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Abstract
We analyze the quantum dynamics of a non-relativistic particle moving in
a bounded domain of physical space, when the boundary conditions are
rapidly changed. In general, this yields new boundary conditions, via a
dynamical composition law that is a very simple instance of the superposition
of different topologies. In all cases, unitarity is preserved and the quick
change of boundary conditions does not introduce any decoherence in
the system. Among the emerging boundary conditions, the Dirichlet case
(vanishing wavefunction at the boundary) plays the role of an attractor. Possible
experimental implementations with superconducting quantum interference
devices are explored and analyzed.

PACS numbers: 03.65.−w, 03.65.Db, 03.65.Xp

1. Introduction

The dynamics of a quantum particle in a bounded domain of physical space is a paradigmatic
problem in quantum mechanics. From the mathematical point of view, one must make sure that
physical observables be properly defined in terms of self-adjoint operators [1, 2]. This translates
into suitable choices of boundary conditions, those most commonly used in physics being
Dirichlet (vanishing wavefunction at the boundary), Neumann (vanishing normal derivative)
and periodic ones. From a physical perspective, the problem has a plethora of applications,
ranging from atoms in cavities [3] to ions and atoms in magnetic traps [4], to superconducting
quantum interference devices (SQUID) [5]. The role and importance of boundary conditions
have been recently stressed in an interesting article [6], where varying boundary conditions are
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viewed as a model of spacetime topology change. Notable applications arise in the context of
the Casimir effect and its dynamical version, giving rise to photon generation in a microwave
cavity with time-dependent boundary conditions [7]. In this paper, we shall analyze the effect
of a rapid alternating change of boundary conditions and show that the resulting dynamics
yields novel boundary conditions. We shall make use of a general result [8], that characterizes
all possible unitarity-preserving boundary conditions.

2. Trotter formula for alternating boundary conditions

Let us consider a spinless particle of mass m in a cavity ! with a regular boundary ∂!. We
focus on the dynamics that arises when the cavity undergoes a rapid alternating change of
boundary conditions with a time period t/N. Such an evolution is described by the following
unitary operator:

(e−itTU /Ne−itTV /N )(e−itTU /Ne−itTV /N ) . . . (e−itTU /Ne−itTV /N )︸ ︷︷ ︸
N times

= (e−itTU /Ne−itTV /N )N, (1)

where TU = p2/2m = −#U/2m is the kinetic energy operator, with #U being a self-adjoint
extension of the Laplacian #, with given boundary conditions specified by the unitary operator
U acting on the boundary Hilbert space L2(∂!) [8]. Note that in general #U and #V do not
commute. Physically, this corresponds to a rapid switching between two different boundary
conditions, in the limit of frequent switching.

Evolutions of this kind are familiar in the context of quantum chaos [9, 10] and in
connection with the quantum Zeno effect [11, 12] (when the von Neumann measurements
[1] of the most familiar formulation à la Misra and Sudarshan [13] are replaced by frequent
unitary pulses, as in the experiment by Itano et al [14]). The analogy between these apparently
unrelated dynamics has been explored by several authors [15].

The relevant question is to show whether in the N → ∞ limit (when the time interval
between the switches goes to zero, the number of switches goes to infinite, while the total time
2t is kept constant), the evolution is given by

(e−itTU /Ne−itTV /N )N → e−i2tTW , (2)

in terms of a Hamiltonian TW , with some boundary conditions W .
We will prove that this is the case, and in fact

W = U $ V = V $ U, (3)

where $ is a commutative and associative product on the boundary unitary operators defined
by

U $ V := C

(
C−1(U ) + C−1(V )

2

)
. (4)

Here, C is the Cayley transform that maps Hermitian into unitary matrices:

C(K) = I − iK
I + iK

, C−1(U ) = −i
I − U
I + U

. (5)

Note that the Cayley transform is not onto. Its range is the subset of unitary matrices whose
eigenvalues are different from −1. Thus, strictly speaking, equation (4) has a meaning only
for U and V in this subset. We will show what is the action of $ on all boundary unitaries and
prove that the eigenspaces with eigenvalues −1 are absorbing for the product. In particular,

(−I) $ V = −I, (6)

for any unitary V .
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The solution makes use of some mathematical results on product formulae. In a seminal
paper [16], Trotter proved that if A and B are self-adjoint and C = A + B is self-adjoint on the
intersection of their domains, D(C) = D(A) ∩ D(B), then the formula

(e−itA/Ne−itB/N )N → e−itC (7)

holds for N → ∞. This is the famous Trotter product formula.
Unfortunately, this formula cannot be applied to our case. Indeed, on the intersection

of the domains of the Laplacians with different boundary conditions, D = D(TU ) ∩ D(TV ),
the Laplacian is not self-adjoint since the domain is too small, being defined by too many
constraints (those of U and those of V ). Even more, it admits many self-adjoint extensions, so
that the meaning of TW in (2) is unclear: which boundary conditions W , if any, are obtained in
the limit?

The answer is obtained by considering the quadratic forms associated with the operators
(i.e. their expectation values), instead of the operators themselves. Note, in fact, that the
domain D(tU ) of the quadratic form of the kinetic energy, tU (ψ ) = (ψ, TUψ ) (see below), is
larger than the operator domain D(TU ), and there is a unique self-adjoint kinetic operator TW
associated with the quadratic form (tU + tV )/2 on the (dense) intersection D = D(tU )∩D(tV ).
The operator TW defined on D(TW ) ⊂ D is called the form sum of TU and TV and is denoted
by TW = (TU +̇ TV )/2.

This idea, introduced by Kato [17], was elaborated by Lapidus [18, 19] who found the
ultimate version of Trotter’s product formula (7). If A and B are self-adjoint and bounded below,
and the intersection of their form domains D(a) ∩ D(b) is dense, then Trotter’s formula (7)
holds when N → ∞, with

C = A +̇ B, (8)

the form sum of A and B.
As a technical remark note that, as a consequence of the weakening of the hypotheses,

the convergence of the product formula when the operator sum is not self-adjoint is in a
weaker topology than in Trotter’s case. More precisely, if C = A + B is self-adjoint, then the
convergence is pointwise (in fact locally uniform) in t in the strong operator topology. On
the other hand, when C = A +̇ B the limit is proved only on the average in t. Whether this
convergence result is physically satisfactory or not, and whether it can be made stronger is a
long-standing problem. For an interesting discussion, see [20].

3. Boundary conditions for a free particle on an interval

In order to simplify our analysis and focus on concrete physical problems, we shall restrict our
attention to the case of a particle moving in the interval ! = [0, 1] of the real line and set for
convenience m = 1/2. Apart from being the simplest mathematical case, the one-dimensional
problem is also interesting in its own. Indeed, it can be implemented in a SQUID with a
tunable junction, obtained by replacing the junction with an additional flux loop [21–23]. On
such devices different boundary conditions can be implemented by tuning the magnetic flux
across the additional loop. More generally, a suitable combination of tunable SQUIDs can be
an experimental realization of the continuous interpolation among different topologies of the
model introduced in [6].

The whole family of self-adjoint extensions of the Laplacian is in one-to-one
correspondence with the possible boundary conditions given by the 2 × 2 unitary matrices of
U ∈ U (2) [8]. They are given by the Laplacian

TU = − d2

dx2
(9)
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acting on the domain D(TU ) of functions belonging to H2(0, 1), the Sobolev space of square
integrable functions ψ with square integrable second derivative ψ ′′ and satisfying the boundary
conditions

i(I + U )ϕ′ = (I − U )ϕ, U ∈ U (2), (10)

where

ϕ :=
(

ψ (0)

ψ (1)

)
, ϕ′ :=

(
−ψ ′(0)

ψ ′(1)

)
. (11)

Physically, U = −I corresponds to Dirichlet boundary conditions,

ψ (0) = ψ (1) = 0, (12)

while Neumann boundary conditions,

ψ ′(0) = ψ ′(1) = 0, (13)

are given by U = I. The latter is a particular case of Robin’s boundary conditions,

ψ ′(0) = − tan
α

2
ψ (0), ψ ′(1) = tan

α

2
ψ (1), (14)

given by U = e−iαI. Moreover,

U =
(

−1 0
0 e−iα

)
(15)

corresponds to Dirichlet at the left and Robin at the right,

ψ (0) = 0, ψ ′(1) = tan
α

2
ψ (1). (16)

For nondiagonalU , the boundary conditions at the two ends mix. For example, pseudo-periodic
boundary conditions,

ψ (1) = eiαψ (0), ψ ′(1) = eiαψ ′(0), (17)

are obtained by

U =
(

0 e−iα

eiα 0

)
= cos α σx + sin α σy. (18)

In general, if the unitary U has no −1 eigenvalues, then the wavefunction ψ can assume
any values at the ends. Only the boundary values of its derivative are constrained in some way.
These unitaries, corresponding to free ends, will be called regular. Other cases are not regular.
For instance, one eigenvalue equal to −1, as in (15) or (18), corresponds to one constraint on
the values of ψ at the ends, as in (16) or (17), respectively. Finally, two −1 eigenvalues, i.e.
U = −I, correspond to two constraints on the wavefunction boundary values (12).

4. Quadratic forms

Let TU be the kinetic energy operator. For any ψ ∈ D(TU ) ⊂ H2(0, 1), an integration by parts
gives

tU (ψ ) = (ψ, TUψ ) = −
∫ 1

0
ψ̄ (x)ψ ′′(x) dx

=
∫ 1

0
|ψ ′(x)|2dx − ψ̄ (1)ψ ′(1) + ψ̄ (0)ψ ′(0)

= ‖ψ ′‖2 − 〈ϕ|ϕ′〉. (19)
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We now try to rewrite the boundary form in a more convenient way by making use of the
boundary conditions of TU . In particular, we want to trade the boundary values of the derivative
for the boundary values of the function, in order to obtain a quadratic form

tU (ψ ) = ‖ψ ′‖2 − )U (ϕ), (20)

with )U (ϕ) being a quadratic form of the boundary vector ϕ, given in (11). In this way, the
quadratic form (20) is defined on the Sobolev space H1(0, 1) of square integrable functions
with square integrable first derivative, at variance with the operator TU which required also
the square integrability of the second derivative. Note indeed that, since ψ ′ is in L2(0, 1), then
ψ (x) =

∫ x
ψ ′(y) dy is a continuous function and its boundary values ϕ are well defined. On

the other hand, the boundary values of its derivative ϕ′ would make no sense.
We distinguish among three possibilities according to the number of eigenvalues of U

equal to −1. Let

U = u1|ξ 〉〈ξ | + u2|ξ⊥〉〈ξ⊥|, (21)

with |u1| = |u2| = 1 and 〈ξ |ξ⊥〉 = 0, be its spectral decomposition (here 〈ξ |η〉 = ξ̄1η1 + ξ̄2η2).
We have:

(i) If U is regular, i.e. u1,2 -= −1, then (I + U ) is invertible, and the boundary values of the
derivative can be expressed in terms of the boundary values of the function

ϕ′ = KUϕ, (22)

where KU = C−1(U ) is the inverse Cayley transform of U , defined in (5). Therefore, the
boundary form )U is the expectation value of KU , namely

)U (ϕ) = 〈ϕ|KUϕ〉, (23)

and D(tU ) = H1(0, 1), with free ends (no constraints on the boundary values ϕ).
(ii) If −1 is a nondegenerate eigenvalue of U , that is, u1 = −1 and u2 -= −1, then U is not

in the range of the Cayley transform (5), but from (10) we obtain 〈ξ |ϕ〉 = 0, and

〈ξ⊥|ϕ′〉 = −i
1 − u2

1 + u2
〈ξ⊥|ϕ〉. (24)

Therefore,

〈ξ |ϕ〉 = 0, )U (ϕ) = i
1 − u2

1 + u2
|〈ξ⊥|ϕ〉|2. (25)

(iii) Finally, if u1 = u2 = −1, then U = −I, and

ϕ = 0, )−I(ϕ) = 0. (26)

5. Composition law of boundary conditions

We now evaluate the limit of the alternating dynamics (2). According to (8), the product
formula (2) holds with the form sum

TW = 1
2 (TU +̇ TV ). (27)

Thus, the evaluation of the emergent boundary condition W in (2) requires the computation of
the sum

tW = 1
2 (tU + tV ), (28)

and its domain

D(tW ) = D(tU ) ∩ D(tV ). (29)

Again, we distinguish various cases according to the number of eigenvalues −1.
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(i) In the regular case, when both U and V have no eigenvalues equal to −1, we obtain from
(22) that KW = (KU + KV )/2, with no constraints on the wavefunction boundary values
ϕ. Therefore, one can write W = U $ V with U $ V given by (4). Explicitly, we obtain

W = U $ V =
I − 1

2

( I−U
I+U + I−V

I+V

)

I + 1
2

( I−U
I+U + I−V

I+V

) . (30)

(ii) If −1 is a nondegenerate eigenvalue of U , and V is regular, then D(tW ) = D(tU ), with
the only constraint 〈ξ |ϕ〉 = 0. Therefore, the boundary forms )U and )V are nonzero and
add up only on the orthogonal subspace, spanned by ξ⊥. It is easy to see that

W = U $ V = −|ξ 〉〈ξ | + w2|ξ⊥〉〈ξ⊥|, (31)

with

w2 =
1 − 1

2

(
1−u2
1+u2

+ 〈ξ⊥| I−V
I+V ξ⊥〉

)

1 + 1
2

(
1−u2
1+u2

+ 〈ξ⊥| I−V
I+V ξ⊥〉

) . (32)

(iii) If −1 is a nondegenerate eigenvalue of both U and V , that is, u1 = v1 = −1 and
u2, v2 -= −1, then there are two possibilities.
(a) If the eigenvectors of U and V belonging to −1 are parallel, that is, U commutes with

V , then D(tW ) = D(tU ) = D(tV ). Thus, the only constraint is 〈ξ |ϕ〉 = 0 and W has
the previous form (31), where (32) particularizes into

w2 =
1 − 1

2

(
1−u2
1+u2

+ 1−v2
1+v2

)

1 + 1
2

(
1−u2
1+u2

+ 1−v2
1+v2

) . (33)

(b) If the eigenvectors ξ of U and η of V belonging to −1 are not parallel, then they
span the whole space. The constraints 〈ξ |ϕ〉 = 0 and 〈η|ϕ〉 = 0 imply Dirichlet’s
boundary conditions ϕ = 0, so that D(tW ) = D(t−I ) and

W = U $ V = −I. (34)

(iv) Finally, in the case U = −I (or V = −I), then D(tW ) = D(t−I ), so that ϕ = 0 and

W = (−I) $ U = U $ (−I) = −I. (35)

6. Prediction: a SQUID circuit

Summarizing, the limit boundary condition is W = U $ V , where $ is given in terms of
the Cayley transform (4) for regular U and V (free ends ϕ), while all constraints on the
wavefunction boundary values are conserved by the product and inherited by W .

Therefore, in one dimension, if U and V have independent constraints on ϕ, then Trotter
yields Dirichlet boundary conditions, ϕ = 0. A particularly interesting case where this happens
is for pseudo-periodic boundary conditions (17), where U and V have the form (18) with two
different phases α1 -= α2. In that case, the boundary conditions read

ψ (1) = eiα1ψ (0) = eiα2ψ (0), (36)

and imply that ψ (0) = ψ (1) = 0 and W = −I. This case can be experimentally implemented
by means of a SQUID circuit where the properties of the Josephson junction are pulsed to
mimic the Trotter evolution described above. The result (somewhat counterintuitive) will be a
blockage of the electrical current through the circuit.

This situation is very different from the seemingly similar problem where the properties
of the Josephson junction are not modified, but a magnetic flux across the SQUID is pulsed in
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a similar way from α1 to α2. In this case, the resulting evolution is very different because the
boundary conditions are always the same but the Hamiltonians are not the Laplacian but have
magnetic couplings

H1 =
(

−i
d
dx

+ α1

)2

, H2 = −
(

−i
d
dx

+ α2

)2

. (37)

In this case, the Hamiltonian form sum is

H3 = H1 +̇ H2

2
=

(
−i

d
dx

+ α3

)2

, (38)

where

α3 = α1 + α2

2
. (39)

Note that H1 and H2 can be given the form of a second derivative through appropriate gauge
transformations, with a consequent change in the boundary conditions. However, one would
not be able to recast the problem into the framework developed above. Instead, in such a case,
the product formula (1) would get modified by the interspersion of the unitaries implementing
the difference between the two gauges.

7. Conclusions

We have analyzed the quantum dynamics of a non-relativistic particle moving in a bounded
domain of physical space, when the boundary conditions are rapidly changed. We have seen
that the resulting boundary condition is obtained through a dynamical composition law that
can be viewed as a simple instance of superposition of different topologies. Having in mind
quantum gravity and the associated fluctuating topologies, one may speculate that according
to our composition rule, the Dirichelet boundary conditions (that act as an attractor) play the
same role as the classical paths in Feynman path integral, i.e. they completely dominate in the
classical transition.
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