices of length m�

n

and (n�m�
n) (which is equal to m�

n for even n and to
m�

n � 1 for odd n). Indeed, reversing m�
n spins in jGnþi is

completely equivalent to reversing the other n�m�
n ones.

Instead, if the same operations are applied on the antisym-
metric state jGn�i, they will differ only by an overall sign.
Thus, we have the following relations:

PRL 107, 260502 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

23 DECEMBER 2011

260502-2



j ~Gn
�;I i ¼ �j ~Gn

�;N =I i if jI j ¼ m�
n; n�m�

n: (18)

While conditions (13) still hold for jI j<minðm�
n;n�m�

nÞ,
for larger values of jI j one should use

aI ¼ �aN =I ; bI ¼ bN =I if jI j ¼ m�
n; n�m�

n:

(19)

Thus, in order to cancel j�ðmÞi, it is no longer necessary to
set all the coefficient aI ¼ 0 and bI ¼ 0 in Eq. (9) because
this would give a degeneracy (remember that, by the same

conditions, one would have j�ðmÞi ¼ 0). Instead, by using

Eq. (19), the vector j�ðmÞi in Eq. (11) becomes

j ��ðmÞi � X
jI j¼m�

n;n�m�
n

ðaI j ~Gn
�;I i þ bI j ~Gn

þ;I iÞ; (20)

which is generally different from the null vector. If, for
some values of the parameters in the Hamiltonian (2), the

conditions (19) are satisfied without canceling j ��ðmÞi, the
GHZ state jGnþi can, at least in principle, be a nondegen-
erate eigenstate of an Hamiltonian with interaction terms
coupling no less than m�

n ¼ ½ðnþ 1Þ=2� qubits.
Relying on the above considerations, that yield neces-

sary conditions for the GHZ state jGnþi to be a nondegen-
erate eigenstate, one can also obtain a sufficient condition.
We will introduce a technique, independent of the number
of qubits, to build a one-parameter family of m�

n-qubit
perturbations of the Ising Hamiltonian that admits GHZ
as a nondegenerate eigenstate. Moreover, we will demon-
strate that it is possible to exactly determine the parameter
range such that GHZ is the first excited state. Let us
consider an Ising ferromagnetic Hamiltonian, acting on a
system of n > 2 qubits on a circle

H0 ¼ �Xn
j¼1

�z
j�

z
jþ1 ðwith �nþ1 � �1Þ: (21)

The states jGn�i, being superpositions of computational
basis states with all spins along the z axis, are degenerate

ground states of (21) with eigenvalue Eð0Þ ¼ �n. The

states j ~Gn
s;I i defined in (8) are excited eigenstates, grouped

in degenerate multiplets corresponding to the energy levels

EðkÞ ¼ �nþ 4k; with k ¼ 1; 2; . . . ; 2½n=2� (22)

where k is half the (even) number of ‘‘domain walls’’
generated by the inversion of some spins with respect to
j00 . . . 0i or j11 . . . 1i. It is clear that both computational

basis states forming the superposition j ~Gn
s;I i have the same

number of domain walls. The energy levels of the Ising
Hamiltonian (21) are thus spaced by �E ¼ �4.

In order to lift the degeneracy of the ground state, a
suitable perturbation should be added toH0. It is clear from
the above considerations that any additional term lifting
the degeneracy, with jGnþi still an eigenstate, must couple
at least [ðnþ 1Þ=2] qubits. In order to fulfill these require-
ments, consider

Hð�Þ ¼ H0 þ �H1; (23)

with

H1 ¼ �x
1�

x
2 . . .�

x
½n=2� � �x

½n=2�þ1 . . .�
x
n; (24)

made up of two strings of spin flipping matrices �x acting
on one half of the system. The perturbation (24) is optimal,
since it is neither possible to reduce the number of addenda
in (24) to one, nor to reduce the range of the couplings. The
Hamiltonian Hð�Þ can be analyzed independently of the
dimensionality of the system. Here we are not interested in
the complete diagonalization, but only in the analysis of its
spectrum, with the aim of determining the position of the
eigenstate jGnþi in the spectrum and conditions on parame-
ter � that ensure its nondegeneracy. As stated, Hð�Þ is
constructed under the requirement that jGnþi be an eigen-
state. Indeed, it is easy to check that

Hð�ÞjGnþi ¼ �njGnþi: (25)

All positive linear combinations j ~Gn
þ;I i, defined in (8), are

eigenstates of Hð�Þ, since H1j ~Gn
þ;I i ¼ 0. The two-

dimensional spaces spanned by the two negative linear

combinations fj ~Gn
�;I i; j ~Gn

�;I 0 ig, with the last [ðnþ 1Þ=2]
spins inverted, are left invariant by Hð�Þ. One of these
states is mapped by H1 into the other with a multiplicative
factor�2. For example, the action ofH1 on jGn�i, which is
a degenerate ground state of H0, is

H1jGn�i ¼ �2ðj0i1 . . . j0i½n=2�j1i½n=2�þ1 . . . j1in
� j1i1 . . . j1i½n=2�j0i½n=2�þ1 . . . j0inÞ=

ffiffiffi
2

p
: (26)

Thus, the energy spectrum of Hð�Þ is completely deter-
mined by diagonalizing these two-dimensional sectors.

Since the action of H1 on a state j ~Gn
�;I i can either leave

the number of domain walls unchanged or change it by
two, we have two possible cases. In the first case, the two
states of the basis (8) coupled by H1 belong to the same

energy level EðkÞ of the unperturbed Hamiltonian H0.
Therefore, the diagonalization of the sector yields two
eigenvalues with a linear dependence on �:

�ðkÞ� ¼ EðkÞ � 2�: (27)

In the second case, one of the states coupled by H1 has

unperturbed energy EðkÞ, while the other one has energy

Eðkþ1Þ ¼ EðkÞ þ 4. Therefore, the eigenvalues of the sector
read

�ðkÞ� ¼ EðkÞ � 2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
� 1

�
; (28)

�ðkþ1Þ
þ ¼ Eðkþ1Þ þ 2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
� 1

�
: (29)

It is clear that �ðkÞ� <�ðkÞ� <�ðkÞ
þ < �ðkÞþ for � � 0. The

twofold degenerate ground state of H0 is split in two
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energy levels. The upper one corresponds to the GHZ
eigenstate jGnþi, whose energy is independent of � and
satisfies Eq. (25). The lower one corresponds to the energy

�ð0Þ� ¼ �n� 2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
� 1Þ, and represents the nonde-

generate ground state of Hð�Þ for all � � 0. Therefore, the
GHZ state jGnþi is the nondegenerate first-excited state of
Hð�Þ for 0< �< 2 (and �2< �< 0), since for small �
the degeneracy of the ground state ofH0 is lifted, and jGnþi
continues to be nondegenerate for increasing values of � up

to � ¼ 2, where a crossing with the energy level �ð1Þ� ¼
�nþ 4� 2� occurs. Figure 1 displays a plot of the lowest
energy levels as a function of �.

We have obtained a sufficient condition ensuring that a
GHZ state is the nondegenerate first-excited state of an
[ðnþ 1Þ=2]-body Hamiltonian. More generally, from
(27)–(29), it is also possible to determine all values of �
for which the GHZ state jGnþi is a nondegenerate excited
eigenstate of Hð�Þ. The eigenstate jGnþi is surely non-
degenerate if

� � �2k and � � �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 1Þ

p
(30)

with k ¼ 0; 1; . . . ; 2½n=2�. We stress that these results are
independent of the number of qubits of the system.
Moreover, interestingly, the energy gap between jGnþi,
the ground state and the second-excited states for
0< �< 2 does not depend on the size of the system.

We observe that many-body interaction terms have been
recently engineered in a spin lattice by implementing an
effective dynamics that makes use of an ancilla and strobo-
scopiclike interactions [21]. This shows that the
Hamiltonian (24) can be experimentally realized for rea-
sonable values of n.

In conclusion, we investigated general conditions such
that GHZ states (1) are nondegenerate in the spectrum of a
Hamiltonian. We showed that if the Hamiltonian acting on

the Hilbert space of n qubits involves terms that couple at
most m qubits, it is impossible to have a nondegenerate
GHZ eigenstate if m<m�

n with m�
n ¼ ½ðnþ 1Þ=2�. We

then derived sufficient conditions for the GHZ to be the
nondegenerate first-excited eigenstate of the m�

n-qubit per-
turbation (23) of the Ising Hamiltonian.
The difficulty in obtaining GHZ states as ground states

(or even eigenstates) of Hamiltonians that involve only
few-body interactions is in accord with previous results
[22] and seems to be a characteristic trait of multipartite
entanglement. It would be interesting, also in view of
applications, to investigate the existence of general con-
ditions for obtaining approximate GHZ states for an arbi-
trary number of qubits by making use of few-body
Hamiltonians.
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