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We try to characterize the statistics of multipartite entanglement of the random states of an n-qubit system.
Unable to solve the problem exactly we generalize it, replacing complex numbers with real vectors with Nc

components (the original problem is recovered for Nc = 2). Studying the leading diagrams in the large-Nc

approximation, we unearth the presence of a phase transition and, in an explicit example, show that the so-called
entanglement frustration disappears in the large-Nc limit.
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I. INTRODUCTION

The study of entanglement is almost as old as quantum
mechanics, as it was the subject of seminal papers by Einstein,
Podolsky, and Rosen [1] and Schrödinger [2]. The focus of
the founding fathers was on the puzzling, nonclassical aspects
of quantum correlations. Nowadays, entanglement [3–5] is
viewed mostly as a crucial resource in quantum applica-
tions, quantum communication, and quantum information
processing [6], and it maintains its original fascination for
the comprehension of the structure and geometry of quantum
mechanics [7].

While bipartite entanglement is well understood and quan-
tified, the notion of multipartite entanglement is more elusive.
This is due to a number of concomitant factors. First of all,
for many-body quantum systems, the number of entanglement
measures grows exponentially with the system size [8], making
a characterization of quantum correlations complicated [9].
Second, new properties arise when more quantum parties are
involved, among these the intriguing appearance of frustration.
In agreement with the classical notion [10], this is related to
the impossibility of satisfying a number of requirements at
the same time [11]. Applied to entanglement, this means that
given three (or more) parties A, B, and C, if the entanglement
between A and B grows, that between A and C or B and
C decreases. This is also referred to as “monogamy” of
entanglement [12–14].

In our work the symptoms of such frustration will surface
in the investigation of n = 4 qubits [15–17] and for small
number of qudits [18–22], and cannot be avoided for n � 8
qubits, where one can prove that it is impossible to maximize
the bipartite entanglement by maximizing independently all
possible bipartitions of a system of qubits [23–25]. Further
interesting contributions to these problems were given in
Refs. [26,27].

In this article we will study the properties of multipartite
entanglement by adopting the concepts and tools of classical
statistical mechanics [28–31]. This approach has proved useful

in the study of the bipartite entanglement of a large number
of qubits, where it unearths the presence of phase transi-
tions [32,33]. The situation with multipartite entanglement
is, however, much more complex. This is due to the fact
that the monogamy of entanglement acts effectively as a
frustration, and the resulting statistical system is frustrated,
to say, similarly to a spin glass.

In order to explore the rich landscape that ensues, we
shall make use of techniques that are based on the analy-
sis of diagrams that naturally arise when one considers a
high-temperature expansion of the distribution function of
the measure of multipartite entanglement (the potential of
multipartite entanglement) [29]. Unfortunately, the evaluation
of the contributions of different kinds of graphs and their
resummation is not a simple task. Following a procedure
familiar from gauge theories, one would like to find a strategy
to select and sum a family of diagrams which dominate the
result in one particular limit.

By following this route we will be able to give a more
general formulation of this problem, replacing the (complex)
coefficients of the wave function with Nc-dimensional real
vectors. When Nc is viewed as a “color” index, the original
formulation in terms of qubits will be recovered when Nc = 2.
This generalization appears in a natural way by analyzing the
mathematical structure of the measure used to characterize
the multipartite entanglement. Clearly, the physics of the case
Nc � 2 will not be the same as in the original problem Nc = 2,
however, as it is often the case with large-Nc expansions, the
two problems share some important ingredients and salient
features. Fundamentally, we hope to understand whether the
phase transitions that are known to appear in the bipartite
case [32,33] are present in the statistics of multipartite
entanglement.

We will see that these expectations are correct: the symp-
toms of a phase transition are present even for multipartite
entanglement: there is a phase transition in the limit of large
Nc. Moreover, we will see an explicit example where the
frustration of multipartite entanglement disappears if the value
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of Nc is large enough. This simplification for large Nc is
common in statistical models and field theories.

This article is organized as follows. In Sec. II we intro-
duce notation and familiarize with the statistical mechanics
approach we will use. In Sec. III we build the diagrammatics
and evaluate the first relevant cumulants of the theory. We
introduce the color index Nc in Sec. IV, and look at the limit of
large number of colors: this enables us to restrict our attention
to an interesting class of diagrams. As a consequence, we can
investigate the behavior of the entanglement for large values
of Nc in Sec. V: this unveils the presence of a phase transition
that is studied in Sec. VI A. The phase transition is further
investigated in Sec. VI B, where we numerically show that
no hysteresis appears. We conclude in Sec. VII with a few
comments.

II. MULTIPARTITE ENTANGLEMENT
AND STATISTICAL MECHANICS

A. Potential of multipartite entanglement

Let us consider an ensemble S = {1,2, . . . ,n} of n qubits
in the Hilbert space HS = (C2)⊗n. In this article we will focus
on pure states

|z〉 =
∑
k∈Zn

2

zk|k〉, zk ∈ C,
∑
k∈Zn

2

|zk|2 = 1, (2.1)

where z = (zk), k = (ki)i∈S , ki ∈ Z2 = {0,1}, and

|k〉 =
⊗
i∈S

|ki〉i , |ki〉i ∈ C2, 〈ki |kj 〉 = δij . (2.2)

Consider a bipartition (A,Ā) of the system, where A ⊂ S

is a subset of nA qubits and Ā = S\A its complement, with
nA + nĀ = n. We set nA � nĀ without loss of generality.
The total Hilbert space factorizes into HS = HA ⊗ HĀ, with
HA = ⊗

i∈A C2
i , of dimensions NA = 2nA and NĀ = 2nĀ ,

respectively (NANĀ = N ).
The bipartite entanglement between the two subsets can be

measured by the purity of the reduced state of subsystem A,

πA(z) = Trρ2
A, ρA = TrĀ|ψ〉〈ψ |, (2.3)

TrĀ being the partial trace over Ā. We notice that πA = πĀ

and

1/NA � πA � 1, (2.4)

where the lower and upper bounds are obtained for maximally
entangled and separable states, respectively.

A natural extension of this measure to the multipartite
scenario is realized considering the potential of multipartite
entanglement, that is the average bipartite entanglement
between balanced bipartitions [24]:

H (z) =
(

n

nA

)−1 ∑
|A|=nA

πA(z)

=
∑

k,k′,l,l′∈Zn
2

�(k,k′; l,l′) zk zk′ z̄l z̄l′ , (2.5)

where nA = [n/2] (balanced bipartitions), with [x] being the
integer part of x. The coupling function is [25,30]

�(k,k′; l,l′) = g((k ⊕ l) ∨ (k′ ⊕ l′),(k ⊕ l′) ∨ (k′ ⊕ l)),

(2.6)

where

g(a,b) = δa∧b, 0 ĝ(|a|,|b|) (2.7)

and

ĝ(s,t) = 1

2

(
n

nA

)−1[(
n − s − t

nA − s

)
+

(
n − s − t

nA − t

)]
. (2.8)

In Eqs. (2.6) and (2.7) we have defined |a| = ∑
i∈S ai ,

|b| = ∑
i∈S bi , a ⊕ b = (ai + bi mod 2)i∈S being the XOR

operation, a ∨ b = (ai + bi − aibi)i∈S the OR operation, and
a ∧ b = (aibi)i∈S the AND operation. Due to its linear struc-
ture, H (z) inherits the upper and lower bound of the purity
πA(z) in (2.4):

1/NA � H (z) � 1. (2.9)

We notice the following symmetries of the coupling
function:

�(k,k′; l,l′) = �(k′,k; l,l′),

�(k,k′; l,l′) = �(l,l′; k,k′), (2.10)

�(k,k′; l,l′) = �(k′,k; l′,l),

which reflect the reality of H (z),

H (z) = H (z) = H (z). (2.11)

Moreover, since

�(k ⊕ m,k′ ⊕ m; l ⊕ m,l′ ⊕ m) = �(k,k′; l,l′), (2.12)

the potential is invariant under rotations and reflections:

H (zk⊕m) = H (zk) (2.13)

for every m ∈ Zn
2.

B. Classical statistical mechanics approach

The analysis of the properties of H (z) can be rephrased in
a classical statistical mechanical framework. Let us consider
the partition function of a system with Hamiltonian H (z) at a
fictitious temperature β−1,

Z(β) =
∫

e−βH (z) dμ(z), (2.14)

where [34]

dμ(z) = (N − 1)!

πN
δ(1 − ‖z‖2)

∏
k

dzkdz̄k (2.15)

is the uniform measure on the hypersphere

‖z‖2 =
∑

k

|zk|2 = 1, (2.16)

and dzkdz̄k denotes the Lebesgue measure on C.
The Lagrange multiplier β fixes the average value of

multipartite entanglement. In particular, β = 0 corresponds to
the uniform sampling of random states. The limits β → ±∞
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select configurations that, respectively, minimize or maximize
H (z); the former case corresponds to maximally multipartite
entangled states (MMES) [24], the latter to completely
separable states.

The average value of H (z) (seen as the average energy of
the system) at arbitrary β can be obtained as

〈H 〉β = 1

Z(β)

∫
H e−βH dμ = − ∂

∂β
ln Z(β). (2.17)

The properties of the distribution function of the potential of
multipartite entanglement can be analyzed by evaluating its
cumulants. In particular, the mth cumulant of H (z) reads

κ
(m)
β = (−1)m

∂m

∂βm
ln Z(β) = (−1)m−1 ∂m−1

∂βm−1
〈H 〉β. (2.18)

III. DIAGRAMMATIC EVALUATION
OF THE CUMULANTS

In this section we will briefly review some properties of
the high temperature expansion of the distribution function
of the potential of multipartite entanglement. We remind that
for β = 0 one gets the unbiased random states. The average
potential reads

〈H 〉β =
∞∑

m=1

(−β)m−1

(m − 1)!
κ

(m)
0 , (3.1)

where the brackets 〈· · · 〉0 denote the average with respect
to the uniform (unitarily invariant) measure (2.15). The only
nonvanishing correlation functions are of the form [30]〈

N∏
j=1

|zj |2mj

〉
0

= (N − 1)!
∏N

j=1 mj !(
N − 1 + ∑N

j=1 mj

)
!

, (3.2)

where mj are nonnegative integers. In order to calculate the
required cumulants, we will make use of the diagrammatic
technique developed in [30]. In this way we will be able to
evaluate the contribution arising from different kinds of graphs.
The objective of this study is to try to understand whether
by embedding this problem in a larger family, dependent on
a parameter to be introduced in the following, called Nc,
the number of colors, a class of graphs can be isolated that
dominate in an appropriate limit. To this extent, we will
promote the complex numbers defining the wave functions
to real vectors of Nc components and take Nc large. In the
following two sections we recall the computations in [30], and
we anticipate which diagrams are going to be relevant in the
large-Nc limit.

A. First cumulant

The average potential at β = 0 reads

〈H 〉0 =
∑

k,l∈Z2n
2

�(k1,k2; l1,l2)
〈
zk1zk2 z̄l1 z̄l2

〉
0

= 〈|z1|2|z2|2〉0

∑
p∈S2

[p(1) p(2)], (3.3)

FIG. 1. (Color online) Graph contributing to the first cumulant:
two-leaf cactus diagram.

where

[p(1) p(2)] =
∑

k1,k2∈Zn
2

�(k1,k2; kp(1),kp(2)) (3.4)

andS2 is the symmetric group of order 2. This is represented by
the doubly degenerate graph in Fig. 1 which, by (2.6) and (3.2),
gives

〈H 〉0 = NA + NĀ

N + 1
. (3.5)

For balanced bipartitions of an even number of qubits, NA =
NĀ = √

N , and N → +∞ we get

〈H 〉0 = 2
√

N

N + 1
∼ 2√

N
. (3.6)

For an odd number of qubits the value of 〈H 〉0 is 3/
√

2 larger
than (3.6).

B. Second cumulant

The second cumulant is defined as

κ
(2)
0 = 〈H 2〉0 − 〈H 〉2

0. (3.7)

We have

〈H 2〉0 =
∑

k,l∈Z4n
2

�(k1,k2; l1,l2)�(k3,k4; l3,l4)

× 〈
zk1zk2zk3zk4 z̄l1 z̄l2 z̄l3 z̄l4

〉
0

= 〈|z1|2|z2|2|z3|2|z4|2〉0

∑
p∈S4

[p(1) p(2),p(3) p(4)].

(3.8)

Let us evaluate the contribution from connected graphs.
The graph with two links between left and right pairs in Fig. 2
has degeneracy 16 and reads

[1 3,2 4] = N (NA + NĀ)2

4
. (3.9)

The graph shown in Fig. 3 has degeneracy 4. The associated
contribution does not have a transparent form; on the other

FIG. 2. (Color online) Connected graph contributing to the sec-
ond cumulant: three-leaf cactus diagram.
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FIG. 3. (Color online) Connected graph without leaves contribut-
ing to the second cumulant.

hand, its asymptotic formula reads [30]

[3 4,1 2] ∼ 3
√

2

4
Nα, (3.10)

with α = log2 3 � 1.5850.
Notice the presence of the irrational exponent in the

graph (3.10). Moreover, since (3.9) is exactly canceled by
the nonconnected contribution from the square of (3.5), the
graph (3.10) represents the dominant contribution to the second
cumulant κ

(2)
0 that therefore has the asymptotic value of

κ
(2)
0 � 3

√
2

N2.4150...
. (3.11)

However, considering only the contribution from the
graph (3.9), which will turn out to be dominant in the large-Nc

limit (see later in the paper), we obtain

κ̃
(2)
0 = 4(NA + NĀ)2

(N + 1)(N + 2)(N + 3)
∼ 16

N2
, (3.12)

where the asymptotic expression is valid for balanced bipar-
titions of an even number of qubits, NA = NĀ = √

N , and
N → +∞.

C. Third cumulant

The third cumulant reads

κ
(3)
0 = 〈(H − 〈H 〉0)3〉0

= 〈H 3〉0 − 3〈H 2〉0〈H 〉0 + 2〈H 〉3
0, (3.13)

and we have

〈H 3〉0 = 〈|z1|2|z2|2|z3|2|z4|2|z5|2|z6|2〉0

×
∑
p∈S6

[p(1) p(2),p(3) p(4),p(5) p(6)]. (3.14)

The contributions from connected graphs with three leaves
(degeneracy 128), represented in Fig. 4(a), and with two leaves
(degeneracy 192), represented in Fig. 4(b), are equal

[1 6,3 2,5 4] = [1 3,2 5,4 6] = N
(NA + NĀ)3

8
∼ N5/2.

(3.15)

The graph represented in Fig. 4(c) (degeneracy 192) gives an
asymptotic contribution

[1 6,2 5,3 4] ∼ 3
√

2Nα+1/2. (3.16)

Finally, the asymptotic contributions from the graphs in
Figs. 5(a) and 5(b) read, respectively [30],

[5 6,1 2,3 4] ∼ Nα, (3.17)

[3 6,5 2,1 4] ∼ cNγ , (3.18)

FIG. 4. (Color online) Connected graphs (with leaves) contribut-
ing to the second cumulant. (a) Four-leaf cactus diagram. (b) Four-leaf
cactus diagram. (c) One leaf.

with c � 1.05385 and γ � 1.8417. Notice the appearance of
a new irrational exponent γ , which again, by cancellations,
turns out to be the dominant contribution to the cumulant κ

(3)
0 ,

followed by that due to α. In summary, the asymptotic value
is

κ
(3)
0 � 67.4 N−4.158.... (3.19)

FIG. 5. (Color online) Connected graphs (without leaves) con-
tributing to the second cumulant. (a) Same internal and external
orientation of the edges. (b) Opposite internal and external orientation
of the edges.
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FIG. 6. (Color online) The scaling exponent of κn from numerics.
On the first three points the error bars are smaller than the symbol
size and the data agree with the theory.

Again, by retaining only the contributions from Eq. (3.15),
as for κ̃

(2)
0 , which dominate the large-Nc limit we find

κ̃
(3)
0 = 40(NA + NĀ)3

(N + 1)(N + 2)(N + 3)(N + 4)(N + 5)
∼ 320

N7/2
,

(3.20)

where the asymptotic expression is obtained for balanced
bipartitions of an even number of qubits, NA = NĀ = √

N ,
and N → +∞.

For the fourth and fifth cumulant we have to resort to
numerical methods. By generating a large number of random
vectors for different N , we find that

κ
(3)
0 = (43 ± 12)N−4.18±0.06, (3.21)

κ
(4)
0 = (27 ± 20)N−5.2±0.5, (3.22)

κ
(5)
0 = (148 ± 90)N−6.5±1.5, (3.23)

where κ
(3)
0 is in good agreement with the theoretical value

[compare (3.21) with (3.19)].
These numbers suggest a scaling of the form κ

(n)
0 ∼

N−0.25−1.4n (whose quality can be seen in Fig. 6), in partial
agreement with the large-Nc result κ̃

(n)
0 ∼ N1−1.5n.

IV. CACTUS DIAGRAMS AND LARGE
NUMBER OF COLORS

As the reader should have deduced from the previous
sections, the proliferation of diagrams and the variety of the
exponents on N prevent one from writing a closed form for
the correlation functions 〈zi z̄j 〉β . One can then decide to sum
a particular family of diagrams, as we did for the second and
third cumulant in the high temperature expansion Eqs. (3.12)
and (3.20), hoping that this can give some information about
the characterization of multipartite entanglement. However,
the choice of the cactus (subdominant) diagrams was quite
arbitrary and motivated only by the fact that they yield integer
exponents.

Of course, one should choose the family of graphs with an
objective criterion, not on the basis of ease of computation. An
objective criterion, which is common practice in field theory, is
that of generalizing the model to a larger symmetry group, from
SO(2) to SO(Nc), and then taking the limit of large number
of colors Nc [35–37]. This will select a family of diagrams,
and enable us to compute their amplitudes in a closed form
to leading order in 1/Nc. We will see that these diagrams
are exactly the cactuses. Moreover, we will see, at the end
of the computation, that a phase transition is obtained at a
temperature below which a combination of the rotation group
SO(Nc) and the symmetric group Sn is spontaneously broken.

In order to perform this calculation, we will rewrite the
expression of the potential of multipartite entanglement in a
different form. The Fourier coefficients zk of a quantum state
can be written as

zk = �1
k + i�2

k, (4.1)

with �
μ

k , μ = 1,2, real numbers. We will consider this object
as a two components vector. In terms of these real quantities,
we can rewrite the potential of multipartite entanglement in
Eq. (2.5) in the following form [using the symmetries in
Eq. (2.10)]:

H =
∑

k,k′,l,l′∈Zn
2

�(k,k′; l,l′)

×
⎡
⎣2

2∑
μ,ν=1

�
μ

k �
μ

l �ν
k′�

ν
l′ −

2∑
μ,ν=1

�
μ

k �
μ

k′�
ν
l �

ν
l′

⎤
⎦

= Nc

2

∑
k,k′,l,l′∈Zn

2

�̃(k,k′; l,l′)
Nc∑

μ,ν=1

�
μ

k �
μ

l �ν
k′�

ν
l′ , (4.2)

for Nc ≡ 2, and

�̃(k,k′; l,l′) = 2�(k,k′; l,l′) − �(k,l; k′,l′). (4.3)

This expression can be put in a more compact form by writing

H = Nc

2

∑
k,k′,l,l′∈Zn

2

�̃(k,k′; l,l′)( ��k · ��l)( ��k′ · ��l′), (4.4)

where, in general, ��k = (�1
k, . . . ,�

Nc

k ), and the dot denotes
the scalar product. The index μ, ranging from 1 to Nc, will
play in the following the role of a color index, and we will
be interested in the limit Nc → ∞. The normalization of the
complex vector zk becomes, for generic Nc, the constraint

∑
k∈Zn

2

Nc∑
μ=1

(
�

μ

k

)2 =
∑
k∈Zn

2

��k · ��k = 1. (4.5)

We will now show that the generalized potential (4.4)
is positive for any color Nc, and will find a lower bound
which generalizes the bound on the potential of multipartite
entanglement, valid for Nc = 2. From (2.5) and the explicit
expression of the purity across the bipartition (A,Ā),

πA(z) =
∑

k,k′,l,l′
δkA,l′Aδk′

A,lAδkĀ,lĀ δk′
Ā
,l′

Ā
zk zk′ z̄l z̄l′ , (4.6)
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it is not difficult to express the potential as an average over
bipartitions

H ( ��) =
(

n

nA

)−1 ∑
|A|=nA

HA( ��), (4.7)

where

HA( ��) = Nc

2

∑
k,k′

∑
μ,ν

(
2�

μ

kAkĀ
�

μ

k′
AkĀ

�ν
k′
Ak′

Ā

�ν
kAk′

Ā

−�
μ

kAkĀ
�ν

k′
AkĀ

�
μ

k′
Ak′

Ā

�ν
kAk′

Ā

)
, (4.8)

with kA = (ki)i∈A.
Now, let

XkĀμ,lĀν =
∑
kA

�
μ

kAkĀ
�ν

kAlĀ
, (4.9)

and note that X is a symmetric NĀNc × NĀNc matrix, namely
XT = X. We get

HA = Nc

2

∑
kĀ,lĀ

∑
μ,ν

(
2X2

kĀμ,lĀν − XkĀμ,lĀνXkĀν,lĀμ

)
, (4.10)

that is

HA = Nc

2
[2 tr(XT X) − tr(XT Y )], (4.11)

with YkĀμ,lĀν = XkĀν,lĀμ a symmetric matrix. By the Cauchy-
Schwarz inequality for the Hilbert-Schmidt scalar product we
get

tr(XT Y ) � tr(XT X)1/2 tr(Y T Y )1/2. (4.12)

But it is easy to see that tr(Y T Y ) = tr(XT X), so that

HA( ��) � Nc

2
tr(X2) > 0. (4.13)

By making use of the constraint (4.5) we can estimate the
positive lower bound as follows. First notice that the positive
matrix X � 0 has unit trace. Indeed,

tr X =
∑
kĀ,μ

XkĀμ,kĀμ =
∑

kA,kĀ,μ

�
μ

kA,kĀ
�

μ

kA,kĀ
= 1, (4.14)

by (4.5). Therefore,

tr(X2) � 1

rankX
� 1

NcNĀ

. (4.15)

But, from the definition (4.9), we get that rank X � NA, so
that

HA( ��) � Nc

2NA

. (4.16)

By a straightforward computation, one can check that the
minimum is attained at

�
μ

k = φμ

√
NA

δkĀ,kA
,

∑
μ

(φμ)2 = 1, (4.17)

where the Kronecker delta is meant to be 1 when kĀ =
(kA,0, . . . ,0). Notice that (4.17) is the direct generalization of
the maximally bipartite entangled state across the bipartition
(A,Ā), with coefficients zk = eiαk δkĀ,kA

/
√

NA.

By plugging (4.16) into (4.7) we finally get the desired
lower bound

min H � Nc

2NA

, (4.18)

which may not be attained due to frustration among the
bipartitions. See the discussion in Sec. V.

However, an interesting simplification occurs in the limit
Nc → ∞. We now introduce the constraint (4.5) by means of
a Lagrange multiplier λ and rescale (for future purposes) the
inverse fictitious temperature β̃ = β/β0, with

β0 = 2N2

NA + NĀ − 1
∼ N3/2. (4.19)

We are finally left with the modified potential

β̃H(λ) = β̃β0
Nc

2

∑
k,k′,l,l′

�̃(k,k′; l,l′)( ��k · ��l)( ��k′ · ��l′)

+ λ
NcN

2

(∑
k

��k · ��k − 1

)
. (4.20)

The partition function is an integral over � and over the
Lagrange multiplier imposing the constraint so that

Z =
∫

dλ d� e−β̃H(λ). (4.21)

The evaluation of Z can be done by expanding it for small
β̃ since the λ part is quadratic and, after resummation of the
diagrams, calculating the saddle point in λ.

The saddle point equation in λ is

d

dλ
〈H〉β = 0 (4.22)

and it is equivalent to the request that∑
k

〈 ��k · ��k〉β = 1, (4.23)

where the average is evaluated using the full partition
function Z.

We should find the value of λ(β̃) that satisfies the constraint.
For example, for β̃ = 0 we have

G
(0)μν

kl = 〈
�

μ

k �ν
l

〉
0 = 1

λNcN
δμνδkl, (4.24)

where μ,ν are color indices; in order to satisfy the constraint
we need λ = 1.

In the limit Nc → ∞ the diagrams giving the dominant
contribution are the cactuses. The solution for β̃ > 0 can be
obtained from the Dyson equation (Fig. 7) by considering only

FIG. 7. Dyson equation for the propagator in the large-Nc limit.
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the nonzero propagator, obtained by setting μ = ν, k = l, as

G
μμ

kk = 〈
�

μ

k �
μ

k

〉
β

= G
(0)μμ

kk − β̃β0
Nc

2
G

(0)μμ

kk

∑
ν,l

�̃(k,l; k,l)Gνν
ll G

μμ

kk .

(4.25)

From Eq. (4.24) we get

G
μμ

kk = 1

λNcN
− β̃β0

2λN

∑
ν,l

�̃(k,l; k,l)Gνν
ll G

μμ

kk . (4.26)

Let us define the quantity

Gl =
Nc∑
ν=1

Gνν
ll (4.27)

that, inserted into Eq. (4.26), gives

G
μμ

kk = 1

NcN

1

λ + β̃β0

2N

∑
l �̃(k,l; k,l)Gl

. (4.28)

We now sum over the color index μ and obtain

Gk = 1

N

1

λ + β̃β0

2N

∑
l �̃(k,l; k,l)Gl

. (4.29)

We also notice that the constraint (4.23) implies∑
k∈Zn

2

Gk = 1. (4.30)

For sufficiently small β̃, we look for a solution with
unbroken permutation symmetry (SN symmetric)

Gk = 1

N
, ∀k ∈ Zn

2, (4.31)

so that from Eq. (4.29) we have

λ + β̃β0

2N2

∑
l

�̃(k,l; k,l) = 1. (4.32)

From Eqs. (2.6) and (4.3) we get∑
l

�̃(k,l; k,l) =
∑

l

[2g(0,k ⊕ l) − g(k ⊕ l,k ⊕ l)]

=
∑

l

[2g(0,l) − g(l,l)]. (4.33)

For balanced bipartitions we obtain∑
l

g(0,l) = NA + NĀ

2
,

∑
l

g(l,l) = 1, (4.34)

so that ∑
l

�̃(k,l; k,l) = NA + NĀ − 1 (4.35)

independent of k, and Eq. (4.32) reads

λ = 1 − β̃. (4.36)

FIG. 8. (Color online) Dependence of the rescaled minimum Ē
(n)
0

of the generalized potential (4.4) on the value of Nc for n = 4.

By using this result we get the average purity (again
retaining only the leading order in 1/Nc)

〈H 〉β = Nc

2

∑
k,l,μ,ν

�̃(k,l,k,l)Gμμ

kk Gνν
ll

= Nc(NA + NĀ − 1)

2N
∼ Nc√

N
, (4.37)

independent of β̃ which, for Nc = 2, gives the correct result
for the value of the first cumulant in Eq. (3.6) only at β̃ = 0.
This is due to the fact that, to the lowest order in β̃, subleading
diagrams in Nc are subleading in N as well. Notice how, in
this approximation, the dependence on the temperature has
disappeared (a similar phenomenon occurs in a matrix model
related to spin glasses [38]).

However, β̃ = 1 is a critical temperature, as one can see
that the � fluctuations become massless. In fact, the Lagrange
multiplier λ is the coefficient of the quadratic part of the
Hamiltonian (4.20),

∂2H
∂�α

k ∂�
β

l

∣∣∣∣
�=0

= 1

β̃
NcNδαβδklλ. (4.38)

Therefore, for β̃ > 1, λ < 0 and for N → ∞ we should
expect spontaneous symmetry breaking such that, for some
k, 〈�k〉> 0. The SN symmetry gets spontaneously broken.

This value of β̃c is not in evident agreement with the
numerics, although a tendency for large Nc of developing a
kink at β̃ ∼ 1 is noted in the data for n = 3, 4, 5, and 7. In
particular in Figs. 9, 10, 11, and 12 one notices that for small
β̃ by increasing Nc the data move towards the large-Nc, small
β̃, β̃-independent result (4.37), while for large β̃ the flow
is reversed, probably asymptoting to the large-Nc minimum
value of the generalized potential.

A complete solution of the partition function of the quartic
Hamiltonian (4.20) and the 1/Nc corrections will be the subject
of future work.
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FIG. 9. (Color online) Numerical results for n = 3 (N = 8) and
Nc ranging from 2 to 20. β0 and HNc

are defined in Eqs. (4.19)
and (6.1).

V. MINIMUM OF THE POTENTIAL
IN THE LARGE-Nc LIMIT

In this section we will give an explicit example of what
happens to the potential of multipartite entanglement for
increasing values of Nc.

Let us start by considering a collection of qubits. We recall
that this case corresponds to Nc = 2. In particular, it is well
known [11,23,24] that for n = 4 or n � 8, the ideal minimum
of the potential of multipartite entanglement (4.4) cannot be
reached, i.e.,

E
(n)
0 = minH � Nc

2NA

= Nc

2
2−[ n

2 ], (5.1)

where [·] denotes the integer part. We encounter the so-
called frustration of multipartite entanglement. In other words
the requirement that the bipartite entanglement is maximal
(minimal purity) for all bipartitions can engender conflicts.
Incidentally, we notice that this phenomenon can be found not
only for spin systems but also for infinite-dimensional systems
as in the case of Gaussian states [39].

FIG. 10. (Color online) Numerical results for n = 4 (N = 16)
and Nc ranging from 2 to 20. β0 and HNc

are defined in Eqs. (4.19)
and (6.1).

FIG. 11. (Color online) Numerical results for n = 5 (N = 32)
and Nc ranging from 2 to 20. β0 and HNc

are defined in Eqs. (4.19)
and (6.1).

In order to study this phenomenon, let us define the quantity

Ē
(n)
0 = 2

Nc

E
(n)
0 , (5.2)

which represents the rescaled minimum of the potential (4.4)
for different values of Nc. In order to understand the conse-
quence of the large-Nc limit, we have performed a numerical
minimization of Eq. (4.4) for n = 4 and 2 � Nc � 8. In Fig. 8
we plot Ē(n)

0 as a function of Nc. It is manifest that by increasing
the value of the color parameter frustration disappears.
Indeed, for Nc = 2 we find Ē

(n)
0 = 1/3, in agreement with

previous results [15–17,19]. If Nc � 4 we have Ē
(n)
0 = 1/4.

Apparently the ideal minimum is obtained by minimizing
each term (4.8) in the generalized potential separately as if
they were independent. Therefore, for Nc � 4 the system is
unfrustrated. On the other hand, this means that one of the
most characteristic trait of multipartite entanglement cannot
be analyzed in the large-Nc limit.

FIG. 12. (Color online) Numerical results for n = 7 (N = 128)
and Nc ranging from 2 to 10. β0 and HNc

are defined in Eqs. (4.19)
and (6.1).
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Incidentally, it is interesting to notice that for n = 4 the
values of the minimum potential follow the law

Ē
(4)
0 = Nc + 2

6Nc

(5.3)

and that for Nc � 4 this expression becomes �1/4.
We emphasize that the case n = 4 qubits is far from being

trivial and has been widely investigated in the literature. States
that maximize the average purity for n = 4 do not necessarily
maximize the von Neumann entropy [17]. It is also known
that in the bipartite case, for large number of qubits, the
order of the phase transition changes when one goes from the
Renyi entropies to the von Neumann one [40]. Our analysis is
restricted to the potential of multipartite entanglement (purity)
and the von Neumann entropy is a limit that should be handled
with care.

VI. SIGNATURES OF THE PHASE TRANSITION
IN FINITE SYSTEMS

In the previous section we have found that a phase transition
is observed in the large-Nc limit, when β = β0 [see Eq. (4.36)].
In this section we will perform numerical calculations for finite
systems (and finite Nc) and show where and how the signatures
of this phase transition appear.

A. Search for the phase transition

In Figs. 9, 10, 11, and 12 [respectively for n = 3 (N = 8),
n = 4 (N = 16), n = 5 (N = 32), and n = 7 (N = 128)] we
plot the expectation value 〈H 〉β rescaled by

HNc
= Nc(NA + NĀ − 1)

2N
(6.1)

versus β̃ = β/β0 for different values of the color number Nc

obtained with Monte Carlo simulations. We recall that H is
defined in Eq. (4.4) and β0 in Eq. (4.19).

In all cases we notice that for large values of Nc there
is an inflection point. Moreover, for increasing values of Nc,
the curves tend to become flatter for small values of β/β0.
This behavior is more evident for n = 4 (N = 16) and n = 7
(N = 128). Finally, we notice that for n = 4 with Nc > 3 and
n = 7 with Nc = 10 there is an evident change in the behavior
of the curves for larger values of β/β0, apparently absent
in the case of n = 5. This could be due to the removal of
the multipartite entanglement frustration in the case n = 4 as
detailed in the previous section (the frustration phenomenon
is not present for n = 5, and the case n = 7 is still open).

The flattening in the region of small β̃ = β/β0 is interpreted
as a confirmation of the presence of a phase transition around
β̃ = 1 in the limit of large Nc. For n = 4 (where this effect is
more evident) we notice that the inflection point of the curves
moves from values of β̃ � 2 to β̃ � 1.5.

B. Hysteresis and replica overlaps

Having found clear signatures of the phase transition at
finite Nc,N we now try to elucidate its features. In particular,
we will search for the presence of hysteresis (in this context,
associated with a first order phase transition) and we will
study the overlap between parallel evolved replicas. To look

FIG. 13. (Color online) Search for the hysteresis phenomenon.
Numerical results for n = 4 (N = 16), Nc = 20. β0 and HNc

are
defined in Eqs. (4.19) and (6.1). Different curves correspond to
different number of Monte Carlo steps between each decrease of
β in the procedure. Blue dots: points for Nc = 20 shown in Fig. 10
(used as a reference); purple boxes: 300 Monte Carlo steps between
different temperatures; yellow diamonds: 200 Monte Carlo steps
between different temperatures; green triangles: 100 Monte Carlo
steps between different temperatures; blue (upside down) triangles:
50 Monte Carlo steps between different temperatures. See the text for
details.

for hysteresis we start from a large (“cool”) initial value of β

and we let the system reach equilibrium. At this point we start
to “heat” the system and decrease the value of β fixing the
number of Monte Carlo steps before the following decrease.
We then cool back the system to the initial β. The analysis
uses a simulated-annealing-like algorithm [41,42].

In Fig. 13 we show the results obtained for the case n =
4, Nc = 20. We start from β = 130 (point not shown in the
figure), corresponding to β/β0 � 1.8, and anneal for 20 values
of β (each step being equal to �β = 4). The different curves
correspond to 50, 100, 200, and 300 Monte Carlo steps before
each decrease of β. Notice that the second procedure is what
one calls quenching (as opposed to annealing). There is no
evidence of hysteresis. As a reference, we have included in
Fig. 13 also the curve (blue dots) that we have already included
in Fig. 10: we remember that each point has been obtained not
with simulated annealing but starting from β = 0, fixing the
value of β, let the system reach the equilibration, and then
performing a Monte Carlo run; the other curves in Fig. 13 are
in excellent agreement with the case of Nc = 20 in Fig. 10.
The annealing was repeated for 10 and 5 values of β instead
of 20, and no substantial evidence of hysteresis appeared.

In order to compare the results using different procedures,
we have tried to perform a simulated annealing procedure also
going from β = 0 to larger values of the inverse temperature.
We have changed the speed of the annealing procedure by
varying the number of Monte Carlo steps between successive
temperatures. The system is cooled starting from a given
temperature, without going back to the initial state at every
step. We expect to find the same results as in Fig. 13. We start
from β/β0 = 0 and then proceed with simulated annealing
at steps � 0.1 up to β/β0 = 3 and then at steps � 1 up to
β/β0 = 10. The rescaled potential for 500 Monte Carlo steps
between different temperatures is plotted in Fig. 14, where
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FIG. 14. (Color online) Numerical results for n = 4 (N = 16),
Nc = 20, and 500 Monte Carlo steps (purple boxes). The data for the
case Nc = 20 in Fig. 10 (blue dots) are used as a reference. β0 and
HNc

are defined in Eqs. (4.19) and (6.1). See the text for details.

we show (blue dots) the curve obtained without the simulated
annealing and the results using the simulated annealing (purple
boxes). They corroborate our previous finding and extend the
graph to larger values of β (below the frustrated minimum). No
difference is observed for 100 Monte Carlo steps (not shown).
We conclude that no hysteresis is present.

As a final test, we have considered the behavior of the
overlap between configurations of two different Monte Carlo
simulation run in parallel (labeled 1 and 2, respectively). This
quantity is defined as

〈q2〉β =
〈[∑

k

��(1)
k · ��(2)

k

]2〉
β

, (6.2)

where the average is performed at a fixed value of β, by
considering a configuration every ten Monte Carlo steps. We
have considered the case of 500 Monte Carlo steps between
different values of β. In order to check the robustness of the
numerical results we performed ten different simulations and
extracted only five overlaps. We observed a strong dependence
on the choice of the pairing. In some cases we noticed a
decrease of the overlap around β/β0 � 2.5, that most likely
corresponds to different replicas freezing in different minima.
In all cases, the overlaps remain bounded and never show
any symptoms of possible divergencies. These results are
indicative but not conclusive, due to the presence of large
error bars and we will study this aspect of the problem in a
future publication. It is also worth noticing that the error bars
reduce significantly when β/β0 � 1.5.

VII. CONCLUSIONS

We have investigated the behavior of the potential of
multipartite entanglement by generalizing the problem to
Nc colors and taking a large-Nc limit. In the analytical

treatment we find that an instability occurs for sufficiently
small temperatures that breaks the permutational symmetry
between spin configurations. This instability generates, in the
thermodynamic limit, a second order phase transition.

We have performed numerics for small system sizes
(n � 7,Nc � 20) and observed the signatures of such phase
transition (Sec. VI B). In order to exclude a first order
transition, we have investigated the hysteresis phenomenon,
not finding any signature of it. The quantitative comparison of
the analytic, large-Nc results, with the numerics is plagued by
large-Nc corrections (larger, the larger is n), but it is to a large
extent satisfactory.

The frustration generated by the entanglement monogamy
is to some extent similar to what happens in frustrated spin
systems which have (for low temperatures) a glassy phase.
However, it is worth remembering that our model does not
contain any quenched disorder. Taking this into account, a
more fit analogy is with configurational glasses [43–45].

Our result is of considerable significance for the physics of
entanglement. Decreasing the temperature, the average of the
potential of multipartite entanglement decreases towards its
minimum. A smaller value of the potential is representative of
a more entangled state. The typical states at low temperature
are sampled from a measure which is not Sn symmetric,
so the states which minimize the potential are necessarily
concentrated on fewer spin configurations. This is at first
thought counterintuitive. One might think that in order to
get more multipartite entanglement one should mix in more
configurations and create a more uniform wave vector on the
binary hypercube Zn

2. We show that the opposite is true. The
states which maximize the multipartite entanglement have a
certain degree of breaking of the Sn symmetry.

Finally, there are other features of entanglement frus-
tration that have not been analyzed in this article, that
pertain to the ground states of some quantum many-body
Hamiltonians [46–51]. As entanglement is a resource for
quantum computation, it would be desirable to see if one
can find a quantum Hamiltonian whose ground state is highly
entangled. In this direction, recent developments have shown
that some quantum many-body Hamiltonians [52–54] made
from projectors [55,56] do violate the common area law for
entanglement in favor of volume or almost-volume law. These
ground states are likely candidates for quantum certificates of
difficult quantum computation problems.
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