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Abstract
If the state of a quantum system is sampled out of a suitable ensemble, the measurement of some
observables will yield (almost) always the same result. This leads us to the notion of quantum
typicality: for some quantities the initial conditions are immaterial. We discuss this problem in
the framework of Bose–Einstein condensates.
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A Birthday Dedication

Margarita and Volodya Man’ko are a remarkable example of
a life-long passion for physics. Their involvement in funda-
mental physics, from quantum optics to quantum mechanics,
conveys the enthusiasm of two teenagers. We are therefore
delighted to dedicate this article to their joint 150th anniver-
sary. Many happy returns!

1. Introduction and motivations

When we endeavour to describe the motion of a classical
system, such as a point particle, we write Newton’s
equation and a given set of initial conditions. Mathema-
tically, we try and solve a Cauchy problem for a differ-
ential equation. This is the inheritance of Pierre Simon
(Marquis de) Laplace, a world that is governed by deter-
ministic laws.

A given state of Laplace’s deterministic universe is
unmistakably the cause of its future (and the effect of its past).
A ‘demon’ who at a certain moment knows all forces, posi-
tions and velocities of all particles, would be able to describe
their motion with arbitrary accuracy and a single equation.
The future would be certain to him and he would be able to
calculate it from the laws of classical mechanics. In his work,
Laplace never used the word ‘demon’, which came only later,
possibly to convey a feeling of awkwardness. He rather wrote
of ‘une intelligence’, and for such an intellect ‘nothing would
be uncertain and the future just like the past would be present

before its eyes3.’ Laplace was very keen of his deterministic
framework. When Napoleon asked him why he had not
mentioned God in his book on astronomy, he allegedly
replied that he ‘had no need of that hypothesis4.’

Later studies, in particular by Henri Poincaré, showed
that Laplace’s idea of determinism requires attention and a
very careful scrutiny. The motion of some systems is extre-
mely ‘sensitive to the initial conditions’ and this has come to
be called dynamical instability. Physicists like the concept of
stability, that makes it meaningful to speak of state prepara-
tion, and guarantees that if one is careful in preparing the state
of the (classical) system, any experiment will yield the same
result. This is known as repeatability and is a milestone of
Galileo’s modern scientific method [1–3]. Nowadays, to most
physicists, dynamical instability is the same in meaning as
chaos [4].

Quantum mechanics brought uncertainty (and with it
mystery) back to the stage. Even if one sets the initial con-
ditions of the Schrödinger equation with accurate (infinite)
precision, the behaviour of the (quantum) particle is far from
being deterministic, and is in fact subject to indeterminacy.
Quantum indeterminacy is ontological and not epistemic like
in classical statistical mechanics: it cannot be avoided even by
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the most accurate definition of the initial conditions (state
preparation).

But is this the whole story? Can one prepare the very
same quantum state over and over? This is a very difficult
question, that has mind-boggling aspects5. On one hand, it is
almost meaningless to state that, say, two electrons emitted by
an electron gun and illuminating a double slit have the ‘same’
wave function. On the other hand, the experimental ver-
ification of this statement, as e.g. through quantum state
tomography [5, 6], requires measurements over a huge
number of (‘identically prepared’) electrons. A more cautious
question would then be the following one: which measure-
ments would yield the same result for a quantum state that is
sampled out of a suitable ensemble? This question catapults
us into the topic of this article and the notion of quantum
typicality.

It should be clear from the previous discussion that in
order to test the notion of quantum typicality (namely the
independence of the measurement outcome on state prepara-
tion), one needs essentially two ingredients. First, some
control is required on the system state: namely, one must be
able to assert, with reasonable confidence, that the wave
function belongs to a suitable ensemble, e.g. a given subspace
of the total Hilbert space of the system, and thus the quantum
state is described by a certain density matrix. This relaxes the
very notion of state preparation: it is not necessary to require
(and believe) that a given wave function is identically re-
prepared at each experimental run. It is enough that the wave
functions in different runs are drawn from a suitable statistical
ensemble. Second, and equally important, one cannot expect
that measurements yield (almost) the same result for any
observable of the system. Some observable will be typical,
other will (and can) not. This is the essence of quantum
mechanics. If one were able to suppress all fluctuations
(including quantum fluctuations) of all observables, the sys-
tem would be classical.

It emerges that cold gases and Bose–Einstein con-
densates (BECs) are an ideal testbed for these ideas. Indeed, a
BEC of is characterized by a macroscopic occupation of the
same single-particle state, or few orthogonal states (frag-
mented BEC) [7, 8], and one can reasonably assume that
when an experiment is repeated, almost the same wave
function is re-prepared.

These ideas can be tested in double-slit experiments with
BECs, where interference is observed in single experimental
runs, even though the two interfering modes are indepen-
dently prepared (and therefore there is no phase coherence)
[9]. The presence of an interference pattern is an interesting
example of a property that weakly depends on the choice of
the system state: second-order (unlike first-order) interference
is similar for number and phase states [7, 8] and this explains
why interference patterns emerge in single experimental runs
[10–19].

This article is organized as follows. In section 2 we
introduce the statistical ensemble of quantum states and

define the typicality of a quantum observable. In section 3 we
look at a simple case-study, a two-mode system of N Bose
particles. Section 4 is devoted to conclusions and
perspectives.

2. Quantum typicality of observables

Let a quantum system live in an N-dimensional Hilbert space
N and assume that state preparation consists in randomly
picking a given pure state Φ∣ 〉N out of an n-dimensional
subspace ⊂ n . Given a basis ∣ 〉ℓ{ } of n, one can write

∑Φ = z ℓ . (1)N ℓ

The complex coefficients z{ }ℓ are assumed to be uniformly
sampled on the surface of the unit sphere ∑ ∣ ∣ =z 1

ℓ ℓ
2 .6

Clearly

δ= =z z z
n

0,
1

, (2)ℓ ℓ ℓ ℓ ℓ* ,1 2 1 2

where the bar denotes the statistical average over the
distribution of the coefficients. Notice the dependence on
the inverse of the subspace dimension n and observe how the
average of all phase-dependent quantities (including the
coefficients) vanish.

Consider an observable Â. The random features of state
(1) will induce fluctuations on a number of quantities related
to Â. We now scrutinize the different origins of these
fluctuations.

The expectation value of observable Â over state (1)
reads

Φ Φ=A Â (3)N N

and is itself a random variable. A relevant quantity is the
statistical average of the quantum expectation (3) over the
statistical distribution (2) of the coefficients

∑
Φ Φ Φ Φ

ρ

≔ =

= =

( )
( )

A A A

n
ℓ A ℓ A

ˆ tr ˆ

1 ˆ tr ˆ . (4)

N N N N

ℓ
n

Interestingly, this coincides with the quantum average over
the (totally mixed) ‘micro canonical’ density matrix ρn, which
is proportional to the projector P̂n onto the subspace n:

∑

∑

ρ Φ Φ= =

= =

z z ℓ ℓ

n
ℓ ℓ

n
P

1 1 ˆ . (5)

n N N

ℓ ℓ

ℓ ℓ

ℓ

n

,

* 1 2

1 2

1 2

Another interesting quantity is the statistical variance of
the quantum expectation (3)

δ Φ Φ Φ Φ≔ − = −A A A A Aˆ ˆ . (6)s N N N N
2 2 2 2 2

5 In fact, we are convinced that Margarita and Volodya would like this
question!

6 This is the simplifying assumption of uniform sampling. Our results are
qualitatively unchanged for a wide class of probability distributions on n.
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If A were deterministic, i.e. δ ≃A 0s , the overwhelming
majority of states in the statistical ensemble would have the
same expectation value, and this would coincide with the
average A : this condition defines the typicality of the
expectation value. Observe that the latter term in (6) involves
a quadratic (easy-to-evaluate) average, while the former term
is quartic: since the theory is not Gaussian its evaluation
requires some care [20]. However, as we shall see, its
evaluation is not necessary for our purposes.

A third relevant quantity is the following

Δ Φ Φ Φ Φ≔ −A A Aˆ ˆ , (7)N N N N
2 2 2

which identically vanishes if Φ∣ 〉N is an eigenstate of Â. This
quantity describes the quantum fluctuations of observable Â
on state Φ∣ 〉N . Since state Φ∣ 〉N is a random variable, also ΔA2

will fluctuate. Its average over the distribution of the
coefficient reads

δ Φ Φ Φ Φ≔ −A A Aˆ ˆ (8)q N N N N
2 2 2

and involves the same quartic average that appears in (6).
Being related to the average of ΔA2 in equation (7), δ Aq

vanishes identically if the ensemble is made up of eigenstates
of Â. On the other hand, it may also vanish asymptotically
(for suitable values of n) as N increases. If this happens, the
outcome of a measurement of observable Â on the majority of
states Φ∣ 〉N in the ensemble is within good approximation
fixed by its expectation value A.

The key quantity is

δ δ δ

Φ Φ Φ Φ

ρ ρ

≔ +

= −

= −( ) ( )

A A A

A A

A A

ˆ ˆ .

tr ˆ tr ˆ . (9)

s q

N N N N

n n

2 2 2

2 2

2 2⎡⎣ ⎤⎦
A few comments are now in order. First of all, notice the
cancellation of the quartic terms and observe that this quantity
depends only on quadratic averages and is expressed in terms
of the density matrix (5) (as it should). As a matter of fact,
δA2, namely the quantum variance of the observable Â on the
microcanonical density matrix ρn, could have been introduced
without reference to δ As and δ Aq . The previous ‘derivation’
aims only at elucidating the multiple aspects of the
fluctuations that affect a quantum system in the framework
we introduced. Since δA2 controls both the statistical variance
δ As

2 of the expectation value and the average quantum
variance δ Aq

2 of the observable, the condition

δ → → ∞A
A

N0, as (10)

ensures that, for the overwhelming majority of wave functions
in n, an experimental measurement of the observable Â will
fluctuate within a very narrow range around the average
expectation value A . It is clear that the limiting procedure
(10) depends on the choice of the sampled subspace n,
namely of the statistical ensemble (5), and on how n scales
with N.

In conclusion, if Φ∣ 〉 ∈ N n, the outcome of a mea-
surement of a typical observable Â is with high accuracy
independent of the experimental run, i.e. independent of the
(in principle unknown) initial wave function. We call this
property typicality of the observable A. In order to clarify the
difference between typical and non-typical observables from
an experimental point of view, let us recall the main results in
[19, 21], where a Bose system is analyzed, in which the
particles are distributed between two plane-wave modes. In
this case, the dimension N of the Hilbert space roughly
coincides with the number of particles. Typicality of the
density power spectrum ∫∣ ∣ ≔ ∣ ∣−k r rn n˜̂ ( ) d e ˆ ( )k x2 i · 2, with

rn̂ ( ) the spatial density operator, ensures that an interference
pattern can be observed in (almost) any experimental run, if
the maximum imbalance between the two modes scales more
slowly than N. On the other hand, the density operator itself is
not typical, since its variance scales like N2: this is related to
the random fluctuation of the offset of the observed inter-
ference pattern.

3. Two-mode case study

Scrutiny of a simple case-study will hopefully elucidate the
main ideas and be the testbed of the general framework
described in the preceding section. Consider a two-mode
system made up of N structureless bosons. The second-
quantized field operators satisfy the canonical equal-time
commutation relations (in this section we remove the hats on
the operators)

Ψ Ψ Ψ Ψ δ′ = ′ = − ′( ) ( ) ( )r r r r r r( ), 0, ( ), . (11)†⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
The N bosonic particles are distributed among the ground ϕ∣ 〉0
and the first excited state ϕ∣ 〉1 of a harmonic oscillator, whose
mode wave functions read (in suitable units)

ϕ
π

ϕ
π

= =− −x x x( )
1

e , ( )
2

e , (12)0 1 4 1 1 4

x x2
2

2
2

and whose Hamiltonian is

= +( )H p x
1
2

. (13)2 2

One easily computes the expectation values of the even
powers of the position operator in the two modes

ϕ ϕ ν
ν=νx 2

(2 )!
!

, (14)0
2

0

ϕ ϕ ϕ ϕ ν
ν= = +

+
ν ν+x x2 4

(2 2)!
( 1)!

, (15)1
2

1 0
2 2

0

while the expectation values of the odd powers vanish. Define
the collective single-particle observable

∫ Ψ Ψ=ν νX x x x xd ( ) ( ). (16)2
2 †
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Let us consider the microcanonical ensemble represented by
the density matrix (see equation (5))

∑ρ =
<n

ℓ ℓ
1

, (17)n
ℓ n 2

where in the states ∣ 〉 ≔ ∣ + − 〉ℓ N ℓ N ℓ( 2 ) , ( 2 )0 1 the
occupation numbers of the two modes are well-defined, with
ℓ2 representing the particle imbalance between the modes.
One can easily show that, due to the symmetry of the modes,
this quantity is typical whenever the maximal imbalance
satisfies =n o N( ). The proof is simple. The expectation
value

ρ ϕ ϕ ϕ ϕ

ν
ν

ν
ν

= = +

= + +
+

ν ν ν ν( )( )X X
N

x x

N

Tr
2

(2 )!
!

2(2 2)!
( 1)!

(18)

n2 2 0
2

0 1
2

1

⎛
⎝⎜

⎞
⎠⎟

splits, as one expects, into the average of expectation values
of νx2 in the two modes. Its variance on ρn (9) can be
expanded as a quadratic polynomial in the total number of
particles N and the maximal imbalance n, yielding [21]

δ ρ ρ= −

= + +

ν ν ν

ν ν

( ) ( )X X X

D
N

D n O N

Tr Tr

4
( ). (19)

n n2
2

2
2

2
2

2,0
(2 )

2

0,2
(2 ) 2

⎡⎣ ⎤⎦

A straightforward computation shows that

ϕ ϕ= =ν νD x2 0, (20)2,0
(2 )

1
2

0
2

due to the opposite symmetry of the mode wave functions. By
contrast, the factor multiplying n2 does not vanish and reads

ϕ ϕ ϕ ϕ

ν
ν

ν
ν

= −

= +
+ −

ν ν ν( )D x x
1

12

1
3

2(2 2)!
( 1)!

(2 )!
!

. (21)

0,2
(2 )

1
2

1 0
2

0
2

2⎛
⎝⎜

⎞
⎠⎟

These results show that, unless =n O N( ),

δ → → ∞ν

ν

X

X
N0 as , (22)2

2

thus ensuring the typicality of the observable νX2 for
=n o N( ). In practice, no matters how one prepares the

initial state, distributing the particles between the two modes,
as far as the maximum imbalance between the two modes
scales less fast than the total number of particles N, a
measurement of the collective observable νX2 will yield
essentially the same result. In particular from (19), when

=n O N( )1 2 , the relative fluctuations around the typical value
are normal, i.e. −O N( )1 2 .

It is worth observing that the main result (22), being
related to condition (20), can be generalized to all pairs of
modes with opposite symmetry. Moreover, it can be extended
to all single-particle observables that are polynomial in x2.
This implies that if the particles are distributed among modes
with opposite symmetry, with =n o N( ), and confined by a

symmetric potential, the potential energy of the system is
always a typical observable.

4. Conclusions and outlook

We have discussed the notion of quantum typicality, defining
the typicality of an observable and focusing on a two-mode
Bose system. An observable is typical if its single-run mea-
surement, performed on a system state belonging to a suitable
subspace, yields the same result with very large probability.

Typical observables are therefore properties shared by
the vast majority of states. By contrast, non-typical obser-
vables are characterized by wide fluctuations. Interestingly,
this distinction is crucial in determining ‘good’ observables in
classical and quantum statistical mechanics [22]. As mea-
surements on typical observables yield (almost) the same
result, the knowledge of the initial state with arbitrary preci-
sion becomes immaterial. This brings us back to the concepts
discussed in the Introduction and the main idea of this article.
One can revisit and relax the notions of state preparation and
initial conditions. As we emphasised, BESCs are an ideal
testbed for these concepts in quantum statistical physics
[7, 8, 14, 16, 23].

Typicality is related to the beautiful mathematical phe-
nomenon of measure concentration [24]. This is a fecund idea
that has been applied to elucidate the structure of entangle-
ment in large quantum systems [25, 26], as well as some basic
concepts in statistical mechanics [27–30]. It would interesting
to apply this notion to the characterization of entanglement in
BESCs and to study dynamical effects, such as phase ran-
domization in condensates [31, 32].
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