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Quantum parameter estimation affected by unitary disturbance
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We provide a general framework for handling the effects of a unitary disturbance on the estimation of the
amplitude λ associated to a unitary dynamics. By computing an analytical and general expression for the quantum
Fisher information, we prove that the optimal estimation precision for λ cannot be outperformed through the
addition of such a unitary disturbance. However, if the dynamics of the system is already affected by an external
field, increasing its strength does not necessarily imply a loss in the optimal estimation precision.
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I. INTRODUCTION

The quantum Cramér-Rao bound provides the proper theo-
retical framework for analyzing energy-time-like uncertainty
relations [1] by setting limits on the precision attainable
when estimating the parameters governing the dynamics of a
physical system. Its application has profound consequences
in quantum metrology [2], where it helps in identifying
which resources (e.g., entanglement and squeezing) are useful
to reach higher accuracy levels, and which are the proper
procedures one needs to adopt to fully exploit them. For
instance, in the absence of external noise, the quantum Cramér-
Rao bound predicts [3] that in the process of estimating a
relative phase, the use of entanglement between sequences
of N independent probing systems allows one to gain a√

N improvement in precision (Heisenberg limit) over those
procedures which, under the same experimental settings,
adopt instead separable probes (standard quantum limit, or
shot-noise limit in optical interferometry). More subtle is
to establish the optimal performances in the presence of
external disturbances. Many discouraging results attest to
the fragility of entanglement which, in a noisy environment,
limits any precision improvement at most to a constant factor
independent of N [4], or to a superclassical precision scaling
N−5/6, achieved when the perturbation involves a preferential
direction perpendicular to the unitary evolution governed by
the parameter to be estimated [5]. Yet an exhaustive answer
would require a systematic method for taking into account the
presence of a disturbance in the system. The main obstacle is
represented by the fact that the very fundamental tool needed
to evaluate the quantum Cramér-Rao inequality, i.e., the
quantum Fisher information (QFI) [6], apart from very simple
cases, usually happens to be computationally cumbersome,
especially for high dimensional systems. Recently, Escher
et al. [7] proposed a strategy to circumvent this difficulty
by introducing an upper bound to the QFI, which relies on
the choice of a Kraus representation of the noisy evolution
based on physical considerations. In this way, it was possible
to propose a realistic example of optical lossy interferometry
where the Heisenberg limit can be attained by properly tuning
the number of input resources according to the noise level
[7]. A generalization of the latter analysis for the single
parameter estimation to the case of lossy optical wave-form
reconstruction has been recently proposed [8]. Notwith-
standing these bright techniques, a general prescription for

computing the QFI of a generic dynamical process is still
missing.

In this paper we consider the case of closed quantum
systems and study the effects of a unitary disturbance on
the estimation of a dynamical parameter λ. Specifically, we
add a term to the generator of the dynamical evolution of
the system to model the action of an external force that
opposes the formation of the parametric trajectories governed
by λ, and determine a compact analytical expression for the
associated QFI. Starting from this result, we report several
important facts. First of all, while for nonoptimal choices of
model settings it is possible that the disturbance will improve
the accuracy of the estimation procedure, we prove a no-go
theorem which formalizes the rather intuitive fact that the
best performances are always reached when no disturbance
is present in the system. Most importantly we also notice
that enhancing the level of a Hamiltonian disturbance which
is already affecting the system does not necessarily yield a
worse optimal estimation strategy and can reveal itself helpful
in determining the value of λ. This is a rather counterintuitive
finding which can be interpreted as the emergence of dithering
[9] in the estimation process.

This paper is organized as follows. In Sec. II, after briefly
reviewing the typical approach followed for the reconstruction
of the global phase λ of a generic unitary evolution, we
explicitly address the case in which the dynamics is affected
by the presence of a unitary disturbance (Sec. II A). This
technique is then reframed in the more general context
of multiparametric estimation (Sec. II B). In Sec. III, we
prove a no-go theorem comparing the optimal performances
achievable with and without the unitary disturbance. In Sec. III
we address the question of whether the additional term in
the Hamiltonian is sufficient to induce a departure from the
Heisenberg limit, and show that this is not the case. Finally,
in Sec. IV, we specialize to the case of a single qubit, and
gather evidence that if the system is already affected by such
a unitary disturbance, the latter can be increased in order to
achieve better estimation performances. Section V is devoted
to final remarks.

II. THEORETICAL FRAMEWORK

A standard problem in quantum estimation theory is
recovering a real parameter λ encoded in a set of states �λ of the
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system. The ultimate precision limit for such a task is given by
the quantum Cramér-Rao bound [2] on the Root Mean Square
Error (RMSE) �λ of a generic estimation strategy (the latter is
defined as �λ =

√
E[(λ(est) − λ)2] where λ(est) is the random

variable which represents the estimation of λ extrapolated
from the performed measurements, and E[x] indicates the
expectation value of the random variable x). Accordingly, we
have

�λ � 1/
√

νQ, (1)

where Q is the QFI obtained by optimizing the Fisher
information [10] over all the possible positive-operator valued
measurements performed on the system encoding the parame-
ter, and ν is the number of times the measurement is repeated
(the threshold being reachable at least in the asymptotic limit
of large ν—see however Ref. [11] for achievability at finite
ν). The QFI is a function of the parameter λ which can be
expressed in terms of the “instantaneous” velocity variation of
the system, quantified by the Bures distance DB [12],

Q = 4 lim
δλ→0

D2
B(�λ,�λ+δλ)

δλ2

= 8 lim
δλ→0

1 − F(�λ,�λ+δλ)

δλ2
, (2)

where F(�,�′) = Tr[
√√

� �′√�] is the fidelity between the
states � and �′ [13].

A well studied case is the one in which the parameter λ is
encoded into the state of a quantum system through a unitary
transformation of the form

�λ = Uλ�0U
†
λ, Uλ = exp(−iλHI ), (3)

where �0 is the input state of the system, assumed to be
controllable, and HI is the generator of the parametric orbit,
assumed to be assigned and independent from λ (as an
example, consider the case of a massive particle that undergoes
an abrupt translation induced by an external force whose
intensity we wish to estimate by monitoring the particle).
Under these conditions the QFI is also independent from λ,
and is given by [14,15]

Q[�0] = 4
∑
j<j ′

(ρj − ρj ′ )2

ρj + ρj ′
|〈j |HI |j ′〉|2 , (4)

where ρj and |j 〉 are, respectively, the eigenvalues and the
eigenvectors of �0. From the strong concavity of F it follows
that the maximum of Eq. (4) is obtained for pure states
�0 = |φ0〉〈φ0|. In that case Eq. (4) becomes

Q = 4〈φ0|�2HI |φ0〉
= 4

(〈φ0|H 2
I |φ0〉 − 〈φ0|HI |φ0〉2

)
. (5)

Thereby the state �0 maximizing the value of Q [i.e., minimiz-
ing the RMSE threshold (1)] can be identified by observing
that the maximum variance of the Hermitian operator HI is
proportional to the square of its spectral width:

〈�2HI 〉max = (hmax − hmin)2

4
, (6)

where hmax / min is the maximum/minimum eigenvalue of HI .
Accordingly we have

Qmax := max
�0

Q[�0] = (hmax − hmin)2 , (7)

the maximum being achieved by using as optimal input
�

(opt)
0 = |ψ (opt)

0 〉〈ψ (opt)
0 | the equally weighted superposition of

the eigenvectors belonging to hmax / min, i.e.,

∣∣ψ (opt)
0

〉 = 1√
2

(|hmax〉 + |hmin〉) . (8)

A. Phase estimation with unitary disturbance

Let us now consider the case where the above estimation
process is disturbed by the presence of an additional contribu-
tion to the generator of the dynamics. Specifically we replace
Uλ of Eq. (3) with the transformation

Uλ,η = exp[−iH (λ,η)], H (λ,η) = λHI + ηH0, (9)

where H0 is an Hermitian operator interfering with the
parametric driving exerted by HI , and where the real quantity
η gauges the strength of the associated perturbation (in the
example discussed previously, H0 can be identified with a
trapping potential that opposes the translation of the massive
particle). In order to compute the QFI for λ, for any fixed η,
we apply Uhlmann’s theorem on the fidelity [16]:

F(�λ,�λ+δλ) = max
|�λ〉,|�λ+δλ〉

|〈�λ|�λ+δλ〉| , (10)

the maximization being performed over all possible purifica-
tions |�λ〉 and |�λ+δλ〉 of �λ and �λ+δλ, respectively, through
an ancillary system. By using the freedom in the purifications
we write

F = max
V

|〈�0|
←−
exp [−i δλ H̄I (λ,η)] ⊗ V |�0〉|, (11)

where V belongs to the set of unitary transformations on the
ancilla, while |�0〉 = ∑

j

√
ρj |j 〉 ⊗ |j 〉 is a fixed purification

of the initial state �0 (hereafter, by writing A ⊗ B we mean
that A acts on the system and B on the ancilla). The average
Hamiltonian

H̄I (λ,η) =
∫ 1

0
dt eiH (λ,η)tHI e

−iH (λ,η)t (12)

emerges from the interaction picture representation of the
evolution

Uλ+δλ,η = Uλ,η

←−
exp [−i δλ H̄I (λ,η)] , (13)

with
←−
exp [. . .] denoting the time-ordered exponential (a similar

approach was employed in Ref. [17]). Since we are interested
in the limit of small δλ, without loss of generality we set
V = exp(i δλ �), with � a Hermitian operator on the ancillary
system. It results that, up to corrections of order O(δλ4), the
fidelity reads

F 	 1 − δλ2

2
min

�
[〈�0|(�H̄I ⊗ I − I ⊗ ��)2|�0〉] , (14)

where �H̄I = H̄I − h̄ and �� = � − ω, with h̄ = Tr[�0H̄I ]
and ω = Tr[�0�]. Using the spectral decomposition of
�0 introduced above, the QFI in Eq. (2) can be
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written as

Qλ;η[�0] = 4 min
�

Tr

[
H̄ 2

I �0 + �2�0 − 2
√

�0H̄


I

√
�0�

−h̄2�0 −
∑
i,j

ρiρj�|i〉〈j |�|j 〉〈i| + 2h̄�0�

]
,

(15)

where 
 denotes transposition. By differentiating the trace
with respect to � we determine the minimization condition
for it:

�0(� − ω) + (� − ω)�0 = 2
√

�0(H̄

I − h̄)

√
�0 . (16)

Its solution displays a translational invariance with respect to
ω according to

� − ω = �′ − ω′, with �′ = � + gI,g ∈ C . (17)

Without loss of generality we can therefore fix ω = h̄ and write
the solution of Eq. (16) in a basis for the ancilla isomorphic to
the eigenbasis of �0 as

�jj ′ = 2[H̄I ]j ′j

√
ρjρj ′

ρj + ρj ′
. (18)

Finally, by substituting this solution into (15), we obtain the
QFI for λ in the presence of an arbitrary disturbance ηH0:

Qλ;η[�0] = 4
∑
j<j ′

(ρj − ρj ′ )2

ρj + ρj ′
|〈j |H̄I |j ′〉|2 . (19)

Notice that for η = 0, since H̄I reduces to HI , this expression
gives back Eq. (4), i.e., Qλ;0[�0] = Q[�0]. Furthermore in
complete analogy to the latter case, if the initial state of the
system is pure, Eq. (19) yields

Qλ;η[|φ0〉] = 4〈φ0|�2H̄I |φ0〉. (20)

At variance with Eqs. (4) and (5), for η �= 0, Eqs. (19) and
(20) can exhibit an explicit dependence on λ via Eq. (12) (an
example is provided below). In particular, this implies that the
optimal states �

(opt)
0 yielding the maximum of the QFI (and

of course the QFI maximum itself) can now depend on the
value of the parameter one wishes to estimate. Specifically,
indicating with h̄max / min(λ,η) the maximum/minimum eigen-
value of the average Hamiltonian H̄I (λ,η) and with |h̄max / min〉
its corresponding eigenvector, we now get

Q(max)
λ;η := max

�0

Qλ;η[�0] = [h̄max(λ,η) − h̄min(λ,η)]2, (21)

with the optimal state �
(opt)
0 = |ψ (opt)

0 〉〈ψ (opt)
0 | being the super-

position [18]∣∣ψ (opt)
0

〉 = 1√
2

[|h̄max(λ,η)〉 + |h̄min(λ,η)〉] . (22)

B. Multiparametric estimation

Equations (19) and (21) represent the central finding of our
paper, and pave the way to a number of observations on the role
played by a unitary disturbance in the estimation procedure.
Before detailing them, we notice that the analysis presented
so far can be naturally framed in the more general context

of multiparametric estimation, where the family of states �
λ
now depends on a set of parameters 
λ = (λ1, . . . ,λM ), with
M � 2. In this context the Cramér-Rao theorem is generalized
to a bound

Cov[
λ] � Q−1/ν (23)

on the covariance matrix,

[Cov[
λ]]j,k = E
[
λ

(est)
j λ

(est)
k

] − λjλk , (24)

with Q being the QFI matrix of the problem. While referring
the reader to the formal expression of Q, we remind that its
diagonal elements coincide with the QFI of the corresponding
parameter λj , at fixed values of the others. The off-diagonal
terms can be evaluated in a similar way by observing that for
any other set of parameters 
μ = 
μ(
λ), which is an invertible
function of 
λ, the associated QFI matrix can be computed as
Q̃ = JQJ
, where J is the Jacobian matrix with elements
[ J]jk = ∂λk/∂μj .

Let us consider, for example, the case of two parameters

λ = (λ,η). The diagonal elements become, respectively,

[Q]λλ = Qλ;η[�0], [Q]ηη = Qη;λ[�0], (25)

given by Eq. (19) and its analog obtained by substituting
H̄I with H̄0 [whose definition is exactly specular to that in
Eq. (12)]. By defining

μ1 = λ + η√
2

, μ2 = λ − η√
2

, (26)

one can also compute [Q]λη as

[Q]λη = [Q]ηλ = [Q̃]μ1μ1 − ([Q]λλ + [Q]ηη)/2. (27)

From the previous analysis of the QFI at M = 1 for a system
affected by a unitary disturbance, it follows that [Q̃]μ1μ1 can
be smoothly determined by rewriting the global Hamiltonian
of the system as

H = μ1
(HI + H0)√

2
+ μ2

(HI − H0)√
2

, (28)

and by using Eq. (19) upon substituting H̄I with (H̄I + H̄0)/√
2. It follows that the off-diagonal terms of the QFI matrix

are

[Q]λη = 4
∑
j<j ′

(ρj − ρj ′ )2

ρj + ρj ′
Re[〈j |H̄I |j ′〉〈j ′|H̄0|j 〉] . (29)

This technique can be naturally extended to the case of an
arbitrary number of parameters.

III. NO-GO THEOREM

A question which spontaneously arises from the similarity
between the expressions for the QFI with and without a unitary
disturbance, i.e., Eqs. (4) and (19), concerns the possibility to
compare the performances of an estimation procedure in the
two cases. First of all, it is evident that for nonoptimal choices
of the input state �0, it is indeed possible that a nonzero value
of η could help the estimation process (for an explicit example,
take �0 to be an eigenvector of HI [19]). However, in terms
of optimal estimation thresholds, the following no-go theorem
can be derived:
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No-go theorem. It is not possible to outperform the optimal
estimation strategy for the amplitude λ of the unitary dynamics
(3) through the addition of any linear contribution to its
generator, namely,

Q(max)
λ;η � Q(max)

λ;0 = Qmax . (30)

In order to prove this inequality we observe that Eqs. (7) and
(21) allow us to equivalently rewrite it in terms of a contraction
of the spectral width of the Hamiltonian H̄I with respect to HI ,
i.e.,

h̄max(λ,η) − h̄min(λ,η) � hmax − hmin . (31)

The latter can then be proved by observing that the operator
H̄I is obtained from HI via a weighted convex sum of random
unitaries. Therefore, according to Uhlmann’s majorization
theorem [20], H̄I is majorized by HI . This, in particular,
implies

h̄max(λ,η) � h̄max(λ,0) and h̄min(λ,η) � h̄min(λ,0) (32)

from which the contraction of the spectral width, and hence
Eq. (30), is derived.

Heisenberg limit

Once established that Q(max)
λ;η is always smaller than Q(max)

λ;0 ,
one might ask whether or not this implies a departure from
the Heisenberg limit of the optimal accuracy. We remind the
reader that the latter is associated with the case where (say)
N independent probes are prepared in entangled states before
being acted upon by the generator of the dynamics. Formally
this can be accounted for by replacing HI of Eqs. (3) to (5)
with the operator

H
(N)
I =

N∑
j=1

H
(j )
I (33)

with H
(j )
I being the local generator acting on the j th probe

(see Ref. [3] for details). As a result, Qmax of Eq. (7) becomes

Q(N)
max = N2(hmax − hmin)2 (34)

with hmax / min being still the extremal eigenvalues of the
local (single probe) Hamiltonian HI (the N2 dependence
certifying the arising of the Heisenberg limit in the RMSE
accuracy). If the Hamiltonian disturbance H0 is acting locally
on the individual probes, it is immediate to see that the same
dependence upon N remains also for η �= 0. Indeed in this
case H (λ,η) is replaced by

H (N)(λ,η) =
N∑

j=1

(
λH

(j )
I + ηH

(j )
0

)
, (35)

which is still given by a sum of N independent, local
contributions yielding

Q(N, max)
λ;η = N2[h̄max(λ,η) − h̄min(λ,η)]2 , (36)

where bars refer to eigenvalues of the single probe Hamiltonian
H̄I . The situation becomes more complex when H0 is nonlocal
and H (N)(λ,η) acquires coupling terms between the N probes.
As the overall evolution is still unitary, one is tempted to
conjecture that the same N2 scaling forQ(N, max)

λ;η should survive

in typical situations. A rigorous proof of this fact is left to a
future investigation.

IV. OPTIMAL ACCURACY IMPROVEMENT
VIA DISTURBANCE

Inequality (30) compares the best achievable performance
with and without the addition of a linear disturbance ηH0

to the generator of a given unitary dynamics (3). From this
relation one could be tempted to conclude that the maximum
QFI is a monotonic decreasing function of η; that is, the larger
the disturbance is, the worse the estimation of λ. In general,
however, this is not true: once the threshold η = 0 has been
crossed, Eq. (30) does not provide a recipe for comparing the
response of the system to increasing or decreasing values of
η [21]. This opens the possibility of dithering effects.

We now provide an explicit example of such phenomenon
in a qubit system. Let us adopt the Bloch sphere formalism
and set

HI = a · σ , H0 = b · σ , (37)

where, without any loss of generality, a and b are unit (three-
dimensional) real vectors, and σ is the vector of Pauli matrices.
In this case the average Hamiltonian is given by H̄I = m · σ ,
with

m = [1 + sinc(2θ )]a/2 − η(b ∧ a) sinc2θ

+ 1 − sinc(2θ )

2θ2
[(n · a)n − η(b ∧ a) ∧ n], (38)

where ∧ is the vector product, sinc x = x−1 sin x, and

n = λa + ηb, θ = |n|. (39)

From Eq. (21) it immediately follows that

Q(max)
λ;η = 4|m|2 . (40)

In Fig. 1 we plot Eq. (40) as a function of λ for different
values of η � 0, the case η < 0 being symmetric with respect
to λ = 0. For η = 0 (no unitary disturbance) we have |m|2 = 1
for all λ’s: as already observed, the optimal choice for the initial
state of the system does not depend on the amplitude of the
unitary dynamics. On the other hand, according to the no-go

20 10 0 10 20
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0.6

0.8

1.0 η = 0

η = 1.5 η = 5
η = 15

η = 5
η = 15

η = 30

η = 30

η = 60

η = 60

|m|2

λ

FIG. 1. Plot of Q(max)
λ;η /4 of Eq. (40) as a function of λ for different

values of η, and for a · b = 1/
√

2. The dots signal the minima at
λmin = −ηa · b.
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theorem, for all η �= 0 we always have that |m|2 < 1. This
function shows a minimum at λmin = −η a · b, and asymp-
totically reaches 1 for λ → ±∞ (in this regime the effects of
the unitary disturbance ηH0 can be considered negligible). The
antilinear relation between λmin and η determines the following
behavior of |m|2: for η large enough, there exists an interval I

such that for λ ∈ I ,

Q(max)
λ;η < Q(max)

λ;η̃ , for η̃ > η (41)

(see Fig. 1). Inequality (41) establishes that, for sufficiently
large η, there exists a finite interval of λ’s whose values, by
properly choosing the state of the input probe, can be estimated
better than the values achievable with any possible choice of
�0, when the unitary disturbance is smaller.

V. CONCLUSIONS

The optimal estimation precision for the amplitude of a
unitary dynamics cannot be enhanced by switching on an

external field, or more generally by adding a linear term to
the generator of the dynamical process. However, we have
shown that if the system is already affected by such a unitary
disturbance, enhancing its strength does not necessarily imply
a loss in the estimation precision of the other dynamical
parameter(s). These results have been achieved by explicitly
computing the quantum Fisher information for an arbitrary
system in a generic mixed state, thus generalizing the already
known expression for the case of a unitary dynamics (3).
Furthermore, reframed into the more general context of
multiparametric estimation, this analysis enabled us to easily
determine a compact analytical expression for all the elements
of the quantum Fisher information matrix.
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[19] For such a choice, Qλ;0[�0] = 0, implying that no information
can be recovered on λ when η = 0 [the state of the probe being
invariant under the mapping (3)]. On the contrary, as in general
for η �= 0 the operator H̄I differs from HI , the same result does
not necessarily hold when the disturbance is on (indeed in this
case we can have Qλ;0[�0] > 0).

[20] M. Nielsen (unpublished), http://michaelnielsen.org/blog/talks/
2002/maj/book.ps.

[21] Notice that, from the definition (12) of H̄I , we cannot as-
sert that H̄I (λ,η + �η) majorizes H̄I (λ,η) for arbitrary η

and �η �= 0.

052117-5

http://dx.doi.org/10.1006/aphy.1996.0040
http://dx.doi.org/10.1006/aphy.1996.0040
http://dx.doi.org/10.1126/science.1104149
http://dx.doi.org/10.1126/science.1104149
http://dx.doi.org/10.1038/nphoton.2011.35
http://dx.doi.org/10.1103/PhysRevLett.96.010401
http://dx.doi.org/10.1103/PhysRevLett.96.010401
http://dx.doi.org/10.1103/PhysRevLett.79.3865
http://dx.doi.org/10.1103/PhysRevA.82.053804
http://dx.doi.org/10.1103/PhysRevA.82.053804
http://dx.doi.org/10.1103/PhysRevA.83.021804
http://dx.doi.org/10.1103/PhysRevLett.111.120401
http://dx.doi.org/10.1017/S0305004100009580
http://dx.doi.org/10.1038/nphys1958
http://dx.doi.org/10.1038/nphys1958
http://dx.doi.org/10.1088/1367-2630/15/7/073005
http://dx.doi.org/10.2201/NiiPi.2011.8.9
http://dx.doi.org/10.1090/S0002-9947-1969-0236719-2
http://dx.doi.org/10.1016/0375-9601(92)91004-B
http://dx.doi.org/10.1016/S0375-9601(98)00190-X
http://dx.doi.org/10.1016/S0375-9601(98)00190-X
http://dx.doi.org/10.1088/0305-4470/32/14/007
http://dx.doi.org/10.1088/0305-4470/36/39/308
http://dx.doi.org/10.1016/j.physleta.2010.10.005
http://dx.doi.org/10.1103/PhysRevA.30.1610
http://dx.doi.org/10.1080/09500349414552171
http://dx.doi.org/10.1080/09500349414552171
http://dx.doi.org/10.1142/S0219749909004839
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1016/0034-4877(76)90060-4
http://dx.doi.org/10.1103/PhysRevA.86.042115
http://dx.doi.org/10.1103/PhysRevLett.106.090401
http://dx.doi.org/10.1103/PhysRevLett.106.090401
http://michaelnielsen.org/blog/talks/2002/maj/book.ps
http://michaelnielsen.org/blog/talks/2002/maj/book.ps



