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Via Orabona 4, Bari I-70125, Italy

Paolo Facchi∗

Dipartimento di Fisica and MECENAS
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We present here a set of lecture notes on quantum systems with time-dependent bound-
aries. In particular, we analyze the dynamics of a non-relativistic particle in a bounded
domain of physical space, when the boundaries are moving or changing. In all cases,
unitarity is preserved and the change of boundaries does not introduce any decoherence
in the system.
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1. Introduction

We present here the notes of three lectures given by one of us at the International
Workshop on Mathematical Structures in Quantum Physics, held in February 2014
in Bangalore at the Center for High Energy Physics, Indian Institute of Science.
The course considers some aspects of quantum systems with time-dependent bound-
aries, a very active area both from the mathematical point of view, see for instance
the works of Yajima [1, 2], Dell’Antonio et al. [3] and Posilicano et al. [4, 5], and
from a physical perspective. Notable applications arise in different fields ranging
from atoms in cavities [6, 7] to ions and atoms in magnetic traps [8], to supercon-
ducting quantum interference devices (SQUID) [9], to the dynamical Casimir effect
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in microwave cavities [10]. Moreover, the role and importance of boundary condi-
tions at a fundamental level have been stressed in an interesting series of papers,
see [11, 12] and references therein, where varying boundary conditions are viewed
as a model of space-time topology change.

These notes will be organized as follows. In the first lecture, in Sec. 2, we will
study the problem of a quantum particle moving in a one-dimensional box. In
particular we will introduce and describe the problem in a pedagogical way focusing
on the mathematical aspects of the physical model. We will try to give all the
mathematical tools needed to a deep understanding of the physics of the problem.
Moreover, at the end of the section, we will follow Berry [13] in order to show how,
quite surprisingly, even an easy spectral problem like this can lead to intricate and
rich dynamics. In the following lectures, we will look at the dynamical evolution
with time-dependent boundaries. In particular, in the second lecture, in Sec. 3, we
will discuss the case in which the walls of the bounding box are moving [14], while
in the last lecture, in Sec. 4, we will look at the problem of the change of boundary
conditions with time [15]. Finally, in Sec. 5 we will draw some conclusions.

Interspersed between the lectures we offer a selection of exercises ranging in
difficulty. They are useful to focus the attention on specific points and to test the
learning of the reader, therefore we kindly recommend not to skip them.

2. Lecture 1: A Particle in a One-Dimensional Box

One of the very first problems involving boundary conditions in quantum mechanics
is the study of a non-relativistic particle in a one-dimensional box. Indeed, it is one
of the exercises sometimes professors give to students just to test their ability.
The problem consists in a massive particle moving freely in an infinitely deep well
located, say, at I = [a, b] with b > a, from which it cannot escape (Fig. 1).

We will see that even if the problem is apparently fairly simple, it leads to
very interesting results that stress the difference between classical and quantum
mechanics. In fact, the very presence of boundaries in general tends to enhance
the quantum aspects of the system. The reason is that in quantum mechanics
the behavior at the boundary is constrained by the very structure of the theory
and in particular by unitarity. This is at variance with classical mechanics, where

Fig. 1. A particle moving in a one-dimensional box.
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the behavior at the boundary does not derive from fundamental principles, and is
usually treated phenomenologically.

From the mathematical point of view the system is described by a Hamiltonian
operator associated to the kinetic energy of the particle, namely the Laplacian,

T =
p2

2m
= − �

2

2m
d2

dx2
, (1)

acting on square integrable functions (remember that |ψ(x)|2 is a probability den-
sity!) with square integrable second (distribution) derivative on the interval I of
the box, H2(I) = {ψ ∈ L2(I) | p2ψ ∈ L2(I)}. In the mathematical literature H2(I)
is known as the second Sobolev space; it is nothing but the maximal domain of
definition of the kinetic energy operator T .

Equation (1) describes the action of T in the bulk of the box. In order to
get a well-defined dynamics, Eq. (1) should be equipped with suitable boundary
conditions, which specify the behavior of the particle at the walls. Namely, the
wave functions ψ to which we are allowed to apply T must belong to the domain

D(T ) = {ψ ∈ H2(I),with suitable boundary conditions}. (2)

The question that here arises naturally is how to choose these boundary conditions.
This marks the difference between classical and quantum mechanics: in quantum
mechanics the behavior at the boundary, encoded in the domain D(T ), derives
from basic principles. Indeed, in quantum mechanics the conservation of probability
leads to the necessity for the evolution to be represented by unitary operators. But
unitarity of the evolution is equivalent to self-adjointness of its generator, as stated
in Stone’s theorem [16]:

Theorem 1 (Stone). Let (Ut)t∈R be a strongly continuous one-parameter group
of unitaries on a Hilbert space H. Then there is a unique self-adjoint operator H
on H, called the generator of the group, such that Ut = e−iHt/� for all t.

According to Stone’s theorem the operator T , that generates the dynamics of
the particle, Ut = e−iTt/�, must be self-adjoint, i.e.

T = T † and D(T ) = D(T †). (3)

In order to find the domain D(T ) let us consider φ, ψ ∈ H2([a, b]); then a double
integration by part gives (prove it!):

−〈ψ|φ′′〉 = −
∫ b

a

ψ(x)φ′′(x)dx = −〈ψ′′|φ〉 + Λ(ψ, φ), (4)

Λ(ψ, φ) = ψ′(b)φ(b) − ψ′(a)φ(a) − ψ(b)φ′(b) + ψ(a)φ′(a). (5)

The self-adjointness requirement amounts to finding a maximal subspace D(T ) of
H2([a, b]) on which the boundary form Λ identically vanishes, namely Λ(ψ, φ) = 0
for all φ, ψ ∈ D(T ).
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The more common boundary conditions you can encounter in the literature are:

(1) Dirichlet boundary conditions:

ψ(a) = ψ(b) = 0; (6)

(2) Neumann boundary conditions, involving the derivative of the function:

ψ′(a) = ψ′(b) = 0. (7)

(Of course, the above conditions must be satisfied by both ψ and φ in the
boundary form Λ(ψ, φ)!)

Exercise 1. Check that the Dirichlet and the Neumann boundary conditions make
Λ identically vanish, and thus, modulo a check of maximality, yield a good domain
D(T ) of self-adjointness for the kinetic energy operator T .

There is a one-parameter family of boundary conditions that includes Dirichlet
and Neumann as limit cases: Robin’s boundary conditions, that connect the function
with its derivative at the boundary:

ψ′(a) = − 1
l0

tan
α

2
ψ(a),

ψ′(b) =
1
l0

tan
α

2
ψ(b),

(8)

where α ∈ (−π, π], and l0 is a reference length. From (8) we recover Dirichlet and
Neumann in the limits α→ π and α→ 0, respectively.

Notice that the choice of a domain of self-adjointness D(T ) is not just a mathe-
matical nuisance. Different domains give rise to different physics! Indeed, the choice
of boundary conditions strongly depends on the physical behavior of the walls, as
we will now show.

Let us concentrate on one wall, e.g. the left one at a = 0, and look at the
scattering process of a plane wave arriving from the left with momentum −�k < 0.
After reflection by the wall a plane wave with momentum �k will arise. See Fig. 2.

Therefore, the wave function will have the form

ψ(x) ∼ e−ikx + r eikx, (9)

where r is a reflection coefficient. Since we are dealing with an impenetrable box,
and we assume that the particle does not stick at the wall, we are forced to require

-k
k

Fig. 2. Reflection at a wall.
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that |r|2 = 1, so that the only freedom left is in choosing a phase, namely r = eiβ .
The Dirichlet boundary condition, ψ(0) = 0, corresponds to a phase β = π for all
k, while Neumann corresponds to the choice β = 0 for all k. Notice that in general
the phase β(k) has a nontrivial dependence on the wave number k. The following
exercise shows that for a generic α in (8) the behavior of the walls depends on the
momentum �k of the impinging particle through a nontrivial phase β(k).

Exercise 2. Prove that Robin’s boundary condition ψ′(0) = − 1
l0

tan α
2 ψ(0) corre-

sponds to a momentum dependence of the phase shift β(k) given by

tan
β(k)

2
=

1
k l0

tan
α

2
. (10)

Recover, as a limit, Dirichlet and Neumann, and show that they are the only phases
independent of k.

The general theory of self-adjoint extensions and boundary conditions [17]
asserts that all possible boundary conditions that make T self-adjoint can be
parametrized by 2 × 2 unitary matrices U in the following way:

i(I + U)Ψ′ = (I − U)Ψ, U ∈ U(2), (11)

where

Ψ :=
(
ψ(a)
ψ(b)

)
, Ψ′ := l0

(
−ψ′(a)
ψ′(b)

)
, (12)

and I is the identity matrix.

Exercise 3. Check that if ψ and φ satisfy (11)–(12) for the same unitary U , then
the boundary form (5) vanishes, Λ(ψ, φ) = 0.

Robin’s boundary conditions (8) correspond to (prove it!):

U = e−iαI =
(

e−iα 0
0 e−iα

)
, (13)

and in particular the Dirichlet boundary conditions correspond to U = −I, while
the Neumann ones are given by U = I. More generally, by taking

U =
(

e−iα1 0
0 e−iα2

)
, (14)

with α1, α2 ∈ (−π, π] we can describe different boundary conditions at the two
endpoints, e.g. Dirichlet/Neumann (α1 = π, α2 = 0), and include all cases consid-
ered above, when α1 = α2. But, of course the unitaries (14) do not exhaust all
allowed boundary conditions, since they form only a two-dimensional submanifold
U(1)×U(1) of the total four-dimensional manifold U(2). Thus, where do all missing
boundary conditions come from?

Up to now we have considered only local boundary conditions, somewhat
deceived by the physics depicted in Fig. 2: the two walls did not talk to each other.

1560003-5



June 17, 2015 7:49 WSPC/S0219-8878 IJGMMP-J043 1560003

S. Di Martino & P. Facchi

Fig. 3. Change of topology: from an interval to a circle.

Indeed, the unitary matrices in (14) are diagonal and do not mix the boundary
values at a with those at b; we missed all nondiagonal unitaries, describing nonlocal
boundary conditions. Mathematics tells us that unitarity allows also for them. So
what physics do they describe, if any?

In fact, nondiagonal unitaries are describing a physical situation which is dif-
ferent from that of a box with two walls far apart. In order to interact, the two
ends of the interval should come close, as in Fig. 3, so that the interval should be
bent and the two walls should become the two sides of a junction. In other words,
by changing from a diagonal U to a nondiagonal U we are assisting at a change of
topology: from an interval to a circle.

Therefore, the geometry that is able to support all possible boundary conditions
in U(2) is that of a ring with a junction. If the junction is impermeable, i.e. there is
total reflection at the walls, we are back to the interval, otherwise there is nonzero
transmission across the junction, from one wall to the other. An interesting example
is given by the matrix

U =
(

0 e−iα

eiα 0

)
= cosασx + sinασy, (15)

which describes pseudo-periodic boundary conditions (prove it!):

ψ(b) = eiα ψ(a), ψ′(b) = eiα ψ′(a). (16)

By passing through the junction, the wave function acquires a phase α. If α = 0
we get the famous periodic boundary conditions, and the geometry is that of a
circle; if α = π we get antiperiodic boundary conditions. The phase α encodes the
properties of the junction, for example the material it is made of, or its width.

In general, if the unitary U has no −1 eigenvalues, the wave function ψ can
assume any value at the endpoints of the interval. Only the boundary values of its
derivative are constrained in some way. On the other hand, one eigenvalue equal to
−1 corresponds to one constraint on the values of ψ at the ends, as for example in the
first equation in (16). Finally, two −1 eigenvalues, i.e. U = −I, correspond to two
constraints on the boundary values of the wave function, i.e. Dirichlet at both ends.
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Exercise 4. Prove that the unitary (15) has always an eigenvalue equal to −1.
Find its corresponding eigenvector ξ and show that the first equation in (16) is
nothing but an orthogonality condition 〈ξ|Ψ〉 = 0. (In Lecture 3 we come back to
the geometrical meaning of this condition.)

2.1. Hard walls

Let us concentrate now on the textbook case of a particle confined in an infinitely
deep well, Fig. 1. The appropriate boundary conditions are Dirichlet’s: ψ(a) =
ψ(b) = 0. The dynamics of the particle is described by the Schrödinger equation

i�
∂ψ(x, t)
∂t

= − �
2

2m
∂2ψ(x, t)
∂x2

. (17)

A separation of variables, ψ(x, t) = u(x) exp(−iEt/�), reduces the problem to the
solution of the spatial part of the differential equation, that means to find eigen-
vectors and eigenvalues of the operator T :

− �
2

2m
u′′(x) = E u(x). (18)

The general solution is

u(x) = c1 e+ikx + c2 e−ikx, (19)

with k =
√

2mE/� (in principle k can be imaginary, but see below), and c1 and c2
are arbitrary constants that can be fixed (up to a common phase) by imposing the
Dirichlet boundary conditions,

u(a) = c1 eika + c2 e−ika = 0, (20)

u(b) = c1 eikb + c2 e−ikb = 0, (21)

and normalization

〈u|u〉 = 1. (22)

Exercise 5. Prove that the normalized eigenfunctions of T , with the Dirichlet
boundary conditions, are

un(x) =

√
2
l

sin
(nπ
l

(x− a)
)
, (23)

where l = b− a, and that the eigenvalues, giving the permitted energy levels are

En =
�

2

2m
n2π2

l2
, (24)

for n = 1, 2, . . . . See Fig. 4.
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n=1

n=4

n=3

n=2

Fig. 4. The eigenfunctions (solid lines) of the operator T in the box at different levels of energy
(dashed lines).

Remark 1. Equation (24) tells us two important things on the bound states of
the particle:

(1) the energies are quantized;
(2) the energy is always strictly positive.

The strictly positivity of the energy is a property of the Dirichlet boundary
conditions. Indeed, with the Neumann ones the energy of the ground state is 0,
and, more surprisingly, it is even negative with Robin’s boundary conditions!

Exercise 6. Prove that the ground state of T , with the Neumann boundary con-
ditions is

v0(x) =

√
1
l
, (25)

and has zero energy, E0 = 0. Then, look at the eigenvalue problem with Robin’s
boundary conditions (8).

2.2. Fractals in a box

The textbook exercise of the quantum particle in a box inevitably ends with the
evaluation of the eigenvalues (24) and the eigenfunctions (23). The result is so simple
and intelligible that we all felt a profound satisfaction when we derived it in our first
course of quantum mechanics. The simplicity of the spectrum is deceptive and leads
us to think that we fully understand the physical problem. In particular, we are
convinced that the dynamics, which is the solution to the Schrödinger equation (17),
must surely be as much simpler. In fact, this belief is false, as showed by Berry [13]:
the dynamics is instead very intricate.
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Let us assume at time t = 0 that ψ(x, 0) = v0(x), with v0 given by (25). This
is the simplest conceivable initial condition, corresponding to a flat probability in
the box [a, b], with l = b− a. We are interested in the time evolution of this initial
wave function. Its L2-expansion in terms of the eigenfunctions (23) of T reads

v0(x) =
∞∑

n=1

cnun(x), (26)

where cn = 〈un|v0〉.

Exercise 7. Show that

cn =
√

2
nπ

[1 − (−1)n], (27)

and, in particular, c2n = 0, for all n = 1, 2, . . . .

In the same way the quantum evolution, described by the action of the unitary
operator U(t) = e−iTt/�, can be written as an L2-convergent series

ψ(x, t) =
(
e−iTt/�v0

)
(x) =

+∞∑
n=1

cn e−iEnt/�un(x). (28)

We can now use the explicit expressions (23)–(24) and obtain

ψ(x, t) =

√
2
l

+∞∑
n=1

cn sin
(nπ
l

(x − a)
)

exp
(
− i�

2m
n2π2t

l2

)
. (29)

In terms of the dimensionless variables ξ = l−1(x − (a + b)/2) ∈ [−1/2, 1/2], and
τ = 2π t �/ml2 ∈ R, it reads

ϑ(ξ, τ) =

√
2
l

+∞∑
k=0

c2k+1 sin
[
2π
(
ξ +

1
2

)(
k +

1
2

)]
exp

[
−iπτ

(
k +

1
2

)2
]
. (30)

By writing the sine as the sum of exponentials and by making use of the expres-
sion (27), we finally get

ϑ(ξ, τ) =
+∞∑

n=−∞
dnei2πξ(n+ 1

2 )−iπτ(n+ 1
2 )

2

, ξ ∈
[
−1

2
,
1
2

]
, (31)

(notice that now the sum runs over all n ∈ Z).

Exercise 8. Derive Eq. (31) and show that

dn =
1
π
√
l

(−1)n

n+ 1
2

, n ∈ Z. (32)

If we take a closer look at the expression (31) we notice that it is a Fourier
series with quadratic phases. This series is the boundary value of a Jacobi theta
function [18], which is defined in the lower complex half-plane of τ , and it has a
very rich structure investigated at length by mathematicians. For a full immersion
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in its deep arithmetic properties see the charming “Tata Lectures on Theta” by
Mumford [19]. A simple property is its quasi-periodicity in the rescaled time τ

(check it!):

ϑ(ξ, τ + 1) = e−iπ/4 ϑ(ξ, τ). (33)

Thus at integer times τ the wave function comes back (up to a phase) to its initial
flat form (25): these are the quantum revivals. More generally, at rational values of
τ the graph of |ϑ(ξ, τ)|2 is piecewise constant and there is a partial reconstruction
of the initial wave function [20], see Fig. 5. On the other hand, at irrational times,
the wave function is a fractal, with Hausdorff dimension DH = 3/2, as shown in

τ = 8/13 τ = 13/21

τ = 21/34 τ = 34/55

τ = 144/233

τ = 0 τ = 1/2

τ = φ

Fig. 5. Graphs of |ϑ(ξ, τ)|2 vs. ξ at different rational times τ along the Fibonacci sequence tending
to the golden mean, φ = (1 +

√
5)/2. See the emergence of a fractal structure.
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the last panel of Fig. 5. In fact, ϑ(ξ, τ) can be proved to be a fractal function in
space and time, and to form a beautifully intricate quantum carpet, with different
Hausdorff dimensions along different space-time directions [21].

3. Lecture 2: Moving Walls!

In this lecture we will try to answer the following question: What happens if the
walls of our box start moving? Which equation will describe the quantum dynamics
of the bouncing particle?

The classical version of this problem was introduced by Fermi [22] in 1949,
and then investigated by Ulam [23]. It is convenient to parametrize the confining
interval as

Il,d =
[
d− l

2
, d+

l

2

]
, (34)

so that l > 0 is the width of the box and d ∈ R its center. We will suppose that
l and d are regular functions of time, t �→ l(t) and t �→ d(t), with l(t) > l0 > 0
so that the interval never shrinks to a point. From now on we will often omit the
dependence on t.

As we did in the case of still walls, we analyze the dynamics described by the
Schrödinger equation

i�
d
dt
ψ(t) =

p2

2m
ψ(t), (35)

where the domain of p2 is

Dl,d =
{
ψ ∈ H2(Il,d), ψ

(
d− l

2

)
= ψ

(
d+

l

2

)
= 0
}
, (36)

(Dirichlet’s boundary conditions). Notice that this domain depends on time, so that
at different times we work on different spaces. This means that the time derivative,

d
dt
ψ(t) = lim

ε→0

ψ(t+ ε) − ψ(t)
ε

, (37)

involves the sum of vectors belonging to different Hilbert spaces, since in general
Dl(t),d(t) �= Dl(t+ε),d(t+ε). Therefore, we need to take more care in the formulation
of the problem and in the interpretation of Eq. (35).

The correct formulation of the problem can be accomplished by embedding the
space of square integrable functions on the interval, L2(Il,d), in the larger Hilbert
space L2(R) on the real line:

L2(R) = L2(Il,d) ⊕ L2(Ic
l,d), (38)

where Xc = R\X denotes the complement of the set X . Thus, every wave function
ψ ∈ L2(R) can be written as a sum ψ = χ+φ, where χ ∈ L2(Il,d) and φ ∈ L2(Ic

l,d).
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Following this strategy the Hamiltonian of the system, representing the kinetic
energy of the particle in the box, in the containing space reads:

H0(l, d) =
p2

l,d

2m
= − �

2

2m
d2

dx2
⊕l,d 0, (39)

equipped with the Dirichlet boundary conditions. Notice that the choice of the
Hamiltonian to be 0 in the component L2(Ic

l,d), i.e. outside the box, is completely
arbitrary and immaterial, since we will be interested in the dynamics inside the
box, for a particle with initial (and evolved) wave function with φ = 0. Moreover,
it is worth noticing that even if the Hamiltonian in Eq. (35) appeared to be time-
independent, the direct sum decomposition in (39), in the case of moving walls,
makes its time dependence clear. Indeed, the direct sum in Eq. (38) depends on
time through the functions l and d. In other words, the restriction to the interval
somehow concealed the time dependence of the Hamiltonian, which becomes evident
once one enlarges the space. Therefore, the Schrödinger equation we are dealing with
has a time-dependent Hamiltonian on a time-dependent domain.

3.1. Reduce and conquer

The attack strategy that we will follow is to find a unitarily equivalent prob-
lem where the Schrödinger operators act on a common fixed domain of self-
adjointness [14]. Let us consider the transformation

U(l, d) : L2(R) → L2(R), (40)

that acts as

(U(l, d)ψ)(ξ) =
√

l

l0
ψ

(
l

l0
ξ + d

)
, (41)

where l0 > 0 is a reference length.

Exercise 9. Prove that the transformation U(l, d) is unitary and maps the interval
Il,d onto the reference interval

I = Il0,0 =
[
− l0

2
,
l0
2

]
. (42)

In fact, U(l, d) can be rewritten as a composition of two transformations

U(l, d) = D
(

ln
l

l0

)†
T (d)† = D

(
−ln

l

l0

)
T (−d), (43)

where

(T (d)ψ)(x) = ψ(x− d), (D(s)ψ)(x) = e−s/2ψ(e−sx), (44)

are two (strongly continuous) one-parameter unitary groups implementing the
translations and dilations on L2(R), see Fig. 6.
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d

d − l

2
d +

l

2

Translation

d

d − l

2
d +

l

2

− l

2
+

l

2

0

Dilation

− l

2
+

l

2

0

− l0
2

+
l0
2

Fig. 6. The effect of the transformation on the box can be described as the composition of a
translation and a dilation.

Exercise 10. Prove the decomposition (43).

Now notice that the domain (36) is mapped onto the fixed domain D =
U(l, d)Dl,d:

D =
{
φ ∈ H2(I), φ

(
− l0

2

)
= φ

(
l0
2

)
= 0
}

⊂ L2(I), (45)

describing the Dirichlet boundary conditions in a fixed box I, and the Hamilto-
nian (39) is mapped into

H(l) = UH0U
† =

(
l0
l

)2
p2

2m
⊕ 0 = −

(
l0
l

)2
�

2

2m
d2

dx2
⊕ 0. (46)

Exercise 11. Prove that the unitary transformation U(l, d) yields constant bound-
ary conditions only when the latter do not mix the wave function with its derivative.

Henceforth we will denote the wave functions in the frame with moving and
fixed walls by ψ(x) with x ∈ Il,d and by φ(ξ) with ξ ∈ I, respectively. By deriving
the relation

φ(t) = U(l(t), d(t))ψ(t), (47)

1560003-13



June 17, 2015 7:49 WSPC/S0219-8878 IJGMMP-J043 1560003

S. Di Martino & P. Facchi

we get the Schrödinger equation in the fixed reference frame from the one in the
frame with moving walls:

i�
d
dt
φ = i�

(
U(l, d)ψ̇ + U̇(l, d)ψ

)
=
(
U(l, d)H0(l, d) + i�U̇(l, d)

)
ψ

=
(
U(l, d)H0(l, d)U †(l, d) + i� U̇(l, d)U †(l, d)

)
U(l, d)ψ. (48)

Notice that now the Schrödinger operator contains not only the transformed Hamil-
tonian H(l), but also an additional geometrical term

K(l, d) = i�U̇(l, d)U †(l, d). (49)

Let us compute this geometric contribution step-by-step. First of all the action
of U̇ = dU(l(t), d(t))/dt on a test function ψ:(

dU
dt
ψ

)
(ξ) =

d
dt

(√
l

l0
ψ

(
l

l0
ξ + d

))

=
l̇

2
√
l0l
ψ

(
l

l0
ξ + d

)
+
√

l

l0

(
l̇

l0
ξ + ḋ

)
ψ′
(
l

l0
ξ + d

)
. (50)

Then, since

(U †(l, d)φ)(x) = (T (d)D(ln l/l0)φ)(x) =

√
l0
l
φ

(
l0
l
(x− d)

)
, (51)

we have

i�
dU
dt
U †φ(ξ) = i

�

2
l̇

l
φ(ξ) + i�

(
l̇

l
ξ +

l0
l
ḋ

)
φ′(ξ), (52)

that is

i�
dU
dt
U † = − l̇

l

(
xp− i

�

2

)
− l0

l
ḋ p, (53)

with x and p the position and momentum operators. Thus, the geometric generator
of the unitary transformation reads

K(l, d) = i�
dU
dt
U † = − l̇

l
x ◦ p− l0

l
ḋ p, (54)

where A◦B = (AB+BA)/2 is the symmetrized (Jordan) product of the operators
A and B, and the canonical commutation relation [x, p] = i� has been used.

Exercise 12. Show that the generator of the translation group T (d) in (44) is the
momentum operator p, while the generator of the dilation group D(s) is the virial
operator x ◦ p. As a consequence, by using the decomposition (43) shows that

U(l, d) = exp
(

i
�

ln
(
l

l0

)
x ◦ p

)
exp
(

i
�
d p

)
, (55)

which yields (54).
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Summing up, we finally come to the Schrödinger equation in the reference frame
with fixed walls [14]:

i�
d
dt
φ = (H(l) +K(l, d))φ =

(
1
l2
p2

2m
− l̇

l
x ◦ p− l0

l
ḋ p

)
φ. (56)

Let us now make some considerations about this equation and its solution. We
need a definition and a theorem [16].

Let T and A be two operators on a Hilbert space H, such that D(T ) ⊂ D(A).
A is said to be relatively bounded with respect to T or simply T -bounded, if there
exist two non-negative constants a and b such that:

‖Aψ‖ ≤ a‖ψ‖ + b‖Tψ‖, ∀ψ ∈ D(T ). (57)

Moreover, the infimum of the possible values of b is called the T -bound of A.

Theorem 2 (Kato–Rellich). Let T be self-adjoint and bounded from below. If A
is symmetric and T -bounded with T -bound smaller than 1, then T+A is self-adjoint
and bounded from below.

Exercise 13. Show that K(l, d) is relatively bounded with respect to H(l) with 0
relative bound.

Applying the Kato–Rellich theorem it is easy to prove that the total Hamiltonian
H(l) + K(l, d) with domain D(H(l) + K(l, d)) = D(H(l)) = D is self-adjoint.
Therefore, the Schrödinger equation in (56) is well defined for any initial condition
φ(0) ∈ D, and yields a unique unitary propagator. The proof is a corollary of
[24, Theorem X.70], since t �→ H(l(t)) + K(l(t), d(t)) is a one-parameter family
of Schrödinger operators on a common domain of self-adjointness D for any pair of
differentiable functions d(t) and l(t), with l(t) > l0, for some l0 > 0.

Exercise 14. Prove that the energy rate equation of the particle is given by

d
dt

〈φ(t)|H(l(t))φ(t)〉 = − �
2

2m

(
l0
l(t)

)3
[(

l̇(t)
l0
ξ + ḋ(t)

)
|φ′(ξ, t)|2

] l0
2

− l0
2

, (58)

where φ′(ξ, t) = ∂ξφ(ξ, t). Hint : The energy rate can be computed as

Ė(t) =
d
dt

〈φ|H(l)φ〉 =
i
�

(
〈φ|KHφ〉 − 〈KHφ|φ〉

)
+ 〈φ|Ḣφ〉, (59)

where K(l, d) is the operator in (54). Pay attention to the domains.

Exercise 15 (Rigid translation). Find the Schrödinger operator in the moving
reference frame in the case of a translation without dilation of the walls:

l̇ = 0, d(t) = d0 + vt. (60)
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3.2. An example: The accelerating box

Let us consider the case in which the box is moving with a constant acceleration g,
without dilating:

l̇ = 0, d(t) = d0 −
1
2
gt2. (61)

Since the particle is confined in a accelerating rigid box this is the problem of a
particle in a rocket, see Fig. 7. If we assume l = l0 we find:

H =
p2

2m
+ gtp, (62)

with Dirichlet boundary conditions. We can now apply the gauge (unitary) trans-
formation

G(t) : L2(I) → L2(I) : φ �→ χ = G(t)φ, (63)

with

χ(ξ) = (G(t)φ)(ξ) = e
i
� (mgξt− 1

6 mg2t3)φ(ξ), (64)

in such a way that the Hamiltonian becomes

G(t)HG†(t) =
p2

2m
− 1

2
mg2t2. (65)

Therefore, the Schrödinger equation reads

i�
d
dt
χ(t) =

(
p2

2m
−mgx

)
χ(t), (66)

describing a particle in a constant gravitational field, in agreement with the equiv-
alence principle.

Exercise 16. The eigenfunctions of the operator p2

2m −mgx belonging to the eigen-
value E are linear combinations of the two Airy functions [18]:

φ(x) = c1Ai
(
x

l
− E

mgl

)
+ c2Bi

(
x

l
− E

mgl

)
. (67)

Prove that the permitted values of energy are the solutions of:

Ai
(
−1

2
− E

mgl

)
Bi
(

1
2
− E

mgl

)
− Ai

(
1
2
− E

mgl

)
Bi
(
−1

2
− E

mgl

)
= 0, (68)

Fig. 7. The particle in an accelerating box.
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50 100 150 200 250

0.05

0.05

1= 9.86851

3=88.8266

2=39.4787 4=157.914

Fig. 8. The zeros of the function in (68) yield the permitted energy levels.

and in particular that the first four are
(
ε = E

mgl

)
, see Fig. 8:

ε1 9.86851
ε2 39.4787
ε3 88.8266
ε4 157.914

4. Lecture 3: Changing Boundary Conditions

In this lecture we will consider a somewhat different situation: we will assume
that the walls of the box are fixed, so that I = [a, b] is given, but the way the
walls interact with the quantum particle changes in time due to some physical
mechanism. That means in our model that the boundary conditions change in
time. More generally, the situation we have in mind is that depicted in Fig. 3: a ring
with a junction whose properties are time-dependent, so that all possible boundary
conditions (11) can in principle be implemented. The evolution of the particle will
be given by a Schrödinger equation with a time-dependent Hamiltonian:

i�
d
dt
ψ(t) = TU(t)ψ(t), (69)

with ψ(0) = ψ0. Here TU(t) = p2/2m on H2(I) ⊂ L2(I) with boundary condi-
tions (11), with U = U(t). Thus the Hamiltonian depends on time through its
boundary conditions U(t).

This model can be implemented in a SQUID with a tunable junction, obtained
by replacing the junction with an additional flux loop [25–27]. This can be an
experimental realization of a continuous change among different topologies [12].

We will not study this problem in full generality, but instead we will consider
the particular case of boundary conditions rapidly alternating between two values
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U and V (for example they periodically alternate between Dirichlet and Neumann):

U(t) =

{
V, 2kτ ≤ t < (2k + 1)τ,

U, (2k + 1)τ ≤ t < (2k + 2)τ,
(70)

with k = 0, 1, 2, . . . , and τ the time period [15].
In this scenario, since the Hamiltonian is constant during the period among the

changes, the Schrödinger equation (69) can be explicitly integrated (the trick is
revealed: the reason for the funny time dependence of U(t) is just this!) and at time
2Nτ we end up with

ψ(2Nτ) =
(
e−iτTU/�e−iτTV /�

)(
e−iτTU/�e−iτTV /�

)
. . .
(
e−iτTU/�e−iτTV /�

)
︸ ︷︷ ︸

N times

ψ0

=
(
e−iτTU/�e−iτTV /�

)N

ψ0. (71)

We want to study the behavior of the dynamics in the limit N → ∞, when the
time interval between the switches τ = t/N goes to zero, the number of switches
goes to infinite, while the total time of the evolution 2Nτ = 2t is kept constant.
Therefore, we are led to the study of the limit of the product formula:

lim
N→∞

(
e−itTU /N�e−itTV /N�

)N

. (72)

Exercise 17. Prove that, given two matrices A and B the Lie product formula
holds (

e−iA/Ne−iB/N
)N

→ e−iC , (73)

with C = A+B.
Hint : Use the telescopic equation

DN − EN =
N−1∑
k=0

Dk(D − E)EN−1−k, (74)

with D = e−iA/Ne−iB/N and E = e−i(A+B)/N , together with the estimates

D − E = e−iA/Ne−iB/N − e−i(A+B)/N = − 1
2N2

[A,B] +O

(
1
N3

)
. (75)

Trotter in [28] proved that Lie’s product formula (73) is still valid when applied
to (unbounded) self-adjoint operators A and B, such that their sum C = A+B is
still (essentially) self-adjoint on the intersection of their domains, D(C) = D(A) ∩
D(B).

Well, this seems to be our case: tTU/� and tTV /� are unbounded self-
adjoint operators, so the limit of the Lie–Trotter product formula (72) should be
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exp(−i(TU + TV )t/�). Now we get

TU + TV =
p2

2m
+

p2

2m
= 2

p2

2m
, (76)

on the common domain D(TU ) ∩D(TV ). Therefore,(
e−itTU /�Ne−itTV /�N

)N

→ e−i2tTW /�, (77)

when N → ∞, and we arrive at the intelligible result that rapidly alternating free
evolutions with two boundary conditions U and V yield again a free evolution,
possibly with different boundary conditions W .

Unfortunately, life is not so easy: Trotter’s theorem does not hold, because the
intersection of the domains D(TW ) = D(TU ) ∩D(TV ) is too small, being defined
by too many constraints (those of U and those of V ). For example, let us con-
sider Dirichlet, U = −I, and Neumann, V = I, boundary conditions. In this case
D(T−I)∩D(TI) = {ψ |Ψ = Ψ′ = 0} and in this domain the kinetic operator p2/2m
is symmetric but not self-adjoint! In other words, our common sense tells us that
we should get p2/2m with some boundary conditions W , but we do not know, even
heuristically, which ones, because the boundary conditions U and V fight each other
and yield too many constraints!

Math again comes to our aid: the right objects to look at are not the operators
TU and TV , but the quadratic forms associated to them, that is their expectation
values tU (ψ) = 〈ψ|TUψ〉 and tV (ψ) = 〈ψ|TV ψ〉, measuring the kinetic energy of
the particle in state ψ. The crucial fact is that the quadratic form a(ψ) = 〈ψ|Aψ〉
associated to an unbounded operator A makes sense on a domain D(a) which is
larger than the domain of A, namely D(A) ⊂ D(a). Thus the sum of two quadratic
forms a(ψ) + b(ψ) is well defined on wave functions ψ ∈ D(a) ∩D(b) for which the
operator sum A+B is not defined, since ψ /∈ D(A) ∩D(B).

The extension of Trotter’s theorem to quadratic forms reads as follows [29, 30].

Theorem 3 (Lapidus). Let a and b be the quadratic forms associated to A and
B. If A and B are self-adjoint and bounded below, and D = D(a) ∩D(b) is dense,
then Trotter’s formula (73) holds with

C = A +̇B, (78)

the unique operator associated to the quadratic form a+ b. The operator C is called
the form sum of A and B.

In our case, we will see that the domains of the quadratic forms of the kinetic
energy tU (ψ) involve only the boundary values (12) of the wave function Ψ and not
the boundary values of its derivative Ψ′. This will imply that the sum of the kinetic
energies

tW (ψ) =
tU (ψ) + tV (ψ)

2
(79)
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is always the quadratic form associated to a self-adjoint operator TW , namely

tW (ψ) = 〈ψ|TWψ〉, ψ ∈ D(TW ). (80)

For example, in the case of Dirichlet and Neumann we will see that D(t−I) =
{ψ |Ψ = 0} and D(tI) = {ψ | no bound. conds.}, so that D(t−I)∩D(tI) = {ψ |Ψ =
0} = D(t−I): alternating Dirichlet and Neumann gives Dirichlet.

Summing up, we get that the limit (77) holds with

TW =
TU +̇ TV

2
, (81)

the form sum of TU and TV .

4.1. From operators to quadratic forms

For any ψ ∈ H2(I), one integration by parts yields〈
ψ

∣∣∣∣ p2

2m
ψ

〉
= − �

2

2m

∫ b

a

ψ(x)ψ′′(x)dx

=
�

2

2m

∫ b

a

ψ′(x)ψ′(x)dx − �
2

2m

(
ψ(b)ψ′(b) − ψ(a)ψ′(a)

)

=
�

2

2m
(
‖ψ′‖2 − 〈Ψ|Ψ′〉

)
, (82)

where Ψ and Ψ′ are the two-dimensional vectors of boundary data defined in (12).

Exercise 18. Prove that Eq. (82) holds.

Notice that, at variance with our starting point, the last line of (82) involves
only the first derivative of ψ, and thus makes sense on a larger domain. Moreover,
by using the boundary conditions (11)–(12) we will trade the boundary values of the
derivative for the boundary values of the function in (82), obtaining the following
expression for the quadratic form associated to TU :

tU (ψ) =
�

2

2m
(
‖ψ′‖2 + ΓU (Ψ)

)
, (83)

with ΓU (Ψ) a quadratic form of the boundary vector Ψ.
The form tU (ψ) is well defined for any integrable function with square integrable

first (distribution) derivative, H1(I) = {ψ ∈ L2(I) | pψ ∈ L2(I)} (the first Sobolev
space). In order to get the explicit expression of ΓU and the precise domainD(tU ) we
have to distinguish among three possibilities according to the number of eigenvalues
u1 and u2 of U that are equal to −1.

(1) If both the eigenvalues of U are different from −1, such as in the case of the
Neumann boundary conditions, then (I + U) is invertible, and the boundary
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values of the derivative can be expressed in terms of the boundary values of the
function:

Ψ′ = − i
l0

I − U

I + U
Ψ. (84)

Therefore we get

ΓU (Ψ) =
i
l0

〈
Ψ
∣∣∣∣ I − U

I + U
Ψ
〉
, (85)

and D(tU ) = H1(I), with no constraints on the boundary values Ψ.
(2) If U has only one eigenvalue equal to −1, namely u1 = −1 and u2 �= −1, then,

if we call ξ the normalized eigenvector corresponding to the eigenvalue −1, and
ξ⊥ its orthogonal, from (11) we get

〈ξ|Ψ〉 = 0, 〈ξ⊥|Ψ′〉 = − i
l0

1 − u2

1 + u2
〈ξ⊥|Ψ〉. (86)

Therefore,

〈ξ|Ψ〉 = 0, ΓU (Ψ) =
i
l0

1 − u2

1 + u2
|〈ξ⊥|Ψ〉|2. (87)

Exercise 19. Prove Eqs. (86) and (87).

(3) Finally, if u1 = u2 = −1, i.e. in the case of the Dirichlet boundary conditions,
then U = −I, so that

Ψ = 0, Γ−I(Ψ) = 0. (88)

4.2. Composition law of boundary conditions

Now we can use the quadratic form (83) to evaluate the limit of the alternating
dynamics (77), according to the recipe (81). By cooking our equations we will prove
that the boundary conditions W are given by the composition law [15]:

W = U 
 V = V 
 U, (89)

where 
 is a commutative and associative product on the boundary unitary
operators.

The evaluation of the emergent boundary condition W in (89) requires the
computation of the sum of the kinetic energies (79) and the evaluation of the domain

D(tW ) = D(tU ) ∩D(tV ). (90)

Again, we distinguish various cases according to the number of eigenvalues −1:

(1) When both U and V have no eigenvalues equal to −1, we get

ΓW = (ΓU + ΓV )/2, (91)
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with no constraints on the wave function boundary values Ψ. By using the
expression (85) we obtain (prove it!):

W = U 
 V =
I − 1

2

(
I−U
I+U + I−V

I+V

)
I + 1

2

(
I−U
I+U + I−V

I+V

) . (92)

(2) If −1 is a nondegenerate eigenvalue of U , and V has no eigenvalues equal to
−1, then D(tW ) = D(tU ), with the only constraint 〈ξ|Ψ〉 = 0. Therefore, the
boundary forms ΓU and ΓV are nonzero and add up only on the orthogonal
subspace, spanned by ξ⊥. It is easy to see that

W = U 
 V = −|ξ〉〈ξ| + w2

∣∣ξ⊥〉〈ξ⊥∣∣ , (93)

where w2 is a function of u2, ξ and V .

Exercise 20. Derive Eq. (93) and find the explicit expression of w2.

(3) If −1 is a nondegenerate eigenvalue of both U and V , that is u1 = v1 = −1 and
u2, v2 �= −1, then there are two possibilities:

(a) If the eigenvectors of U and V belonging to −1 are parallel, that is U
commutes with V , thenD(tW ) = D(tU ) = D(tV ). Thus, the only constraint
is 〈ξ|Ψ〉 = 0 and W has the previous form (93).

Exercise 21. Find how w2 particularizes in this case to a function of u2 and v2.

(b) If the eigenvectors ξ of U and η of V belonging to −1 are not parallel, then
they span the whole space. The constraints 〈ξ|Ψ〉 = 0 and 〈η|Ψ〉 = 0 imply
Dirichlet’s boundary conditions Ψ = 0, so that D(tW ) = D(t−I) and

W = U 
 V = −I. (94)

(4) Finally, in the case U = −I (or V = −I) then D(tW ) = D(t−I), so that Ψ = 0
and

W = (−I) 
 U = U 
 (−I) = −I. (95)

Summing up, the emerging boundary conditions are given by the composition
law (89), where the product 
 is given by the Cayley transform (92) for U and
V with no eigenvalues −1 (i.e. free ends Ψ). On the other hand, eigenspaces with
eigenvalues −1 are absorbing for the product, that is all constraints on the wave
function boundary values Ψ are inherited by W . In particular the Dirichlet bound-
ary conditions −I play the role of an attractor (95), and when U and V have
independent constraints on Ψ, then their composition (94) is Dirichlet, i.e. Ψ = 0.
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5. Conclusions

In these lectures we have seen that sometimes examples that are apparently very
simple may conceal an unexpected rich structure. And in fact they can help us to
build and understand general schemes. Our goal was to communicate the mathema-
tical and the physical ideas in the most simple setting, without all the unnecessary
technical complications that a more realistic model inevitably has. We hope to
have hit our goal, at least partially. Moreover, we hope that the references we have
provided will stimulate the interest of the reader to go beyond these notes and to
get directly in touch with a so-active field. For instance, the generalization to higher
dimensions is nontrivial and introduce new savory ingredients, because in such a
case the Hilbert space of the boundary is infinite-dimensional. But that is another
story.
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