
IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 46 (2013) 315306 (12pp) doi:10.1088/1751-8113/46/31/315306

Polarized ensembles of random pure states

Fabio Deelan Cunden1, Paolo Facchi2,3 and Giuseppe Florio2,3,4

1 Dipartimento di Matematica, Università di Bari, I-70125 Bari, Italy
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Abstract
A new family of polarized ensembles of random pure states is presented. These
ensembles are obtained by linear superposition of two random pure states with
suitable distributions, and are quite manageable. We will use the obtained
results for two purposes: on the one hand we will be able to derive an efficient
strategy for sampling states from isopurity manifolds. On the other, we will
characterize the deviation of a pure quantum state from separability under the
influence of noise.

PACS numbers: 03.67.Mn, 03.65.Aa, 02.50.−r

(Some figures may appear in colour only in the online journal)

1. Introduction

In the last few years many researchers have been investigating the typical properties of random
pure states, i.e. unit vectors drawn at ‘random’ from the Hilbert space associated to a quantum
system. This subject has attracted attention in several directions, and some important results
have been achieved, mostly dealing with the characterization of entanglement [1–14].

The standard ensemble which has been intensively investigated is that of random pure
states with measure induced by the Haar measure on the unitary group. This ensemble, being
the maximally symmetric one, implements in a natural way the case of minimal knowledge
on a quantum state [15]. It is structureless, in the sense that the induced measure only depends
on the dimension of the total Hilbert space and it is not sensible to any tensor product
structure [1, 16].

For this reason, the unitarily invariant ensemble is also known as the unbiased ensemble
[14]. A natural question is whether this ensemble of pure random states can be used to construct
different, more complicated, ones.
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Various approaches have been proposed independently by several groups that have
introduced different physically motivated measures on the space of pure states. Recently,
Zyczkowski et al [17] have analyzed some kind of structured ensembles of random pure states
on composite systems that are invariant under local unitary transformations. From another
perspective, De Pasquale et al [18] have proposed a classical statistical mechanics approach
in order to explore the isopurity manifolds of random states. In the same spirit, Mueller et al
[19] have recently investigated ensembles of random pure states with fixed expectation value
of some observable, in the framework of the concentration of measure phenomenon. However,
there are still many obstructions in carrying out these programs, and the links among them are
not yet clear.

This paper is intended as another step toward new scenarios beyond the unbiased ensemble.
This step is motivated as an operational way to capture the isopurity manifolds, and turns out
to be in particular cases similar to the structured ensembles proposed in [17]. Our idea is
to move beyond the unbiased ensemble by using a natural operation at hand in the Hilbert
space, namely superposition of vector states. In this work we will show that unitarily invariant
measures interact nicely with the operation of superposition of states.

As a remark, we want to stress that, in the large size limit, the robustness of Marčenko–
Pastur’s theorem [20] prevents many of the potentially workable ensembles to deviate from
the Marčenko–Pastur law. The approach that we propose here is a way to circumvent such
an obstruction and allows to obtain workable ensembles with entanglement spectra (i.e. the
densities of Schmidt eigenvalues) that can sensibly differ from the Marčenko–Pastur law. In
this way one can investigate, by varying the strength and/or the type of the polarization, the
structure of the different spectral types and the possible emergence of phase transitions of
entanglement [8].

The paper is organized as follows. In section 2 we introduce the concept of polarized
ensembles of pure states that will play a central role in our work. In particular, we will consider
the deviation from the unbiased ensemble induced by the Haar measure on the unitary group
acting on the whole Hilbert space of the system. In section 3 we will characterize the polarized
ensembles by using the local purity of a subsystem. This approach will be used both for the
study of the ensembles and for the description of an efficient procedure for sampling typical
states from an isopurity manifold (and, therefore, with a fixed value of bipartite entanglement).
In section 4 we will apply these results to the characterization of separability of quantum
states under the influence of noise. Finally, in section 5 we will draw some conclusions. Some
technical points are discussed in two appendices for completeness and self-consistency. The
appendices are dedicated respectively to the computation of the average purity and to the
concentration around the average.

2. Polarized ensembles of pure states

Consider a bipartite quantum system described by a pure state in a finite-dimensional Hilbert
space H. The bipartition in two subsystems (A, B) will induce on H a tensor product structure
such that

H = HA ⊗ HB. (1)

We will consider, without loss of generality, the case with

dimHA = N ! dimHB = M, (2)

whence dimH = NM.
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Let us focus on the general situation in which the (pure) state of the quantum system has
the form (up to normalization)

|ψ〉 = α|ψ1〉 + β|ψ2〉, (3)

where |ψ1〉, |ψ2〉 ∈ H are random states, sampled according to arbitrary probability measures.
Once the probability distributions of |ψ1〉 and |ψ2〉 are specified, the random vector |ψ〉 is
characterized by a well defined distribution.

Due to its privileged role in many contexts of random matrix theory [21, 22], in the
following we will make great use of the unitarily invariant (unbiased) probability measure
on pure states, denoted by µMN , induced by the Haar measure on the unitary group U (H).
Moreover, we will consider the product measure µN ×µM on pure states, which is left invariant
under the action of local unitaries U (HA) ×U (HB). In the latter case, we recall that the space
of pure states is foliated in orbits of local unitaries labeled by the degeneracy of the Schmidt
coefficients. Each of these orbits is a natural domain for the locally invariant measure µN ×µM

[23, 24].
In general, depending on the ensembles chosen for sampling |ψ1〉 and |ψ2〉, the state |ψ〉

defined in (3) will exhibit very different properties. Let us briefly outline the relevant features
in some cases of particular interest.

If both |ψ1〉 and |ψ2〉 are sampled according to the unbiased ensemble µMN , then |ψ〉 is
also a random state whose distribution is invariant under the action of the unitary group U (H)

(independently on the values of α and β).
The opposite situation occurs when |ψ1〉 is a fixed pure state and |ψ2〉 ∼ µNM . In this case

the weights α and β are relevant; if |α| ' |β| the unbiased ensemble becomes ‘polarized’
along the direction defined by |ψ1〉. This polarization phenomenon is of particular interest if
one wants to study the deviation of the properties of an ensemble of quantum states from a
fixed reference state. In particular, in this work we will specialize our analysis to the cases of
|ψ1〉 separable or maximally entangled (in the bipartite sense).

3. Typical local purity

3.1. Local purity of one-parameter polarized ensembles

In this section we will focus on the consequences of the polarization of the ensemble on
the properties of bipartite entanglement between the subsystems A and B. As a measure of
entanglement we will consider the local purity of one of the parties. Given a pure state |ψ〉 ∈ H,
it is defined by

πAB(|ψ〉) = TrAρ2
A, ρA = TrB|ψ〉〈ψ |, (4)

where ρA is the reduced density matrix of party A. The upper bound πAB = 1 and the
lower bound πAB = 1/ dimHA = 1/N correspond, respectively, to separable and maximally
entangled states.

Let us consider a state |ψ〉 obtained as a superposition (3) where, in particular, a fixed
pure state is superposed to an unbiased random one. We will get the following one-parameter
ensemble

|ψ〉 =
[
ε1AB +

√
1 − ε2UAB

]
|φ0〉, (5)

where the normalized state |φ0〉 ∈ H is fixed, ε ∈ [0, 1] is a tunable parameter, 1AB is the
identity operator, and UAB ∈ U (H) is a random unitary acting on H, sampled according to
the Haar measure on the unitary group. The state

|φ〉 = UAB|φ0〉 (6)
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is therefore a (unit) random vector distributed according to the unitarily invariant measure on
pure states µNM .

Notice that for ε = 0 one recovers the unbiased ensemble. On the other hand, values of
ε )= 0 play the role of an offset which parametrizes, as discussed in the previous section, the
degree of polarization of the ensemble in the direction of |φ0〉. We also observe that, given two
independent and symmetrically distributed random states |φ1〉, |φ2〉, the expectation value of
their overlap vanishes, i.e.

E[〈φ1|φ2〉] = 0. (7)

As a consequence, the normalization of the state |ψ〉 in (5) is assured on the average, in the
sense that

E [〈ψ |ψ〉] = E[‖ψ‖2] = 1, (8)

and deviations from the average are exponentially suppressed for large N, as shown in
appendix B.

We emphasize that, since we are focusing on the typical features of an ensemble of random
pure states, any statement in the paper has to be considered in the large size limit, N → ∞.
In this limit, the ensemble of vectors (5) is an ensemble of physical states, in the sense that it
consists of unit vectors with overwhelming probability.

We are interested in the conditional expectation value of the purity πAB(|ψ〉) given a fixed
state |φ0〉 and a bias ε. Due to concentration of measures, for large N this quantity will be the
typical purity of the polarized ensemble (5).

The density operator associated to the random pure state |ψ〉 reads

|ψ〉〈ψ | = ε2|φ0〉〈φ0| + (1 − ε2)|φ〉〈φ| + ε
√

1 − ε2(|φ0〉〈φ| + |φ〉〈φ0|), (9)

where |φ〉 is given by (6). We will use the following notation:

σ = TrB|φ〉〈φ|,

σ0 = TrB|φ0〉〈φ0|,

S0φ = TrB(|φ0〉〈φ| + |φ〉〈φ0|). (10)

By tracing over subsystem B and performing a straightforward calculation, we obtain the
purity (which is a random variable)

πAB(|ψ〉) = TrAρ2
A

= ε4Tr σ 2
0 + (1 − ε2)

2
Tr σ 2 + ε2(1 − ε2)Tr S2

0φ + 2ε2(1 − ε2)Tr(σ0σ )

+ 2ε3
√

1 − ε2Tr(σ0S0φ ) + 2ε(1 − ε2)3/2Tr(σS0φ ). (11)

3.2. Typical local purity

We now evaluate the expectation value of the purity πAB. The computation can be easily done
by making use of a Gaussian approximation. More precisely, we will consider random vectors
|φ〉 ∈ H whose components in an arbitrary basis are independent complex random variables
normally distributed, NC(0, 1/NM) (the normalization of |φ〉 is assured on the average).

The Gaussian approximation is fully justified for our purposes. Indeed, in the large size
limit, concentration phenomena and the simultaneous convergence of the Gaussian measure
to the unitarily invariant measure on the sphere [25] provide the typicality of our results (see
appendix B for further details). Thus, averages on the unitary group can be substituted with
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averages with respect to Gaussian measures. In this case, expectation values of any smooth
quantity of interest f (|φ〉) can be easily estimated.

We claim that the typical local purity of (5) depends only on the local purity of the pure
state |φ0〉,

π0 = πAB(|φ0〉), (12)

and not on the particular vector |φ0〉 with the given purity. Indeed, a direct calculation with |φ〉
a Gaussian vector shows (see appendix A for explicit calculations) that the only non-vanishing
terms in the expectation value of (11) are

E
[
Tr σ 2

0

]
= Tr σ 2

0 = π0, (13)

E[Tr σ 2] = M + N
MN

, (14)

E[Tr(σ0σ )] = 1
N

, (15)

E
[
Tr S2

0φ

]
= 2

M
. (16)

By plugging (13)–(16) into (11) we finally get the conditional expectation value of the purity
πAB(|ψ〉)

π̄AB = E[πAB | |φ0〉, ε] = ε4π0 + (1 − ε4)
M + N

MN
. (17)

This is a central result of the paper.
Notice that if we had performed the average using the unitarily invariant measure µNM

for |φ〉, as in (6), the only difference with the above calculation would have been in the term

E[Tr σ 2] = M + N
MN + 1

, (18)

as computed by Lubkin [26]. The relative difference with the typical purity of the unbiased
Gaussian ensemble

πunb = π̄AB|ε=0 = M + N
MN

, (19)

is thus of order O(1/(NM)) and negligible for large systems.
We point out an important consequence of (17): even if |φ0〉 is substituted by a state

|φ′
0〉 = UA ⊗ UB|φ0〉, with UA(B) ∈ U

(
HA(B)

)
, belonging to its local orbit (therefore evolving

on an isopurity manifold with arbitrary measure), the value of the typical purity given by (17)
is not affected. In other words, the one-parameter ensemble of random states

|ψ〉 =
[
εUA ⊗ UB +

√
1 − ε2UAB

]
|φ0〉, (20)

where UA ⊗ UB is a random local unitary, has average purity given by formula (17), with
π0 = πAB(|φ0〉) = πAB(UA ⊗ UB|φ0〉). The ensemble (20) is a linear superposition of two
random pure states with suitable probability distributions.

Incidentally, this can also be seen as a consequence of a fundamental property of
conditional expectations:

E [ f (X,Y )] = E[E[ f (X,Y ) |Y ]], (21)

where f is a function of two random variables X and Y . We will make frequent use of this
property in the following.
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3.3. Typical purity for a separable and a maximally entangled polarizing state |φ0〉

In this section we will discuss two interesting examples of the behavior of π̄AB, given the
value of π0. We will specialize our results about the generalized ensemble (20) to the extremal
situations of a separable or maximally entangled polarizing state |φ0〉.

Let us start by considering the case of |φ0〉 separable with respect to the bipartition (A, B),
so that π0 = 1. According to the discussion at the end of the section 3.2, we can allow |φ0〉 to
be a random pure separable state and consider the generalized ensemble

|ψ〉 =
[
εUA ⊗ UB +

√
1 − ε2UAB

]
|φsep〉, (22)

|φsep〉 = |φ0〉A ⊗ |φ0〉B (23)

where |φ0〉A and |φ0〉B are fixed states in HA and HB, respectively, UA and UB are random local
unitaries and UAB is a random global unitary transformation. The typical purity (17) of the
one-parameter ensemble with a separable polarization (23) reads

E[πAB | |φsep〉, ε] = M + N
MN

+ ε4 MN − M − N
MN

. (24)

The other extreme case is given by |φ0〉 = |φent〉, a maximally entangled pure state, so
that π0 = 1/N. Then we are dealing with a polarized ensemble of the form

|ψ〉 =
[
εUA ⊗ UB +

√
1 − ε2UAB

]
|φent〉, (25)

where the reference state is such that

TrB|φent〉〈φent| = 1
N

1A. (26)

Such a polarization decreases the typical purity of the unbiased ensemble to the value

E [πAB | |φent〉, ε] = M + N
MN

− ε4

M
. (27)

These results will be compared in the following section to a numerical Monte Carlo approach.

3.4. Generation of random pure states with fixed local purity

The results obtained in the previous sections suggest a very inexpensive strategy for generating
random pure states with fixed value of the purity πAB. Indeed, the numerical sampling of the
uniform measure on the manifold of pure states |ψ〉 parametrized by a fixed value of πAB will
proceed through the following steps:

(1) Choose ε ∈ [0, 1] such that

πAB = ε4π0 + (1 − ε4)πunb, (28)

where π0 = 1 or π0 = 1/N if the desired value of πAB is, respectively, larger or smaller
than the unbiased typical value πunb in (19).

(2) Generate a pure state |ψ〉 by superposition

|ψ〉 = ε|φ0〉 +
√

1 − ε2|φ〉, (29)

where |φ〉 is sampled according to the unbiased measure µNM and |φ0〉 is a separable
or maximally entangled pure state sampled randomly according to the invariant measure
under local unitaries µN × µM , depending on the value of π0 chosen in (28).

In figure 1 (upper panel) the analytical formulas (24) and (27) are compared to the Monte
Carlo results for the values of π̄AB obtained by sampling pure states through the procedure
outlined above. The comparison shows clearly the efficiency of the sampling procedure
in providing the correct behavior of the typical purity versus the bias ε with quite small
fluctuations already for dimensions N = M = 30. Such fluctuations around the average are
more evident for smaller systems. See figure 1 (lower panel) for the case N = M = 8.
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Figure 1. Typical purity of polarized ensembles versus ε4, depending on the bias |φ0〉. We compare
the analytical prediction (continuous lines) with the numerical values of πAB (sample mean and
error bars) obtained from the sampling procedure described in the text. We consider balanced
bipartitions with size N = M = 30 (top) and N = M = 8 (bottom). In both cases the number
of realizations used to perform the ensemble average is n = 104. Right side: the continuous
line represents the analytical prediction for the purity of an ensemble polarized by a separable
state (24). Depending on the value of the parameter ε the purity ranges from the unbiased value
πunb = (M + N)/MN to the maximum π0 = 1. Left side: the continuous line represents the
analytical prediction for the purity of an ensemble polarized by a maximally entangled state (27).
As ε increases the typical value of the purity decreases from πunb to the minimum π0 = 1/N.
The error bars represent the standard deviations of the numerical simulations from the estimated
average. Such fluctuations are exponentially suppressed as the dimensions N, M increase, according
to equation (B.3) in appendix B.

4. Robustness of separability under random perturbations

As an application, in this section we will use the results obtained from the study of polarized
ensembles to analyze the stability of ‘separability’ of quantum states with respect to random
additive perturbations. More precisely, if the state of the system |φ0〉 ∈ HA ⊗HB is separable,
|φ0〉 = |ξ0〉A⊗|χ0〉B, how much noise is necessary to make the reduced state ρA = TrB[|φ0〉〈φ0|]
distinguishable from a pure state? We notice that the problem of the characterization of
separability has attracted a lot of interest in the context of the analysis of ground states of
quantum spin systems [27–29].

Let us consider the state of the bipartite system in the form

|ψ〉 =
√

1 − η2|ξ0〉A ⊗ |χ0〉B + η|φ〉, 0 ! η ! 1, (30)

where |φ〉 ∼ µNM is an unbiased random perturbation, and η measures the strength of the
noise. (Notice that in the language of polarized ensembles of the previous sections we have
ε =

√
1 − η2.)
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In the context of spin systems, the parameter η should be related e.g. to the magnetic
field that drives the ground state from a separable state to an entangled one. More generally,
this setup models the following situation: some non-controllable noise prevents one to prepare
with infinite precision a given state. The noise has the consequence that the reduced density
matrix ρA is not a projection but is mixed. It is reasonable that, for weak noise (η . 1), we
still obtain a reduced state ρA that is close to a projection. Then the question is: is there a
threshold on the value of noise above which separability is appreciably destroyed?

In order to answer this question, it is convenient to introduce the notion of effective
dimension (also known as ‘participation ratio’ [30]) of a state ρ defined as

deff(ρ) = 1
Tr ρ2

∈ [1, N]. (31)

The effective dimension of a mixed state quantifies how many pure states appreciably contribute
to the mixture. Moreover, differently from the rank of ρ, deff captures the probabilistic weight
of different states and is more manageable for explicit calculations.

For a separable pure state, |ξ0〉A ⊗ |χ0〉B, the reduced density matrix, ρA = |ξ0〉〈ξ0|, has
effective dimension deff(ρA) = rank(ρA) = 1. A global perturbation acting on |ξ0〉A ⊗ |χ0〉B

can be appreciated locally if the reduced state ρA becomes a mixture. In order to obtain a
mixture one needs at least two pure components. Therefore, we can say that a quantum state
is distinguishable from a one-dimensional projection if its effective dimension deff is equal or
larger than 2. As a consequence, we are led to the following criterion on the separability of
the state averaged over the noise realization:

deff(E[ρA]) < 2. (32)

We get that

deff(E[ρA]) = 1
E

[
Tr ρ2

A

] = 1

E
[
πAB | |φsep〉,

√
1 − η2

] , (33)

and then, from (24), it is straightforward to prove that condition (32) is satisfied if

η2 < η2
, (πunb) = 1 −

√
1 − 2πunb

2 − 2πunb
, (34)

where πunb is the typical purity of the unbiased ensemble (19). If η " η, the local state ρA will
be mixed with high probability.

In the limit of large system sizes, N, M → +∞, the threshold critical value becomes

η2
, =

(
1 − 1√

2

)
+ O

(
1
N

)
, (35)

since 1/N ! πunb ! 2/N. Therefore, as long as the state |ψ〉 of the large quantum system has
the form (30) with

η <

√

1 − 1√
2

0 0.54, (36)

one has deff(ρA) < 2, and separability will be (approximately) preserved. Notice that in this
case, by applying perturbation theory, one gets that the spectrum of ρA is made of a large
eigenvalue of order O(1 − η2) and a sea of eigenvalues of order O(1/N) that have a negligible
influence on the reduced density matrix ρA.
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5. Conclusions

In this paper we have shown that, using the superposition principle, we can take advantage
of the knowledge of the unbiased ensemble of random pure states in order to explore new
interesting ensembles. In particular, we have found that adding a bias in a suitable direction
is enough to polarize the unitarily invariant ensemble. We stress that our approach has been
oriented to the study of typical bipartite entanglement between subsystems, as measured by
the local purity.

This strategy yields an efficient and simple sampling of random pure states with fixed
value of purity, and paves the way to further explorations and a deeper characterization of the
geometry of isopurity manifolds.

Finally, we have applied our results to the analysis of separability of quantum states under
the influence of random perturbation modeled through a coherent superposition. For large
systems, we have obtained a critical value of the noise strength, independent of the system
size, beyond which the state is no longer separable, and the reduced state gets appreciably
mixed.
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Appendix A. Evaluation of π̄AB

In this section we detail the derivation of the average purity π̄AB given in (17). As mentioned
in the text, the averages are more easily obtained by switching from the unitarily invariant
measure to the Gaussian measure. The random state in (5) reads

|ψ〉 = ε|φ0〉 +
√

1 − ε2|φ〉, (A.1)

where |φ〉 is a Gaussian random vector and |φ0〉 a reference vector. Let the NM complex
components of |φ〉 and |φ0〉 (in a given basis) be Xiµ and Aiµ, respectively, where 1 ! i ! N
and 1 ! µ ! M. In the following the Xiµs will be independent and identically distributed (iid)
complex Gaussian variables with mean E

[
Xiµ

]
= 0 and variance E

[
|Xiµ|2

]
= 1/NM. The

one-dimensional projection |φ〉〈φ| has random entries XiµX∗
jν , where the star denotes complex

conjugation. The reduced state of subsystem A, obtained by partial trace, σ = TrB|φ〉〈φ| is
an N-dimensional square random matrix whose entries are

∑
µ XiµX∗

jµ. We are interested in
objects like

Tr σ 2 =
∑

i, j,µ,ν

XiµX∗
jµXjνX∗

iν . (A.2)

Recall that the only ingredient necessary to deal with a collection of iid complex Gaussian
random variables is the Wick formula for the expectation of the products

E
[
Xi1 · · · Xin X∗

j1 · · · X∗
jn

]
=

∑

p

E
[
Xi1 X∗

jp(1)

]
· · · E

[
Xin X∗

jp(n)

]
(A.3)

where the sum is over all possible permutation p of n elements, and

E
[
XiX∗

j

]
= (NM)−1δi j. (A.4)
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The expectations of all other products vanish. Thus, the average value of the purity of state
|φ〉 reads

E[Tr σ 2] = E




∑

i, j,µ,ν

XiµX∗
jµXjνX∗

iν





=
∑

i, j,µ,ν

{
E

[
XiµX∗

jµ

]
E

[
XjνX∗

iν

]
+ E

[
XiµX∗

iν

]
E

[
XjνX∗

jµ

]}

= 1
(MN)2

∑

i, j,µ,ν

(δi j + δµν ) = 1
(MN)2

(M2N + MN2)

= M + N
MN

. (A.5)

Let us consider now the terms (15) and (16). The reduced state σ0 = TrB|φ0〉〈φ0| has
components

∑
µ AiµA∗

jµ. Then

E[Tr(σ0σ )] = E




∑

i, j,µ,ν

AiµA∗
jµXjνX∗

iν



 =
∑

i, j,µ,ν

AiµA∗
jµE

[
XjνX∗

iν

]

= 1
MN

∑

i,µ,ν

|Aiµ|2 = 1
MN

∑

ν

1 = 1
N

. (A.6)

The last term S0φ = TrB (|φ0〉〈φ| + |φ〉〈φ0|) is a random matrix with entries∑
µ AiµX∗

jµ + XiµA∗
jµ. By squaring it and taking the trace we obtain

E
[
Tr S2

0φ

]
= E




∑

i, j,µ,ν

(AiµX∗
jµ + XiµA∗

jµ)(AjνX∗
iν + XjνA∗

iν )





= 2
∑

i, j,µ

|Aiµ|2E[|Xjµ|2]

= 2
MN

∑

i, j,µ

|Aiµ|2 = 1
MN

∑

j

1 = 2
M

. (A.7)

Adding up all the pieces we obtain the result (17).
Finally, we notice that the computation with a Gaussian measure deviates from the

computation with a uniform measure on the sphere only in the four-point correlation (A.5).
Indeed for a unit vector |φ〉 uniformly distributed on the unit sphere the Wick theorem (A.3)
is no longer valid and the fourth moment is slightly modified into

E
[
XiµX∗

jµXjνX∗
iν

]
= 1

MN(MN + 1)
(δi j + δµν ), (A.8)

(see equation (53) of [31]) which gives (18) in place of (A.5).

Appendix B. Gaussian approximation and typicality

The typicality of the average purity in the polarized ensembles used in section 3.2 relies on
the following concentration phenomenon for Gaussian variables [22]:
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Lemma 1. Let X = (X1, X2, . . . , Xk) be a vector with iid Gaussian components, with
distribution Xi ∼ N (0, σ 2). Then, for any smooth function f : Rk → R, with η = sup |∇ f | <

∞, the following concentration inequality holds

Pr {| f (X ) − E[ f ]| > α} ! 2 exp
(

− α2

4η2σ 2

)
. (B.1)

Let us now consider the polarized ensemble defined in (5). In the Gaussian approximation
the 2MN real coordinates of the random vector state are Gaussian iid random variables with
distribution N (0, 1/2MN), so that normalization is assured on average. However, since ‖ · ‖
has Lipschitz constant 1, ‖ψ‖ has η !

√
1 − ε2 and thus the ensemble (5) is composed of

normalized vectors with overwhelming probability:

Pr{|‖ψ‖2 − 1| > α} ! 2 exp
(

− NMα2

2(1 − ε2)

)
. (B.2)

Moreover, the local purity function πAB, defined in (4), has Lipschitz constant bounded
by η ! 4 (see [32]). The Lipschitz constant of the purity of the polarized ensemble (5) is thus
bounded by η ! 4

√
1 − ε2 and then from the lemma one gets

Pr{|πAB(|ψ〉) − E[πAB]| > α} ! 2 exp
(

− NMα2

32(1 − ε2)

)
. (B.3)

Incidentally, we mention that a similar Gaussian tail can be derived for uniformly
distributed unit vectors by Levy’s lemma [32]. The proof relies on a judicious use of
δ-nets. In a finite dimensional setting, any subset of the sphere of states is totally bounded, in
the sense that it admits a finite δ-net, for all δ > 0. What we are interested in is a bound on the
cardinality of a δ-net N on manifolds of equal Schmidt rank k. For such manifolds a bound is
given by

|N | !
(

10
δ

)2k(N+M)

. (B.4)

For a proof see [32]. In this work the authors bound the cardinality of δ-nets on set with
fixed Schmidt rank. In fact, what they obtain are δ-nets on orbits of pure states under local
unitaries, i.e. states with fixed Schmidt coefficients. Estimate (B.4) is good enough to control
the probability of deviations of the purity from its average, so that a bound of the form (B.3)
is obtained.
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