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Abstract – We study the joint statistics of conductance G and shot noise P in chaotic cavities
supporting a large number N of open electronic channels in the two attached leads. We determine
the full phase diagram in the (G, P )-plane, employing a Coulomb gas technique on the joint density
of transmission eigenvalues, as dictated by random matrix theory. We find that in the region of
typical fluctuations, conductance and shot noise are uncorrelated and jointly Gaussian, and away
from it they fluctuate according to a different joint rate function in each phase of the (G, P )-plane.
Different functional forms of the rate function in different regions emerge as a direct consequence
of third-order phase transitions in the associated Coulomb gas problem.

Copyright c© EPLA, 2015

Introduction. – We consider the problem of quantum
electronic transport in mesoscopic devices. The typical
setting is a cavity etched in semiconductors and connected
to the external world by two attached leads. The cav-
ity is brought out of equilibrium by an applied external
voltage. Assuming that the average electron dwell time
(spent inside the cavity) is well in excess of the Ehrenfest
time (when quantum effects kick in) at low temperatures
and applied voltage, statistical properties of the electronic
transport through a cavity exhibiting chaotic classical dy-
namics display remarkably universal features.

Random matrix theory (RMT) has provided tools and
invaluable insights to successfully describe this universal-
ity [1]. In the RMT approach, the scattering process inside
the cavity is governed by a scattering matrix S drawn at
random from the unitary group [2,3].

The two incoming leads may in general support N1 and
N2 (with N1 ≤ N2) open electronic channels, i.e. differ-
ent wave numbers of the incoming electronic plane waves.

The S matrix, having a natural block form S =
(

r t′

t r′

)

,

in terms of reflection (r, r′) and transmission (t, t′) matri-
ces, connects the incoming and outgoing electronic wave
functions. Conservation of electronic current implies that
S is unitary. Landauer-Büttiker theory [4–6] expresses
most physical observables in terms of the eigenvalues
λ = (λ1, . . . , λN1

) of the Hermitian matrix tt†. Unitarity

of S implies that 0 ≤ λi ≤ 1, ∀i. Hereafter, we will con-
sider symmetric cavities N = N1 = N2.

Important observables are the (specific, per channel)
conductance and shot noise

G =
1

N

∑

i

λi, P =
1

N

∑

i

λi(1 − λi), (1)

measured in units of the conductance quantum
G0 = 2e2/h and of P0 = 2e|∆V |G0 (with ∆V the
applied voltage), respectively. They are expressed as
linear statistics on the transmission eigenvalues. Since
the eigenvalues are λi = O(1), both G and P are intensive
quantities of order O(1). More precisely, 0 ≤ G ≤ 1 and,
since

∑

i λ2
i ≤ (

∑

i λi)2 ≤ N
∑

i λ2
i , we have the useful

geometric inequalities

0 ≤ P ≤ G(1 − G) ≤ 1/4. (2)

The upper bound is attained at G = 1/2, while the lower
bound at G = 0 or G = 1.

Assuming now that S is a random unitary matrix then
implies that the λj ’s become (correlated) random vari-
ables. What is their distribution? When the leads at-
tached to the cavity are ideal (no tunnel barriers), the
appropriate choice is to assume S uniformly distributed
in one of Dyson’s circular ensembles of random matrices,
labeled by a parameter β: S is unitary and symmetric for
β = 1 (for systems that are invariant under time-reversal),
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just unitary for β = 2 (broken time-reversal invariance)
and unitary self-dual for β = 4 (in case of anti-unitary
time-reversal invariance). In this ideal case the joint prob-
ability density function (jpdf) of transmission eigenvalues
is given [2,7,8] by the Jacobi ensemble of RMT, namely

f(λ) =
1

ZN

∏

i<j

|λi − λj |β
N
∏

i=1

λβ/2−1
i , λ ∈ [0, 1]N , (3)

where ZN is a normalization constant enforcing
´

[0,1]N dλf(λ) = 1. The random nature of λ pro-
motes conductance and shot noise to random variables
themselves, whose statistics is of paramount interest.
The average and variance of conductance and shot noise
were considered, using perturbation theory in 1/N , long
ago [2,3,9]. In particular, as N → ∞ the variance does
not scale with N , as one would naively expect, but in-
stead attains a constant value (∝ 1/β) depending only on
the symmetry class, a phenomenon that has been dubbed
universal conductance fluctuations. This value can be pre-
dicted from classical variance formulas [10]. More recently,
the classical theory of Selberg integral was employed and
extended [11–14] to address the calculation of transport
statistics non-perturbatively (i.e. for a fixed and finite
number of channels). The full distribution of G and P is
strongly non-Gaussian for few open channels, with power-
law tails at the edge of their supports and non-analytic
points in the interior [14–16]. For finite N and β = 2,
the Laplace transform of the full distribution was studied
in [17] spotting a connection with integrable systems and
Painlevé transcendents. The full distribution (including
large deviation tails) for large N was studied in [18] us-
ing a Coulomb gas technique, where an error occurring in
the asymptotic analysis in [17] was corrected. The statis-
tics of other observables was studied in [13,19–22]. The
integrable theory of quantum transport in the ideal case,
pioneered in [17] for β = 2, has been recently completed
including the other symmetry classes [23].

In this paper, we are concerned with the joint statistics
of conductance and shot noise (1) for a large number of
open channels N and in both regimes of small (typical)
and large (atypical) fluctuations. Of particular interest
are the jpdf of G and P

P(g, p) = 〈δ(g − G) δ (p − P )〉 (4)

(where 〈·〉 stands for the average with respect to the
jpdf (3)), and its Laplace transform

P̂(s, w) =
〈

e− β
2

N2(sG+wP )
〉

. (5)

As discussed above, the arsenal of sophisticated tech-
niques employed to tackle the calculation of joint
cumulants for finite N , and their leading asymptotic be-
havior for N → ∞, is truly impressive and virtually leaves
no room for improvement in terms of mathematical rigor.
In physical terms, however, it is desirable to get a more
intuitive understanding, based on simpler and more imme-
diately decipherable formulas. Here we use the physically

transparent Coulomb gas method to get (at least to our
eyes) a neater picture of the mutual relations between con-
ductance and shot noise in such systems. The obtained
formulas for the large deviation functions allow to recover
effortlessly the leading terms of the joint cumulants. Ad-
ditionally, the typical fluctuations of functions of both G
and P can be easily investigated. As an example we will
provide results on the Fano factor

F =
P

G
(6)

which is essentially the ratio of the actual shot noise and
the Poisson noise that would be measured if the system
produced noise due to single independent electrons (for
more details see the review [24]). Moreover, the full phase
diagram in the (G, P )-plane is obtained exactly and linked
to the equilibrium electrostatic properties of the associ-
ated Coulomb gas of charged particles. We begin by first
summarizing our results.

Summary of results. – In this work we show, using a
Coulomb gas technique that, for large N and any β > 0,
the Laplace transform (5) behaves as

P̂(s, w) ≈ e− β
2

N2J(s,w), (7)

where J(s, w), independent of β, is the generating function
(GF) of the joint cumulants of G and P . Henceforth, the
symbol ≈ stands for equivalence on a logarithmic scale.
From this result, large deviation theory predicts that the
jpdf of (G, P ) in (4) behaves asymptotically as

P(g, p) ≈ e− β
2

N2Ψ(g,p), (8)

where Ψ(g, p) = infs,w[J(s, w) − sx − wp] is the so-called
joint rate function. We find that J(s, w) (and correspond-
ingly Ψ(g, p)) takes five different functional forms in differ-
ent regions of the (s, w) (respectively, (g, p)) plane. This is
a direct consequence of phase transitions in the associated
Coulomb gas problem (see next section). Across the lines
of phase separation, the third derivatives of the GF (the
free energy of the associated Coulomb gas) are discontin-
uous, as is typical in this type of problems (see [25] for a
recent review). The rate function Ψ(g, p) has a global min-
imum (zero) at (g, p) = (1/2, 1/8), corresponding to the
average value of conductance and shot noise for large N ,
〈G〉 = 1/2 and 〈P 〉 = 1/8. Expanding the rate function
around this minimum, we find that the typical joint fluc-
tuations of conductance and shot noise are Gaussian, with
a diagonal covariance matrix (see eq. (25)) implying the
absence of cross-correlations to leading order. This is in
agreement with earlier findings [12,14,17,19,23,26]. How-
ever, atypical fluctuations far from the average are not
described by the Gaussian law, but rather by a different
rate function. For w = 0 (s = 0) our GF reduces to the
GF of conductance (shot noise) alone, computed in [18].
In the next section, we set up the Coulomb gas calculation.

The Coulomb gas. – The suitable tool to perform
a large dimensional analysis is the empirical density of
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transmission eigenvalues

ρ(λ) = N−1
∑

i

δ(λ − λi), (9)

a normalized random measure on the interval [0, 1]. The
first step to compute the multiple integral (5) is to realize
that it can be written as P̂(s, w) = ZN (s, w)/ZN (0, 0),
where

ZN (s, w) =

ˆ

[Dρ] e− β
2

N2E[ρ;s,w], (10)

and the energy density functional

E[ρ; s, w] = −
¨

log |λ − λ′|ρ(λ)ρ(λ′)dλdλ′

+

ˆ

Vext(λ; s, w)ρ(λ)dλ + O(1/N), (11)

with Vext(λ; s, w) = (s + w)λ − wλ2, is defined on normal-
ized spectral densities

´

ρ(λ)dλ = 1. Equation (10) is the
Gibbs-Boltzmann partition function of a system of charged
particles confined on the interval [0, 1] of the real line, in-
teracting via a (logarithmic) 2D Coulomb potential in an
external single-particle potential Vext. The long-range, all-
to-all nature of the interaction between the charges has
the consequence that both energy contributions (interac-
tion and external potential) are of order O(N2). This is
the origin of the O(N2) speed of the large deviation func-
tions (7) and (8), in sharp contrast to the standard O(N)
speed for classical large deviation theory of independent
random variables [27]. Using ρ, any linear statistics for
large N can be easily written down. In particular,

G[ρ] =

ˆ

λ ρ(λ)dλ, P [ρ] =

ˆ

λ(1 − λ) ρ(λ)dλ. (12)

In the large-N limit, the partition function (10) is dom-
inated by the saddle-point density

ZN(s, w) ≈ e− β
2

N2E[ρ";s,w]. (13)

Here ρ#(λ) (depending parametrically on s and w) is the
solution of the saddle-point equation δ

δρE[ρ; s, w] = 0,
namely

d

dλ
Vext(λ; s, w) = 2

 

ρ#(λ′)

λ − λ′
dλ′, (14)

for all λ where the charge density exists ρ#(λ) > 0, where
ffl

denotes Cauchy’s principal value. In terms of our elec-
trostatic model, eq. (14) is the continuous version of the
force balance condition for the charge cloud ρ#(λ) to be in
equilibrium.

Originally due to Dyson [28], this Coulomb gas tech-
nique with additional constraints has been developed and
used in many different problems [18,25,29–36] which have
apparently very little to do with each other. Recently,
an improvement of the method has been used to compute
the joint statistics of two linear statistics in the Wishart-
Laguerre ensemble of random matrices [37,38]. We will
adopt the same strategy below.

First, it is worth noticing a symmetry of this problem.
The external potential is invariant (up to an immaterial

constant) under the exchange (s, λ) → (−s, 1−λ), namely,

Vext(1 − λ; −s, w) = Vext(λ; s, w) − s. (15)

Since the logarithmic repulsion is also invariant under the
exchange λ → 1 − λ, the energy functional E[ρ; s, w] in-
herits this symmetry. Therefore, the equilibrium spectral
densities at s and −s are simply related by ρ#(λ; −s, w) =
ρ#(1 − λ; s, w). Thus, the phase diagram is invariant un-
der the inversion s → −s and it is sufficient to study the
problem for s ≥ 0. In the next section, we compute the
explicit solutions of the singular integral equation (14) for
any given value of (s, w) and we find that five different
functional forms are possible for the saddle-point density
ρ# in various regions of the (s, w)-plane.

Phase diagram. – We have identified five domains
Ωj , 1 ≤ j ≤ 5 in the (s, w)-plane that correspond to five
different phases of the Coulomb gas. The functional forms
of ρ#

j and their supports in the phase (s, w) ∈ Ωj , with
j = 1, . . . , 5, read

ρ#
1(λ) =

q1(λ)

2π

√

b − λ

λ
, λ ∈ [0, b], (16)

ρ#
2(λ) =

q2(λ)

2π

1
√

λ(1 − λ)
, λ ∈ [0, 1], (17)

ρ#
3(λ) =

q3(λ)

2π

√

(λ − a)(b − λ), λ ∈ [a, b], (18)

ρ#
4(λ) =

|q4(λ)|
2π

√

(a − λ)(λ − b)

λ(1 − λ)
, λ ∈ [0, a] ∪ [b, 1], (19)

ρ#
5(λ) =

q5(λ)

2π

√

λ − a

1 − λ
, λ ∈ [a, 1], (20)

with 0 < a < b < 1. Here qj(λ) are polynomials in λ,
whose expressions, together with those of a and b, depend
on the values (s, w) and are given explicitly in (A.4), (A.5)
of the appendix. The five different domains and the cor-
responding densities are shown in fig. 1.

The physical picture is quite intuitive in terms of the
interplay between the logarithmic interaction between the
charges and the external potential Vext. For moderate
values of s and w (i.e. (s, w) ∈ Ω2) the external potential
is too weak compared to the logarithmic repulsion between
the charges, so that the gas invades the whole interval
[0, 1]. For sufficiently large positive values of s (Ω1), the
potential is strong enough to attract the charges towards
λ = 0 and confine the gas in [0, b] ⊂ [0, 1]. In a similar way,
large negative values of s (Ω5) provide a repulsive potential
that pushes the gas away from the origin towards the hard
wall located at λ = 1. When w < 0 and |s| < −w, Vext

has a minimum that attracts the charges; if this well is
sufficiently deep (i.e. (s, w) ∈ Ω3) the Coulomb gas is
trapped in the minimum of the potential and does not feel
the hard walls. On the other hand, when w > 0 and |s| <
−w, Vext has a maximum that repels the charges; in Ω4 the
peak is sufficiently high to cause the Coulomb gas to split
into two separated components that tend to stay far apart.
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Fig. 1: (Colour on-line) Top left: phase diagram in the Laplace (s, w)-plane. The five domains Ωi, i = 1, . . . , 5 correspond to
different spectral profiles ρ!(λ) of the transmission eigenvalues (16)–(20). The critical lines that separate the phases are reported
in the appendix in (A.1)–(A.3). Notice that the phases Ω1 (suppρ! = [0, b]) and Ω5 (suppρ! = [a, 1]) are separated by the phases
Ω2, Ω3 and Ω4. The diagram is symmetric with respect to the line s = 0. The lines w = 0 (black dot-dashed) and s = 0 (gray
dashed) have been studied in [18]. We recover their critical points scr = ±4 and wcr = ±8. Top right: the corresponding phase
diagram in the conductance/shot noise (g, p)-plane. For completeness, the critical points and the lines corresponding to s = 0,
w = 0 are also reported in real space. Bottom: different spectral profiles ρ!(λ) of the Coulomb gas. The analytical curves are su-
perimposed to points from a Monte Carlo simulation of a Coulomb gas of N = 30 particles in the external potential Vext(λ; s, w).

The single-support solutions have been found employ-
ing a theorem due to Tricomi [39] for the singular equa-
tion (14). The theorem provides the general form of
ρ#(λ) = ρ#(λ; C, a, b) with a single support. It depends
on three arbitrary constants that are determined by im-
posing the normalization condition C =

´

ρ#(λ)dλ = 1
and the behavior of ρ# at the two edges a and b of the
support. This procedure provides a density supported on
a single interval and parametrized by s and w.

Multiple-support solutions of the saddle-point equations
are more complicate and involve in general more arbi-
trary constants. For example for a solution ρ#(λ) =
ρ̃(λ; C, a, b, κ) with double support in [0, a] ∪ [b, 1]
(the only multiple-support scenario that we have in our
problem), we have to impose the overall normalization
C = 1, the regularity condition at the edges ρ#(a) =
ρ#(b) = 0 and an extra constraint, i.e. the so-called
filling fraction of one of the two components of the den-
sity,

´ a
0 ρ#(λ)dλ = κ [40]. How to fix this filling frac-

tion? At equilibrium, the filling fraction κ is such that
a small variation δκ does not change the energy at first
order. This condition means that, at equilibrium, the
work required to move a single charge from a to b is null,

and can be easily proved to read1
´ b

a iρ#(λ)dλ = 0 where
suppρ# = [0, a] ∪ [b, 1] [40,41].

1Note that the integral runs outside the support of ρ!, therefore
it needs to be interpreted as the integral of the analytic continuation
of ρ!(λ) to values of λ not in the support.

These kinds of constraints are often cumbersome to eval-
uate. However, if one is only interested in finding the
critical line of phase transition between the single-support
phases and the double-support phase in the (s, w)-plane,
a practical strategy is the following. The condition of null
work for moving a charge from a to b should be satisfied
for any double-support solution. In the limit this will be
valid also at the “birth” of the double-support phase when
b = 1. Then, the requirement

´ 1
b" ρ#(λ)dλ = 0 with ρ#(λ)

supported on [0, b#] provides a threshold b# and therefore
an equation connecting s and w at the “birth-of-second-
cut”, i.e. precisely the line of phase transition in the
(s, w)-plane.

For given values of (s, w), the solution ρ# provides the
typical configuration of eigenvalues yielding prescribed
values for G and P from (12). Both are functions of s
and w:

g(s, w) = G[ρ#], p(s, w) = P [ρ#]. (21)

In particular, for (s, w) = (0, 0) (uncostrained problem)
we obtain from (17) and (31) the arcsine law ρas(λ) =
1/(π

√

λ(1 − λ)) providing the average values 〈G〉 = 1/2
and 〈P 〉 = 1/8 from (12). In general, (17) in Ω2 describes
the typical fluctuations around the average values 〈G〉 and
〈P 〉. Values of (s, w) ∈ Ω1 correspond to a configuration
of the transmission eigenvalues (16) yielding smaller val-
ues of the conductance g . 〈G〉 while large deviations
g / 〈G〉 correspond to (s, w) ∈ Ω5 and are described
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by (20). Similarly, large values for P are given by a typ-
ical configuration of eigenvalues as in (18) in phase Ω3,
while smaller values for P in phase Ω4 are ascribed to the
double-support solution (19). As the point (s, w) moves in
the Laplace plane, the configuration of eigenvalues ρ#(λ)
changes according to (16)–(20). The transition across the
critical line γij (the boundary of two phases Ωi and Ωj)
corresponds to a change in shape of the Coulomb gas den-
sity, which signals a corresponding phase transition in the
quantities G and P . In the next section, we use the ex-
plicit functional forms of the density in various regions of
the (s, w)-plane to show how the GF and the rate func-
tions can be computed.

Joint large deviation functions. – First, one inserts
the equilibrium density ρ# (whose explicit expressions are
given in eqs. (16)–(20)) into (12) and computes the corre-
sponding single integrals, yielding the order O(1) quanti-
ties g(s, w) and p(s, w). These are in turn related to the
cumulant GF J(s, w) in (7) and the rate function Ψ(g, p)
in (8) via the differential relations

dJ(s, w) = g(s, w)ds + p(s, w)dw, (22)

−dΨ(g, p) = s(g, p)dg + w(g, p)dp, (23)

complemented with the condition J(0, 0) = 0 and
Ψ(g(0, 0), p(0, 0)) = Ψ(1/2, 1/8) = 0. Here s(g, p) and
w(g, p) are the solution of s = g(s, w) and w = p(s, w).
The expressions (22) and (23) are known as Maxwell re-
lations among thermodynamic potentials, in our case the
Helmholtz free energy and the enthalpy. The application
of standard thermodynamics arguments to the Coulomb
gas can be rigorously justified by means of large deviation
principles [42]. In fact, relations (22) and (23) are equiva-
lent statements: one is in Laplace space, the other one is
in real space. By plugging (16)–(20) into (21), one easily
obtains the explicit expressions of g(s, w) and p(s, w) in
each region of the phase space. The lines w = 0 and s = 0
(yielding the GF of conductance or shot noise alone) were
studied in [18] and we easily recover the known results by
taking the limit w → 0 (or s → 0) in our expression. The
joint cumulant GF J(s, w) follows by a careful integration
of the differential form (22) and the continuity require-
ment through the critical lines. By starting from the cen-
ter (0, 0) of region Ω2, where J(0, 0) = 0, and integrating,
one obtains

J(s, w) =
s

2
−

s2

32
+

w

8
−

w2

256
, if (s, w) ∈ Ω2. (24)

Therefore, in the region of typical fluctuations, G and
P are (to leading order) uncorrelated Gaussian variables
with average values 〈G〉 = 1/2 and 〈P 〉 = 1/8, VarG =
1/(8βN2), VarP = 1/(64βN2), and Cov(G, P ) = 0:

P(G, P ) ≈ e−4βN2(G− 1

2 )
2
−32βN2(P− 1

8
)2 . (25)

Since the higher derivatives of J(s, w) vanish at (s, w) =
(0, 0) we also conclude that the higher-order cumulants
are κ%,m(G, P ) = O(1/N %+m−1) for ( + m > 2.

For generic s and w, the integration of dJ provides the
cumulant GF:

J(s, w) = J(s0, w0) +

ˆ (s,w)

(s0,w0)
dJ(s′, w′), (26)

for (s, w) ∈ Ωi. Here, one has to choose a suitable ini-
tial point on the boundary with a phase Ωj already com-
puted, namely (s0, w0) ∈ Ωi ∩ Ωj . The expression (26)
can be evaluated by integrating in the complex plane and
applying the residue theorem. Across the lines of phase
separation, one finds that the GF is not analytic, since its
third derivatives are discontinuous.

As an additional bonus, from the joint limiting behav-
ior of G and P we can deduce the distribution of functions
of both G and P like the Fano factor (6). We stress the
fact that F is not a linear statistics of the transmission
eigenvalues. From (25) we conclude that the typical fluc-
tuations of F are asymptotically Gaussian

P(F ) ≈ e− 16

3
βN2(F− 1

4 )
2

, (27)

with average value 〈F 〉 = 1/4 and variance VarF =
3/(32βN2). To the best of our knowledge the asymptotic
distribution (27) is a new result.

Conclusions. – In summary, our analysis gives an
overall picture of the joint statistics of conductance G and
shot noise P for an ideal chaotic cavity supporting a large
number N of electronic channels in the two attached leads.
We employed a Coulomb gas technique to establish the
large deviation formulas (7) and (8), governing the behav-
ior of the joint cumulant GF and the joint rate function of
G and P . We were able to obtain the full phase diagram
in the (s, w)- and (G, P )-planes and we found that both
J(s, w) and Ψ(g, p) acquire five different functional forms
in different regions of their domain. These different ex-
pressions are a direct consequence of phase transitions in
the associated Coulomb gas problem. Across the lines of
phase separation, the third derivatives are discontinuous,
implying a third-order phase transition.
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Appendix

Let us denote by γij the critical curve that separates
the phases Ωi and Ωj in the (s, w)-plane. We report their
explicit expressions

γ13 ∪ γ35: |s| = −w −
√

−8w, for w ≤ −8,

γ12 ∪ γ25: |s| = w/2 + 4, for − 8 ≤ w ≤ 8/3,

γ24: s2 + 2w2 − 16w = 0, for 8/3 ≤ w ≤ 8, (A.1)
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while the curves γ14 ∪γ45 are the solutions of the equation

2wφ1 (b1(|s|, w)) = [2(|s| + w) +
√

(|s| + w)2 − 24w]

× φ0 (b1(|s|, w)) /3, w ≥ 4, (A.2)

φk(b) = i

ˆ 1

b
dxxk

√

(b − x)/x, 0 < b < 1. (A.3)

The polynomials qi(λ) and the edges ai, bi of the sup-
ports suppρ# are given by

q1(λ) = [−6wλ + 2(s + w) +
√

(s + w)2 − 24w]/3,

q2(λ) = 2wλ2 − (2w + s)λ + w/4 + s/2 + 2,

q3(λ) = −2w,

q4(λ) = 2(t − wx),

q5(λ) = q1(1 − λ; −s, w), (A.4)

and

a1 = 0, b1 = [s + w −
√

(s + w)2 − 24w]/(3w),

a2 = 0, b2 = 1,

a3 = (s + w +
√

−8w)/(2w), b3 = 1 − a3(−s, w),

a4 = [s + (2 − b4)w − 2t]/w,

b4:

ˆ b4

a4

2(t − wx)
√

(a4 − x)(x − b4)/
√

x(1 − x)dx = 0,

t = (s + 2w − b4w) /3

−
√

s2 + 2(2b4 − 1)sw − w (24 − w − 8b4w + 8b2
4w)/6,

a5 = 1 − b1(−s, w), b5 = 1, (A.5)

respectively.
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