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Entropy-driven phase transitions of entanglement
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We study the behavior of bipartite entanglement at fixed von Neumann entropy. We look at the distribution
of the entanglement spectrum, that is, the eigenvalues of the reduced density matrix of a quantum system in a
pure state. We report the presence of two continuous phase transitions, characterized by different entanglement
spectra, which are deformations of classical eigenvalue distributions.
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Entanglement is an important resource in quantum infor-
mation and computation [1]. For bipartite systems, it can be
quantified in terms of several physically equivalent measures,
such as purity and von Neumann entropy [2]. To optimize
the use of this resource towards quantum applications, it is
important to understand which states have large entanglement
and how these states can be produced in practice. A proper
understanding of random pure states is crucial in this context.
Random pure states are known to be characterized by a large
entanglement, and a number of interesting results have been
obtained during the past few years.

Lubkin [3] understood that the average purity of a bipartite
system is almost maximal if the pure state of the total system
is randomly sampled. The analysis was extended to higher
moments by Giraud [4] and to the average von Neumann
entropy by Page [5]. All these results are a consequence of
a fundamental phenomenon, namely, the concentration of the
entanglement spectrum, that is, the eigenvalues of the reduced
density matrix [6]. The typical entanglement spectrum at fixed
purity was determined in Ref. [7] where the presence of some
phase transitions was unveiled. This result was extended to
different Rényi entropies by Nadal et al. [8].

In this paper, we further extend these findings to the von
Neumann entropy. This is the final step towards a thorough
understanding of the typical bipartite entanglement of pure
states. We will see that this step, besides having a fundamental
interest, also discloses results that are somewhat unexpected.
We will find two phase transitions. Remarkably, one of them,
related to the “evaporation” of the largest eigenvalue, is softer
than in the case of purity (and all other Rényi entropies) in that
it becomes continuous.

Our calculation hinges upon the saddle-point equations
for a partition function and makes use of a Coulomb gas
method [9]. It is valid when both subsystems are large. A
byproduct of our results is the probability distribution of the
von Neumann entropy of random states or, in other words, the
relative volumes of the manifolds with constant entanglement
(isoentropic manifolds).

We consider a bipartite system in the Hilbert space H =
HA ⊗ HĀ, described by the pure state |ψ〉. The reduced
density matrix of subsystem A is the Hermitian, positive, and

unit-trace matrix,

�A = trĀ |ψ〉〈ψ |. (1)

The bipartite entanglement between A and Ā is quantified by
the von Neumann entropy of �A,

SvN(�λ) = − tr(�A ln �A) = −
N∑

k=1

λk ln λk, (2)

where N = dim HA, �λ = (λ1, . . . ,λN ) ∈ �N−1 are the
Schmidt coefficients (i.e., the eigenvalues of �A) and �N−1

is the simplex of eigenvalues (λk � 0,
∑

k λk = 1).
We are interested in balanced bipartitions: N = dim HA =

dim HĀ. Notice that 0 � SvN � ln N where the minimum and
maximum values, respectively, are obtained for separable and
maximally entangled vector states.

We will focus our attention on the typical properties of the
eigenvalues �λ of �A. For random pure vector states sampled
uniformly on the unit sphere 〈ψ |ψ〉 = 1, the eigenvalues of the
reduced density matrix are distributed according to the joint
probability density function [10–12],

pN (�λ) = CN

∏
1�j<k�N

(λj − λk)2, (3)

CN being a normalization factor. Starting from (3), Page found
that the average value of the von Neumann entropy is almost
maximal, namely, for large N [5,13],

SvN = ln N − 1
2 . (4)

Indeed, for large N , the distribution pN concentrates around
a typical �λ, that maximizes pN [6], and the typical spectral
distribution of �A for large N is known to follow a Marčenko-
Pastur law [7,14] with support [0,4/N ].

A natural and more general question is how the entan-
glement spectrum is typically distributed in a system with a
certain amount of bipartite entanglement. In other words, one is
interested in the typical distribution of the Schmidt coefficients
on isoentropy manifolds, conditioned at a given value of the
entropy SvN.
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This is a constrained maximization problem: Given a value
u ∈ [0, ln N ], find �λ such that

pN (�λ) = max pN with SvN(�λ) = ln N − u. (5)

By introducing two Lagrange multipliers ξ and β, that
constrain the eigenvalue normalization and the deviation u

of the von Neumann entropy from its maximum ln N , the
problem is translated into the (unconstrained) minimization of
the potential,

V (�λ,ξ,β) = − 2

N2

∑
j<k

ln |λj − λk| + ξ

(∑
k

λk − 1

)

+β

(∑
k

λk ln Nλk − u

)
, (6)

with respect to �λ, ξ , and β. This is the energy of a gas of
charges (eigenvalues) distributed in the interval [0,1] with a
two-dimensional (logarithmic) Coulomb repulsion, subject to
two (different) external electric fields proportional to ξ and β.
The logarithmic form of the interaction is a direct consequence
of the product form (3) of the joint probability density.

It is worth noting that this problem can be equivalently
framed in the statistical mechanics given by the partition
function [7],

ZN =
∫

�N−1

e−βN2h(�λ)pN (�λ)dNλ, (7)

with an “energy density” h(�λ) = ln N − SvN(�λ) and an inverse
“temperature” β. In the thermodynamic limit N → ∞, one
looks at the maximum of the integrand, that is, at the minimum
of the potential (6). Large values of β yield highly entangled
states, whereas β = 0 yields random states.

The saddle-point equations, ∂V/∂β = ∂V/∂ξ =
∂V/∂λk = 0, read∑

j

λj ln(Nλj ) = u,
∑

j

λj = 1, (8)

β(ln Nλk + 1) + 2

N2

∑
j

′ 1

λj − λk

+ ξ = 0 (9)

for 1 � k � N where the primed sum is restricted to j 
= k.
When all eigenvalues λj are of order O(1/N ), we can
introduce the empirical distribution of the eigenvalues,

σ (λ) = 1

N

∑
j

δ(λ − Nλj ), (10)

that, in the limit of large N , can be approximated by
a continuous probability density function. By making use
of (10), Eqs. (8) and (9) read∫

λ ln λσ (λ)dλ = u,

∫
λσ (λ)dλ = 1, (11)

β(ln λ + 1) + 2P
∫

σ (λ′)
λ′ − λ

dλ′ + ξ = 0, (12)

with λ = Nλk and P denoting the Cauchy principal value.
Equation (12) can be solved using a theorem by Tricomi [15].
The solution lies in a compact interval [a,b] with 0 � a � b

and takes the form

σ (λ) = −P
∫ b

a

r(λ′)
π (λ′ − λ)

√
(b − λ′)(λ′ − a)

(b − λ)(λ − a)
dλ′, (13)

where r(λ) = −(ξ + β + β ln λ)/2π .
From the second equation in (11) and the conditions of

regularity at a and b, that are equivalent to

σ (a) = 0, σ (b) = 0, (14)

the edges of the distribution are readily found to be

a = 1

β

(√
β − 1

2
− 1

)2

, b = 1

β

(√
β − 1

2
+ 1

)2

. (15)

Moreover, the spectral density reads

σ (λ) = 8

π (b − a)2

√
(b − λ)(λ − a)g

(
2
λ − a

b − a
− 1,η

)
,

(16)

where η = (b + a)/(b − a) and

g(x,η) = η +
√

η2 − 1

2π
P

∫ 1

−1

ln(y + η)√
1 − y2(y − x)

dy (17)

is a universal function, with x ∈ [−1,1] and η � 1, that
deforms Wigner’s semicircle law (obtained for purity [7]).
See Fig. 1.

Notice that the lower end a of the eigenvalue distribution is
positive for β > βc = 3/2 and vanishes when β = βc. This is
a critical value at which we encounter the first phase transition.
Indeed, for β < βc, one gets

a = 0, b = 4

β
(
√

2β + 1 − 1), (18)

so that the lower end stays still at a = 0 and the eigenvalue
distribution is no longer regular at a = 0. One gets

σ (λ) = 2

πb

√
b − λ

λ

[
1 + βb

4
g̃

(
2λ

b
− 1

)]
, (19)

with a deformation function,

g̃(x) = 2(x + 1)g(x,1) − 1. (20)
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FIG. 1. (Color online) Deformation function g in (17) for a few
values of η. The function g̃ is defined in (20).
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FIG. 2. (Color online) β vs u from (22).

See Fig. 1. In particular, notice that, for β = 0, b = 4, the
deformation in the spectral density (19) vanishes, and one
recovers the classical Marčenko-Pastur law,

σMP(λ) = 1

2π

√
4 − λ

λ
. (21)

The von Neumann entropy at the typical entanglement
spectrum (5) has a distance u from its maximal value that
is given, in the limit N → ∞, by the first equation in (11). By
plugging (16) and (19) into it, one gets

u(β) =
{

ln
(
1 − 1

2β

) + 1
β
, β > 3

2 ,

− ln γ+1
2 − γ

2β
+ 1 + 1

2β
, 0 � β � 3

2 ,
(22)

where γ = √
1 + 2β. The inverse of this function β = β(u)

is plotted in Fig. 2 and enables us to express everything in
terms of the amount of bipartite entanglement as measured by
the von Neumann entropy SvN = ln N − u. In particular, we
notice the maximal value u(0) = 1/2, which is the average
value (4), and the critical value,

uc = u
(

3
2

) = ln 2
3 + 2

3 � 0.26, (23)

at which the entanglement spectrum changes its physiognomy
through a continuous phase transition. The entanglement
spectrum σ (λ) is displayed for a few values of u in Figs. 3(a)
and 3(b).

One can extend the analysis to the case of u > 1/2 towards
separable vectors with �λ � (1,0, . . . ,0). In the statistical-
mechanics model, this would correspond to negative tem-
peratures β < 0. By setting λ1 = μ = O(1), for large N , the
saddle-point equations (8) and (9) reduce to

μ ln N = u,
∑
j�2

λj = 1 − μ, (24)

2

N2

∑
j�2

′ 1

λj − λk

+ ξ = 0 (k � 2), (25)

and −ξ = β ln N = β̃. By means of the empirical distribu-
tion,

σ̃ (λ) = 1

N − 1

∑
j�2

δ

(
λ − N − 1

1 − μ
λj

)
, (26)
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FIG. 3. (Color online) Entanglement spectra σ (λ) for various
values of von Neumann entropy SvN = ln N − u: Entanglement
decreases as u increases. (a) 0 � u � uc � 0.26, (b) uc � u � 1/2,
and (c) 1/2 < u � ln N .

they become

∫
λσ̃ (λ)dλ = 1, 2P

∫
σ̃ (λ′)
λ′ − λ

dλ′ − β̃(1 − μ) = 0. (27)

They are equal to (11) and (12) with β = 0 and ξ =
−β̃(1 − μ). Therefore, besides the eigenvalue μ, the spectrum
of the reduced density matrix is made of a sea of eigenvalues
whose distribution σ̃ (λ) = σMP(λ) is given by (21). See
Fig. 3(c).

Finally, by evaluating the density function at the typical
spectrum �λ, one gets

pN (�λ) ∝ eN2s , (28)
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FIG. 4. (Color online) Logarithm of the volume of the isoentropic
manifolds s = N−2 ln pN vs u = ln N − SvN for N = 50. See (30).
The discontinuity of the derivative at u = 1/2 is O(1/ ln N ).

where s is the entropy density of the statistical-mechanics
model (the “entropy of the entropy”),

s = 2

N2

∑
j<k

ln |Nλj − Nλk|. (29)

In the limit N → ∞, one finds

s =

⎧⎪⎨
⎪⎩

1
2 ln

(
1
β

− 1
2β2

) − 1
4 , 0 � u < uc,

− ln γ+1
2 + γ − β

2 − 3
2 , uc � u � 1

2 ,

ln(1 − μ) − 1
2 , 1

2 � u � ln N,

(30)

where γ = √
1 + 2β, β = β(u) is the inverse function of (22),

and μ = u/ ln N , according to (24). The logarithm of the
probability (28) (i.e., the volume) of the isoentropic manifolds
is plotted in Fig. 4 for N = 50. Observe that s is unbounded
from below, and the isoentropic manifolds shrink to a vanishing
volume both at u = 0 (maximally entangled states) and at u =
ln N (separable states). The probability that a random state be
maximally entangled is, therefore, exponentially suppressed
as N → ∞.

The presence of discontinuities in some derivatives of the
volume detects the two phase transitions. At u = uc, there is a
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FIG. 5. (Color online) The third derivative of s with respect to u.
The fourth derivative jumps at u = uc.

continuous phase transition, associated with the vanishing of
the lower edge of the spectrum and signaled by a discontinuity
in the fourth derivative of s as shown in Fig. 5. A second
phase transition occurs at u = 1/2 due to the split off of
the largest eigenvalue O(1) from the others O(1/N). It is
worth noticing that this phase transition of the von Neumann
entropy is softer than the analogous one for purity [7] and
other Rényi entropies [8], which are first order. Interestingly,
when the Rényi exponent α becomes smaller than 1, this
phase transition disappears. Therefore, the von Neumann
entropy signals a crossover between a violent (first-order)
phase transition towards separable states, associated with the
evaporation of the largest eigenvalue for α > 1 and the absence
of a phase transition when α < 1. This and other interesting
issues will be discussed in a follow-up article.
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