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Abstract. A time-dependent product is introduced between the observables of a dis-
sipative quantum system, that accounts for the effects of dissipation on observables and
commutators. In the t → ∞ limit this yields a contracted algebra. This product can be
transported back by duality on the space of states. The general ideas are corroborated by
a few explicit examples.

1. Introduction

One of the most distinctive traits of quantum mechanics is the non-commu-
tativity of some of its observables. If a commutator vanishes, the associated
observables can be simultaneously measured and can be considered “classical”
with respect to each other. The system is classical when all its observables
commute. The transition from quantum to classical is a fascinating subject of
investigation and interesting approaches have been proposed in order to em-
phasize the role of observables in this context and give a consistent definition
of classicality [1, 2, 3].

A dissipative quantum system loses some of its genuine quantum fea-
tures (such as the ability to interfere) and eventually displays a “classical”
behaviour [4, 5]. In this letter we suggest a mechanism that yields classi-
cality (in the afore-mentioned sense) starting from dissipative dynamics and
the physics of open quantum systems. Besides being of interest in them-
selves, these subjects have profound conceptual consequences and lead to
applications, for example in quantum enhanced applications and quantum
technologies [6]. It is therefore of interest to understand what happens to
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the observables of a dissipative quantum system and in which sense measure-
ments yield less information at the end of a dissipative process. The approach
we shall propose is general, but for the sake of simplicity we shall limit our
discussion to the master equation. Generalizations and further discussion
will be postponed to a forthcoming publication.

The description of quantum systems makes use of states ρ and an algebra
A of observables A. One can describe the dynamical evolution in terms of the
former or the latter, the two pictures being equivalent, according to Dirac’s
prescription [7]

Tr(ρtA0) = Tr(ρ0At) . (1.1)

We shall work in the Markovian approximation, when the dynamics is gov-
erned by the master equation

ρ̇t = Lρt , (1.2)

where ρt is the density matrix of the quantum system, the subscript t denotes
the evolved quantity at time t and L is the time-independent generator of a
dynamical semigroup. Equation (1.2) can be formally solved

ρt = etLρ0 = Λt(ρ0) , t ≥ 0 (1.3)

and it is well known that under certain conditions on L [8] the dynamics Λt
is completely positive and trace preserving [9, 5].

Equation (1.1) leads to the (adjoint) evolution equation for observables
(Heisenberg picture)

Ȧt = L♯At ⇐⇒ At = Λ♯t(A0) . (1.4)

In this article we address the following question: what can be meaningfully
observed in a dissipative quantum system, in particular when it has reached
its equilibrium state? Our strategy will be to interpret the effects of the
adjoint evolution Λ♯ on the product on the algebra A of observables, with
basis {Aj}:

AiAj = αkijAk . (1.5)

In turn, this product defines the commutators (Lie product) through the
structure constants C:

[Ai, Aj ] = CkijAk , (1.6)

where Ckij = αkij − αkji. We shall see that in general, the aforementioned
question will lead to a contraction of the algebra of observables [10, 11].

2. First Example and General Ideas

Let us start from a simple but interesting case study. Let

Lρ = −γ
2

(ρ− σ3ρσ3) , (2.1)
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where σα, α = 1, 2, 3, are the Pauli matrices, σ0 = 1l, and γ > 0. This
describes the dissipative dynamics of a qubit undergoing phase damping.
The asymptotic solution is

ρ0 =
1

2
(1 + x · σ)

t→∞−→ Λ∞(ρ0) = ρ∞ =
1

2
(1 + x3σ3) , (2.2)

x being a vector in the unit 3-dimensional ball |x| ≤ 1. It is very simple to
see that (2.1) yields

Λ♯t(σ0,3) = Λ♯∞(σ0,3) = σ0,3 , (2.3)

Λ♯t(σ1,2) = e−γtσ1,2 −→ Λ♯∞(σ1,2) = 0 . (2.4)

These equations must be understood in the weak sense, according to (1.1): for
example, the expectation value of σ1,2 in the asymptotic state (2.2) vanishes.
This result offers a remarkable interpretation: as time goes by, it becomes
increasingly difficult to measure the coherence between the two states of
the qubit. In the t → ∞ limit, coherence is lost and the only nontrivial
observables are populations. This interpretation, although suggestive, must
face a serious problem: can one consistently define a novel product among
observables, in such a way that

A∞ = Λ♯∞(A) = lim
t→∞

Λ♯t(A) (2.5)

be a well-defined algebra? The following result [14] helps answering this
question.

Let A be a complex topological algebra, i.e., a topological vector space
over C with a continuous bilinear operation

(X,Y ) ∈ A×A 7→ X · Y ∈ A (2.6)

and Uλ : A → A a family of linear morphisms that continuously depends
on a real parameter λ. If Uλ are invertible in a neighborhood of the origin
λ ∈ I \ {0}, then we can consider the continuous family of products

X ·λ Y = U−1
λ (Uλ(X) · Uλ(Y )) , (2.7)

for λ ∈ I \{0}. All these products are isomorphic by definition, since Uλ(X ·λ
Y ) = Uλ(X) · Uλ(Y ) and if U0 is invertible, then clearly

lim
λ→0

X ·λ Y = U−1
0 (U0(X) · U0(Y )) . (2.8)

However, the limλ→0X ·λ Y may exist for all X,Y ∈ A even if U0 is not
invertible and the right-hand side of (2.8) does not make sense. We say then
that limλ→0X ·λ Y is a contraction of the product X · Y . The existence and
the form of the contracted product heavily depends on the family Uλ [11].
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We therefore identify λ = 1/t, Uλ = Λ♯t and adopt the prescription

A ·t B ≡ (Λ♯t)
−1(Λ♯t(A) · Λ♯t(B)), ∀ A,B ∈ A . (2.9)

Clearly, in general, Λ∞(= U0) is not invertible, but the limiting product
“·∞” can make sense. Having defined a product, we can now define the
commutators according to the rule

[Ai, Aj ]t ≡ (Λ♯t)
−1[Λ♯t(Ai),Λ

♯
t(Aj)] ≡ Ckij(t)Ak , (2.10)

where [A,B] = A ·B −B ·A. In the t→ ∞ limit (2.10) yields a contraction
of the original algebra (1.6).1 We can now “transport” the product back on
the states by duality, by defining2

⟨ρ1|ρ2⟩t ≡ Tr[(Λt)
−1(Λt(ρ1) · Λt(ρ2))] = Tr[(Λt(ρ1) · Λt(ρ2))] , (2.11)

where we used the fact that Λt preserves the trace. Notice that the above
product embodies the customary notion of “likeliness” between two quantum
states. As time goes by, dissipation tends to erase information, and states
become more difficult to distinguish. Equation (2.11) also expresses tran-
sition probabilities between states, some of which may vanish. The scalar
product on states (2.11) shows that it is not just the commutator (Lie) prod-
uct (2.10) which is relevant, but also the symmetrized (Jordan) product, for
⟨ρ1|ρ2⟩t = ⟨ρ2|ρ1⟩t. Finally, observe that when we consider in particular
pure states ρ = |ψ⟩⟨ψ|, we find that the contraction procedure changes the
Hermitian product on the Hilbert space.

For instance, in the simple model (2.1)–(2.4), the contracted algebra is
the Lie algebra of the Euclidean group E(2) of isometries of the plane:

[σ1, σ2]t = 2ie−2γtσ3 −→ [σ1, σ2]∞ = 0 , (2.12)

[σ2, σ3]t = 2iσ1 −→ [σ2, σ3]∞ = 2iσ1 , (2.13)

[σ1, σ3]t = −2iσ2 −→ [σ1, σ3]∞ = −2iσ2 . (2.14)

The transition from su(2) to e(2) is that taking from the spin of massive
particles to the helicity of massless particles [12], by looking at a small portion
of the sphere (tangent plane). For a recent application with atomic ensembles,
see [13]. Since the asymptotic state is given by (2.2), one observes that a

1One can also take Uλ = (Λ♯
t)

−1 and define A · B ≡ (Λ♯
t)

−1(Λ♯
t(A) ·t Λ♯

t(B)), that
preserves the product and the commutators for any invertible evolution. This definition
is also mathematically consistent, but does not yield the same physical interpretation as
(2.9).

2This definition enables one to discuss purities in a straightforward way. Alternatively,
one can define the product on

√
ρj ∈ A. This and additional possibilities will be analyzed

in a forthcoming article.
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measurement of σ1,2 yields zero, while a measurement of σ3 (populations)

yields a nontrivial result. Also, given two states ρj = 1
2(1+x(j) ·σ), j = 1, 2,

⟨ρ1|ρ2⟩t=0 =
1

2
(1 + x(1) · x(2)) −→ ⟨ρ1|ρ2⟩t=∞ =

1

2
(1 + x

(1)
3 x

(2)
3 ) , (2.15)

so that only populations matter in the end.
A few additional observations will hopefully clarify some subtle points.

The contraction of the angular momentum operator algebra, say su(2), go-
ing to the e(2) algebra, when interpreted in terms of representation theory,
shows that in order to deal with Hermitian operators we must go from pos-
sibly finite-dimensional representations to infinite-dimensional ones. In par-
ticular, when we contract from su(2) to e(2), if we want our operators to
be Hermitian in the limit, we have to work with the entire Hilbert space of
square integrable functions on the sphere S2 and not just finite-dimensional
irreducible representations.

In general, the contraction procedure will create invariant Abelian subal-
gebras [(1, σ1, σ2) in (2.12)–(2.14)], which may be interpreted as the creation
of some “classical content” in the system, due to dissipation. These as-
pects need further analysis to exhibit all its potentiality in dealing with the
quantum-classical transition.

If one adds to (2.1) a unitary evolution −i[H, ρ], with Hamiltonian H =
Ωσ3, nothing changes. However, a Hamiltonian H = Ωσ1 yields a more

involved dynamics [15] and makes Λ♯∞(σ3) vanish as well: in this case the
contracted algebra is Abelian and even measurement of populations becomes
trivial. The interpretation is straightforward: the Hamiltonian provokes Rabi
oscillations between the two levels, the asymptotic state is ρ∞ = 1/2 [rather
than (2.2)] and the final state is totally mixed. Having tested our general
scheme on a simple but significant example, we can now look at more com-
plicated situations.

3. Second Example

Let
Lρ = −γ

2

(
{a†a, ρ} − 2aρa†

)
(3.1)

describe a harmonic oscillator undergoing energy damping. Here, {A,B} =
AB +BA. It is easy to check that

Λ♯t(a) = e−γt/2a , Λ♯t(a
†) = e−γt/2a†,

Λ♯t(N) = e−γtN , N = a†a , (3.2)

so that the oscillator algebra is contracted to an Abelian algebra, with
[a, a†]∞ = [a,N ]∞ = 0 (remember that the above equations are understood
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in the weak sense). The physical picture is straightforward: dissipation drives
the system to its ground state and in the limit not only the relative coher-
ence, but even the populations of the excited states vanish. The introduction
of a Hamiltonian H = ωa†a does not change the global picture.

4. Third Example

Let
Lρ = −γ

2

(
{(a†a)2, ρ} − 2a†aρa†a

)
(4.1)

describes a harmonic oscillator undergoing phase damping. A generic density
matrix

ρ0 =
∑

cmn|m⟩⟨n| t→∞−→
∑

|cn|2|n⟩⟨n| (4.2)

becomes diagonal in the energy representation, so that the product (2.11)
contains only information on the population differences.

Since L♯ = L and Λ♯ = Λ, one finds

Λ♯t(a) = e−γt/2a , Λ♯t(a
†) = e−γt/2a† ,

Λ♯t(N) = N , (4.3)

so that, unlike in the second example, N is left unaltered. The contraction
of the oscillator algebra yields the Lie algebra of the Poincaré group in 1+1
dimensions ISO(1,1):

[a, a†]∞ = 0 , [a,N ]∞ = a , [a†, N ]∞ = −a† . (4.4)

The physical picture is straightforward: in the presence of phase damping the
system is driven to an incoherent mixture (in the energy basis). However, in
the asymptotic limit it is still possible to measure nonvanishing populations of
the different states: see (4.2). The introduction of a Hamiltonian H = ωa†a
does not change anything.

5. Fourth Example

Let
Lρ = −γ({x2, ρ} − 2xρx) = −γ[x, [x, ρ]] , (5.1)

describes a massive particle undergoing decoherence:

L|x⟩⟨y| = −γ(x− y)2|x⟩⟨y| . (5.2)

Also in this case, the generator (5.1) is self-dual, L = L♯.
By considering formally x and p as bounded operators, one gets

Λ♯t(p) = p , Λ♯t(x) = x , (5.3)
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for all t, so that the CCR are preserved. However one gets, for n ≥ 2,

L(pn) = γn(n− 1)pn−2 , (5.4)

so higher order commutation relations change.
These findings can be corroborated by working with the (bounded) uni-

tary groups generated by x and p, that is the Weyl operators

U(α) = eiαx , V (β) = eiβp , α, β ∈ R . (5.5)

They satisfy
U(α)V (β) = e−iαβV (β)U(α) . (5.6)

One has [x,U(α)] = 0 and [x, V (β)] = −βV (β), yielding

LU(α) = 0 , L V (β) = −γβ2 V (β) , (5.7)

and hence
Λ♯tU(α) = U(α) , Λ♯tV (β) = e−γβ

2tV (β) . (5.8)

Notice, that for any β ̸= 0 Λ♯tV (β) is no longer unitary for t > 0, and
asymptotically vanishes. However, for any t one has

U(α) ·t V (β) = Λ#−1
t (Λ#

t U(α) · Λ#
t V (β))

= Λ#−1
t (e−γβ

2tU(α) · V (β))

= Λ#−1
t (e−γb

2te−iαβV (β) · U(α))

= e−iαβΛ#−1
t (Λ#

t V (β) · Λ#
t U(α))

= e−iαβV (β) ·t U(α) , (5.9)

that is, the commutation relations of the Weyl system are preserved. How-

ever, the Weyl system itself is not preserved, since Λ♯tV (β) is not unitary.
This example clarifies that, while the contraction does not affect the basic
Lie algebra, it changes the whole associative algebra, and thus the higher-
order commutators. Finally, notice that the presence of a free Hamiltonian
changes the picture considerably [16] and will not be considered here.

6. Fifth Example

Finite dimensional version of the fourth example. Consider a d-level system
and let

X =

d∑
m=1

m|m⟩⟨m| (6.1)

be the discrete position operator on a circle. Consider the analogous of (5.1)

Lρ = −γ[X, [X, ρ]] . (6.2)
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Let us introduce Schwinger’s unitary operators [17]

U =

d∑
m=1

λm|m⟩⟨m| , V =

d∑
k=1

λ−k|k̃⟩⟨k̃| , (6.3)

where λ = e2πi/d, and the momentum eigenbasis {|k̃⟩}, defined by a discrete
Fourier transform,

|k̃⟩ =
1√
d

d∑
m=1

λ−km|m⟩ . (6.4)

Schwinger’s system, which is the finite dimensional version of Weyl’s, satisfies

UkV l = λklV lUk , (6.5)

for k, l = 1, . . . , d. One easily finds [compare with (5.8)]

Λ♯tU
k = Uk , Λ♯tV

l = e−γl
2tV l , (6.6)

so that V l asymptotically vanishes. Again, Λ♯tV
l is no longer unitary for

t > 0. As a consequence, like in the previous example, we get

Uk ·t V l = λklV l ·t Uk , (6.7)

and the commutation relations are preserved. However, Schwinger’s system

is not preserved, since Λ♯tV
l is no longer unitary. From (6.2) one has the

discrete version of (5.2)

L|m⟩⟨n| = −γ(m− n)2|m⟩⟨n| , (6.8)

so that each observable becomes asymptotically diagonal in the position
eigenbasis |m⟩. It is clear that the introduction of a unitary evolution with
Hamiltonian H =

∑
m hm|m⟩⟨m| does not change the global picture.

7. Sixth Example

Finally, let us consider the following model of pure decoherence of a d-level
system. Define d unitary operators

Uk =

d−1∑
l=0

λ−klPl , k = 0, . . . , d− 1 , (7.1)

where Pl = |l⟩⟨l| and λ = e2πi/d. Note that U0 = 1d, and TrUk = 0 for k ≥ 1.
Now, for γ1, . . . , γd−1 ≥ 0 let us define the following generator

Lρ = −1

d

d−1∑
k=1

γk

(
ρ− UkρU

†
k

)
. (7.2)
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It is clear that for d = 2 one has U1 = σ3 and hence (7.2) reproduces (2.1)
as a particular case. Using (7.1) one easily derives the dynamical map

Λtρ =

d−1∑
m,n=0

cmn(t)PmρPn , (7.3)

where the decoherence matrix cmn(t) reads

cmn(t) = e−(iωmn+γmn)t , (7.4)

γmn =
1

d

d−1∑
k=1

γk Re
(

1 − λ−k(m−n)
)
,

ωmn = −Im

(
d−1∑
k=1

γkλ
−k(m−n)

)
.

Note that γmn = γnm, with γmm = 0, and ωmn = −ωnm, which implies
ωmm = 0. In particular, if all γj = γ, then

γmn = γ m ̸= n , ωmn = 0 , (7.5)

and one finds
Λ♯t|m⟩⟨n| = cnm(t) |m⟩⟨n| . (7.6)

Hence, due to γmn > 0, only the diagonal elements Pm survive asymptotically.
If one adds to (7.2) the Hamiltonian H =

∑
k hkPk, the asymptotic picture

does not change. Finally, one finds the following formula for the product
A ·t B

|m⟩⟨n| ·t |k⟩⟨l| =
cnm(t)clk(t)

clm(t)
|m⟩⟨n| · |k⟩⟨l| . (7.7)

In particular, if all decoherence rates are equal γj = γ,

|m⟩⟨n| ·t |k⟩⟨l| = e−γ[1+δml−δmn−δkl]t δnk |m⟩⟨l| . (7.8)

This formula is useful both for states and operators.

8. Conclusions

Starting from the adjoint evolution of a dissipative quantum system, we have
defined a product that yields a contracted algebra of observables. Other def-
initions, fully consistent from a mathematical point of view, are clearly pos-
sible, but do not yield an equally appealing physical interpretation. In some
sense, the ansatz (2.9) “ascribes” to the product ·t the dissipative features
of the evolution and the increasing difficulty in measuring those observables
that are more affected by decoherence and dissipation.
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In the present framework, ample room is left for noncommutative (quan-
tum) observables, that do not belong to the center of the contracted algebra.
These are associated with the kernel of L♯. These observables are not affected
by dissipation and preserve their quantum features. One can find many ex-
amples, e.g. in models like those discussed in the sixth example (when some
γmn = 0).

We confined our analysis to Markovian systems, described by the master
equation (1.2). However, our main conclusions remain valid when the evo-
lution is described by a map (quantum channel). This unearths additional
possibilities that will be discussed in a forthcoming paper.
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