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We reconsider the e®ect of indistinguishability on the reduced density operator of the internal

degrees of freedom (tracing out the spatial degrees of freedom) for a quantum system composed

of identical particles located in di®erent spatial regions. We explicitly show that if the spin
measurements are performed in disjoint spatial regions then there are no constraints on the

structure of the reduced state of the system. This implies that the statistics of identical particles

has no role from the point of view of separability and entanglement when the measurements are
spatially separated. We extend the treatment to the case of n particles and show the connection

with some recent criteria for separability based on subalgebras of observables.
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1. Introduction

Since the early days of quantum mechanics, it has been realized that indistinguish-

ability of quantum particles is a fundamental feature of the theory and has important

consequences for the interpretation of physical phenomena.1 From the point of view

of the present research activity, it is worth noticing that novel applications in the

context of quantum technologies such as sub-shot-noise quantum metrology2,3 rely

on the consequences of the symmetrization postulate of quantum mechanics and on

the role of a fundamental resource as quantum entanglement.4,5 The latest is a direct

consequence of linearity (superposition principle) in tensor product Hilbert spaces.

Due to its importance, both for the comprehension of the foundations of quantum

mechanics and for experimental applications, the study of the relation between

correlations and the properties of identical particles has attracted a lot of attention in

recent years.

A careful de¯nition of entanglement criteria for the state vector of a system of

identical particles is necessary and can be based on the properties of the Schmidt

eigenvalues and on the evaluation of the von Neumann entropy of the single-party

reduced density operators.6,7 Recent results stress the fact that one should also

consider the measurement prescription used in the experiment.8 The concepts of

separability has been extended to the case of identical particles also in terms of

commuting algebras of observables9 ensuring the entanglement detection through a

partial transposition criterion.10 Moreover, the use of representation theory of the

symmetry group can lead to distinguish the entanglement of pure states using a

proper generalization of the notion of Schmidt rank.11 Finally, an approach through

the Gelfand–Naimark–Segal construction12 has been recently proposed in Ref. 13

based on the use of the general idea of the restriction of states to subalgebras.

As a matter of fact, this intense research activity shows that the problem still

deserves attention, and further analysis is essential in order to be completely clari¯ed.

In this paper, we will investigate the properties of states of indistinguishable parti-

cles. In particular, we will elaborate on an idea introduced by Peres14 and related to

the notion of cluster separability. By an explicit calculation (after tracing out the

spatial degrees of freedom), we will show that the condition of spatial separation

(described in terms of disjoint domains of projection operators) makes the role of

indistinguishability completely ine®ective on the structure of the reduced density

operator. This condition has been already recognized as the natural request in order

to recover the distinguishability of identical particles in experiments with fermions

and bosons.15,16 As a consequence, the standard paradigm of Alice and Bob, largely

used in the context of quantum communication and quantum information processing,

is still valid in the presence of identical particles. We will also extend this analysis to

the case of n identical particles.

The paper is organized as follows. In Sec. 2, we will brie°y review some funda-

mental notions and the formalism for describing indistinguishable particles. In Sec. 3,

we will show how the partial trace over the spatial degrees of freedom and the
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hypothesis of spatial separation among the spin measurements allows to treat the

reduced state independently of the particle statistics. We will consider both the case

of two or more indistinguishable particles. Section 4 is devoted to some considerations

on symmetry. In Sec. 5, we will frame our results in terms of algebras of observables.

Finally, in Sec. 6, we will draw some conclusions.

2. Indistinguishable Particles

In order to set the notation, we brie°y review the basic concepts and the formalism

for describing identical quantum particles.

Let us consider a quantum system composed of n particles with spins s1; s2; . . . ; sn.

Pure states of the whole system are associated to unit vectors in the Hilbert space

Htotal ¼ H1 � � � � �Hn; ð1Þ
a tensor product of single particle Hilbert spaces Hk, with k ¼ 1; . . . ;n. Any particle

has two relevant sets of degrees of freedom related to its spin and its position in space.

Then, the Hilbert spaceHk describing the state of the kth particle is itself the product

of a spin space hk and a spatial space lk:

Hk ¼ lk � hk: ð2Þ
If the kth particle has spin sk and is localized in a region �k � R3, then hk ¼ C2skþ1 is

a 2sk þ 1 dimensional complex vector space and lk ¼ L2ð�kÞ is the space of square

integrable functions on �k. A pure state of the system is therefore described by a

normalized wave function �ðx1; �1; . . . ;xn; �nÞ, with xk 2 �k and �k ¼ �sk;�skþ
1; . . . ; sk.

Now let us focus on systems composed of particles of identical nature. According

to the previous setting, for a system of n identical particles (same mass m and spin s)

we have to consider the n-fold tensor product of identical one-particle Hilbert spaces

Htotal ¼ H�n ¼ ðl� hÞ�n; ð3Þ
with h ¼ C2sþ1 and, in general, l ¼ L2ðR3Þ. By indistinguishability, we mean that

any property of the composite system has to be invariant under a relabeling of the

particles. Such indistinguishability of the quantum particles implies a strong limi-

tation on the possible states of the system: the admissible vectors belong to a proper

subspace of Htotal. Indeed, let us consider the action of the symmetric group Sn on

Htotal

W��ðx1; �1; . . . ;xn; �nÞ ¼ �ðx�ð1Þ; ��ð1Þ; . . . ;x�ðnÞ; ��ðnÞÞ; � 2 Sn: ð4Þ
Such W�'s provide a unitary representation of Sn in Hn in the sense that:

W�W� ¼ W�� and W †
� ¼ W �1

� ¼ W��1 ; 8�; � 2 Sn: ð5Þ
A relabeling of the n particles according to � 2 Sn transforms the state of the system

� 7! W�� according to Eq. (4). It turns out that, for n identical particles, all
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unitaries W�'s must leave the state � unchanged apart from a constant, W�� ¼ ��,

and in R3 there are only two possible values � ¼ �1 that are consistent with the

linearity of quantum mechanics.1 The vector states describing n identical bosons

belong to the symmetric subspace

H�n ¼ f� 2 H�n : W�� ¼ �; 8� 2 Sng; ð6Þ
while those describing n identical fermions belong to the antisymmetric subspace

H^n ¼ f� 2 H�n : W�� ¼ sgnð�Þ�; 8� 2 Sng: ð7Þ

Notice that the orthogonal projections12

�þ ¼ 1

n!

X
�2Sn

W� and �� ¼ 1

n!

X
�2Sn

sgnð�ÞW� ð8Þ

map onto the above subspaces:

H�n ¼ �þHtotal and H^n ¼ ��Htotal: ð9Þ
Finally, let us spend a few words on the appropriate algebra of observables of a

system of n identical particles. The outcomes of a measurement of an n-particle state

� have to be invariant with respect to any permutation on the state W��W
†
� . This

condition imposes that not all operators in BðH�nÞ (the algebra of all bounded

operators acting on H�n) are appropriate observables of the system. To be more

precise, the above requirement imposes that for identical particles, an observable X

must lie in the subalgebra of the exchangeable operators:

X ¼ W�XW †
� : ð10Þ

A one-particle operator A 2 BðHÞ is lifted in a natural way to an observable of n

identical particles by taking into account condition (10). Such a lift is provided by the

map (second-quantization functor) d� : BðHÞ 7! BðH�nÞ, whose action is12

d�ðAÞ ¼ A� I� � � � � Iþ I� A� � � � � Iþ � � � þ I� � � � � I� A; ð11Þ
where I is the identity operator on H. It is easy to see that the symmetric and

antisymmetric subspaces are left invariant by the operator d�ðAÞ.
More generally, the second quantization functor acts in a natural way on any

k-particle operator, with k � n. In this paper we will make use only of the second

quantization of n-particle operators whose explicit expression is

d�ðA1 � A2 � � � � �AnÞ ¼
X
�2Sn

A�ð1Þ � A�ð2Þ � � � � � A�ðnÞ: ð12Þ

As a particular case, consider

�spatial ¼ d�ððP1 � IÞ � � � � ðPn � IÞÞ; ð13Þ

F. D. Cunden et al.

1461001-4



where the Pi's act on the spatial space l, while the identity operators act on the spin

space h. It is easy to verify by inspection that �spatial is a projection operator provided

that the Pi's are orthogonal projections PiPj ¼ �ijPi.

3. Partial Trace of the Spatial Degrees of Freedom

In this section, we will show that it is possible to obtain a separable state from a

global state describing a system of identical particles under very natural hypotheses.

In particular, we will see that it is su±cient to consider projections for the spatial

degrees of freedom with disjoint domains (i.e., spatially separated particles) and

perform a partial trace in order to obtain a separable quantum state in the spin

degrees of freedom. In order to make a ¯rst acquaintance with this problem, we ¯rst

analyze the case of a system composed by two particles.15,16

Let us recall Peres' approach to the analysis of entanglement of identical parti-

cles,14 based on the notion of cluster separability. Consider two states jui and jvi in
H. We will say that state jvi is remote with respect to jui if jjAvjj is vanishingly small

for any operator A with support in a spatial neighborhood of jui. It follows that any
matrix element of A involving jvi is vanishingly small. Let us consider a state of two

identical particles

j�i ¼ ðjui � jvi � jvi � juiÞ=
ffiffiffi
2

p
; ð14Þ

where the orthogonal states jui and jvi describe two particles that are far apart. The

state of the pair is entangled but this entanglement has no e®ect if we focus on

localized observables. Suppose that the one-particle operator A 2 BðHÞ is nonvan-

ishing in a neighborhood of jui. As a consequence jjAvjj is vanishingly small and then

its lifting d�ðAÞ ¼ A� Iþ I� A yields

h�jd�ðAÞj�i ¼ hujAjui; ð15Þ

because the terms involving jvi will vanish. It is now clear that the require-

ment of spatial separation is the key ingredient underlying the notion of cluster

separability.

Let us elaborate on this and focus on a system of two identical particles that have

both spatial and spin degrees of freedom. As stated in Sec. 2, the one-particle Hilbert

space is

H ¼ l� h ¼ L2ðR3Þ � C
2sþ1; ð16Þ

while the Hilbert space for a system of two bosons (fermions) is H�2 (H^2).
Since we are not dealing with product spaces, we will start from the very de¯nition

of the reduced state �spin (of the spin degrees of freedom):

trð�spinA�BÞ ¼ trf�d�ððP �AÞ � ðQ�BÞÞg; 8A;B 2 BðhÞ; ð17Þ

Spatial separation and entanglement of identical particles
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where � is a generic state in H�2 (or H^2), A, B are two observables acting on spins

and P, Q are projections onto the spatial regions �1 and �2 of R
3, where the two spin

measurements are respectively performed. Notice that the reduced state will in

general depend on the choice of the projections P and Q.

The right-hand side of Eq. (17) is the sum of two terms

trf�d�ððP �AÞ � ðQ�BÞÞg
¼ trf�ðP � AÞ � ðQ�BÞg þ trf�ðQ�BÞ � ðP � AÞg: ð18Þ

The ¯rst term can be recast in the form

trf�ðP � AÞ � ðQ�BÞg ¼ trfðP � IÞ � ðQ� IÞ�ðP � AÞ � ðQ�BÞg ð19Þ
and analogously for the second.

Let us consider a pure state � ¼ j ih j with

 ¼ 1ffiffiffi
2

p ½ðf � �Þ � ðg� �Þ � ðg� �Þ � ðf � �Þ�; ð20Þ

where �, � represent one-particle spin states and f , g are one-particle spatial wave-

functions such that Pf ¼ f and Qg ¼ g.

Here we suppose that the two spin measurements are located in disjoint regions of

the space, �1 \ �2 ¼ ; so that PQ ¼ 0. This is in agreement with the standard

setting of quantum communication, where Alice and Bob are spatially separated,

whence the wavefunction f vanishes outside �1 and, similarly, g is zero outside �2.

Plugging this state into Eq. (18) we obtain

tr �d�ððP �AÞ � ðQ�BÞÞf g ¼ 1

2
trfðj�ih�j � j�ih�jÞðA�BÞg

þ 1

2
trfðj�ih�j � j�ih�jÞðB� AÞg

¼ trfðj�ih�j � j�ih�jÞðA�BÞg: ð21Þ
Therefore, from de¯nition (17) one ¯nally gets

�spin ¼ j�ih�j � j�ih�j; ð22Þ
a pure separable state of the two spins.

In the same way we can start from a generic symmetric or antisymmetric state

(we do not care about normalization)

 ¼ 1ffiffiffiffiffiffiffi
2N

p
XN
i¼1

ðfi � �iÞ � ðgi � �iÞ � ðgi � �iÞ � ðfi � �iÞ½ � ð23Þ

and obtain the reduced state

�spin ¼ 1

N

X
i;j

ðhfijfjihgijgjiÞj�iih�jj � j�iih�jj; ð24Þ

which is, in general, mixed and entangled.
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We conclude that the structure of �spin is not constrained to satisfy any particular

symmetry and it is a generic state of two distinguishable spins in C2sþ1 � C2sþ1.

Therefore, the reduced state has no memory of the antisymmetric or symmetric

structure of the initial state (where also the spatial degrees of freedom are considered)

as long as the spin measurements are spatially separated.15 Under this assumption

and considering the spin degrees of freedom, the de¯nition of entanglement for

identical indistinguishable particles is not di®erent from the case of distinguishable

particles. Of course, if the particles are localized in the same region, PQ 6¼ 0, these

results are no longer true.

These results can be put in Peres' framework described at the beginning

of this Section. Indeed, let us consider the state (20) of two localized identical

particles (bosons or fermions) with suppf � �1, supp g � �2, and �1 \ �2 ¼ ;.
The projection operators P and Q onto �1 and �2, respectively, are mutually or-

thogonal PQ ¼ 0. In terms of the above notations, state g� � is remote (in the sense

previously de¯ned) with respect to state f � � and then, for any operator A 2
BðC2sþ1Þ we have

h�jd�ðP � A�Q� IÞj�i ¼ hf � �jI� Ajf � �i: ð25Þ

Therefore, any question about the statistics of the pair is immaterial at the level

of the internal (spin) degrees of freedom provided the two systems are spatially

separated.

The same result can be generalized to a system of n identical particles. Indeed we

can take a state � belonging to H�n for bosons or to H^n for fermions and trace over

the spatial degrees of freedom in the way we did for two particles. This means that we

have to consider n projections P1; . . . ;Pn projecting onto disjoint spatial regions

�1; . . . ;�n, corresponding to n spatially separated spin experiments. Thus,

tr �spin
On
i¼1

Ai

 !
¼ tr �d�

On
i¼1

Pi �Ai

 !( )
: ð26Þ

Again we suppose that � is a pure state � ¼ j ih j with

 ¼ 1ffiffiffiffiffi
n!

p
X
�2Sn

	�
On
i¼1

ðf�ðiÞ � ��ðiÞÞ; ð27Þ

where 	� ¼ 1 for bosons and 	� ¼ sgnð�Þ for fermions. This leads to

tr �d�
On
i¼1

Pi �Ai

 !( )
¼
X
�2Sn

tr
On
i¼1

ðP�ðiÞ � IÞj ih jðP�ðiÞ � A�ðiÞÞ
( )

¼ 1

n!

X
�2Sn

tr
On
i¼1

ðjf�ðiÞ � ��ðiÞihf�ðiÞ � ��ðiÞjA�ðiÞÞ
( )

; ð28Þ
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so that

�spin ¼
On
i¼1

j�iih�ij: ð29Þ

Whence one arrives to the same conclusion as for two indistinguishable particles.

4. Some Considerations

The aim of this section is to better clarify the interplay between indistinguishability

of the global wavefunction and entanglement of local states. Recall that the one-

particle Hilbert space is a product H ¼ l� h, where h is the spin space and l the

position space. In the previous section we have seen that, whenever some localization

precludes the identical particles to share the same spatial state, there is no ob-

struction on the structure of the reduced state of the internal (spin) degrees of

freedom. The spatial separation makes the reduced states insensitive to the quantum

statistics of the global state.

To be more clear, let us see what happens if the particles share the same spatial

state. Let us focus on the fermionic setting H^n. It will be useful to introduce an

orthonormal basis fj
ig
	1 of l. A state j i 2 H^n whose n factors share the same

spatial state belongs to

H 0 ¼
M


	1

ðj
i � hÞ^n ¼ l� ðh^nÞ ð30Þ

which can be considered as a proper subspace of H^n. The partial trace of a state

� 2 DðH 0Þ acting on such a space provides a reduced state with fermionic character:

trlDðH 0Þ ¼ Dðh^nÞ: ð31Þ

Note that Eq. (31) holds also if we consider the subspace, describing a symmetric

spatial wavefunction,

H 00 ¼ ðl�nÞ � ðh^nÞ; trl�nDðH 00Þ ¼ Dðh^nÞ: ð32Þ

On the other hand, if the spatial part of the state is antisymmetric, the proper

subspace

H 000 ¼ ðl^nÞ � ðh�nÞ ð33Þ

is mapped by the partial trace onto the n-fold symmetric product of h:

trl^nDðH 000Þ ¼ Dðh�nÞ: ð34Þ

The above three examples should be enough to understand that the statistics of the

global state of n identical particles can be hidden, preserved or even changed if we

focus on the local states of some very particular subspaces.

F. D. Cunden et al.
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5. Entanglement and Subalgebras of Observables

In this section, we will show that our results ¯t well in other frameworks. In particular

we will show that the main claim of the paper is consistent with recent ¯ndings

related to the de¯nition of separability in the context of identical particles.

Benatti et al.3,9,10 have given the following de¯nition of separability in terms of

commuting subalgebras of observables. Consider BðHÞ, the algebra of all bounded

operators acting on H. A pair ðA1;A2Þ of commuting unital subalgebras of BðHÞ is
de¯ned to be an algebraic bipartition of BðHÞ.

A state � on BðHÞ is de¯ned to be separable with respect to the bipartition

ðA1;A2Þ if for any operator of the form A1A2, with A1 belonging to A1 and A2

belonging to A2, we have

�ðA1A2Þ ¼
X
k

�k�kðA1Þ!kðA2Þ; with �k 	 0 and
X
k

�k ¼ 1; ð35Þ

where �k and !k are states on BðHÞ.
We will show that the requirement of spatial separation of identical particles

naturally leads to the bipartition of the algebra of bounded operators, necessary to

give a consistent de¯nition of separability. For the sake of clarity, let us consider two

fermions and the algebra of all bounded operators on H^2, with H ¼ l� h. The

subalgebra of operators concerning the spin degrees of freedom is

A ¼ fd�ðI�AÞ jA 2 BðhÞg: ð36Þ
As in Sec. 3, we take two projections P ;Q acting on the spatial space l. Let us

consider then the subalgebras of BðH^2Þ de¯ned by:

A1 ¼ fd�ððP � A1Þ � ðQ� IÞÞ jA1 2 BðhÞg; ð37Þ
A2 ¼ fd�ððP � IÞ � ðQ� A2ÞÞ jA2 2 BðhÞg: ð38Þ

The subalgebras A1;A2 are physically the local subalgebras of (36) corresponding to

spin measurements by Alice and Bob, respectively.

Our claim is that subalgebras A1 and A2 commutes if the domains of the pro-

jections P and Q do not overlap, namely

½A1;A2� ¼ 0 iff PQ ¼ QP ¼ 0: ð39Þ
Indeed, for A1;A2 2 BðhÞ:

d�ððP � A1Þ � ðQ� IÞÞ; d�ððP � IÞ � ðQ� A2ÞÞ½ �
¼ ½P �A1 �Q� IþQ� I� P � A1;P � I�Q� A2�
þ ½P � A1 �Q� IþQ� I� P �A1;Q� A2 � P � I�

¼ QP � I� PQ� A1A2 � PQ� I�QP � A2A1

þ PQ� A1A2 �QP � I�QP �A2A1 � PQ� I: ð40Þ
By inspection, this commutator vanishes for any choice of A1 and A2 if and only if

PQ ¼ 0, that is if the particles are spatially separated.

Spatial separation and entanglement of identical particles
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The projection operators P and Q onto �1 and �2, respectively, are mutually

orthogonal PQ ¼ 0. Then, the subalgebras A1 of Eq. (37), corresponds to operators

A1 in the spin space for particles localized in �1, and similarly for A2. This result is

consistent with the discussion in Sec. 3: if two systems are spatially separated, the

statistics has no e®ect at the level of the internal degrees of freedom.

6. Conclusion

We have investigated the fate of spin entanglement in the case where spin is ac-

companied with spatial degrees of freedom in describing systems of identical parti-

cles. We have explicitly shown that, when the spin measurements are performed in

disjoint spatial regions, there are no constraints on the structure of the reduced state

of the system. Therefore, any question about statistics of identical particles is im-

material at the level of the internal (spin) degrees of freedom provided the particles

are spatially separated. We have also shown the connection between our results and

some recent criteria for separability based on subalgebras of observables.
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