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a b s t r a c t

We unveil the existence of a non-trivial Berry phase associated
to the dynamics of a quantum particle in a one dimensional box
with moving walls. It is shown that a suitable choice of boundary
conditions has to be made in order to preserve unitarity. For these
boundary conditions we compute explicitly the geometric phase
two-form on the parameter space. The unboundedness of the
Hamiltonian describing the system leads to a natural prescription
of renormalization for divergent contributions arising from the
boundary.
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1. Introduction

The case of a non-relativistic quantum particle confined in a one dimensional box with moving
walls subject to Dirichlet boundary conditions has been investigated in great detail in [1]. In this
paper we consider more general boundary conditions and study the geometric phases that emerge.
The boundary conditions we focus on are those consistent with the unitarity of the dynamics as well
as with dilation symmetry.

Geometric phaseswere investigated byBerry andWilkinson [2]who considered the behavior of the
eigenfunctions of the Laplacian in a two-dimensional regionwith a triangular boundarywith Dirichlet
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boundary conditions, when the shape of the region was varied adiabatically. This study revealed the
existence of ‘‘diabolical points’’, shapeswhich have an accidental degeneracy in the spectrum. Varying
the shape of the region in a small circuit around the diabolical point led to a reversal in the sign
of the eigenfunction. Similar effects were also noticed earlier in molecular physics [3] as explained
in the book by Shapere and Wilczek [4]. These sign reversals were an early example of a geometric
phase. In these problems the geometric phase is essentially of topological origin. Indeed, because of
the time reversal symmetry of the problem, wave functions can be chosen real and this constrains all
geometric phases to be 1 or −1. In a later work by Berry, the time reversal symmetry was broken by
the introduction of magnetic fields and this led to the discovery of the full geometric phase [5], which
since then has been studied and generalized in many directions [6,7] and widely applied [8,9].

In this paper, unlike the example studied by Berry and Wilkinson, which is two-dimensional, we
consider a particle in a one-dimensional box subject to general boundary conditions, which (apart
from some special cases) violate time reversal symmetry. Our Hamiltonian operator is the Laplacian.
The location of the boundaries is adiabatically varied by translations and dilations, which gives us a
two-parameter space of variations.We find that there is a geometric phase and compute the two-form
on the parameter space.

It turns out that this two-form is the area form of a hyperbolic half-plane. This is at variance with
the curvature of the paradigmatic example (a spin in amagnetic field) in Berry’s seminal work [5]. The
latter was the area two-form of a sphere which is known to be associated to the degeneracy occurring
at zero magnetic field. Similarly, any eigenvalue crossing can be associated to a Berry curvature with
the samegeometry. Interestingly enough, ourmodel presents no crossing and the nontrivial geometric
phase is associated to a hyperbolic geometry.

In Section 2we describe themost general boundary conditions thatmake the Laplacian self-adjoint
andwe focus on a subset of thesewhich are invariant under dilations. Also, their possible experimental
implementations with cold atoms are shortly discussed. In Section 3 we show how one can reduce
the problem of moving walls into a fixed domain. In Section 4, we compute the geometric phase two-
form, which measures the extent of anholonomy in a closed circuit. This calculation involves some
subtleties which require a renormalization scheme. Section 5 provides an alternative perspective on
the renormalization procedure. Section 6 deals with the two special cases in which the boundary
conditions do not break time reversal symmetry, and Section 7 is a concluding discussion.

2. Moving walls and quantum boundary conditions

In this section we use the powerful technique of boundary triples [10] (see Appendix) to classify
the self-adjoint extensions of the Laplacian on an interval. We are going to use this approach in order
to find all possible boundary conditions which preserve unitarity and are invariant under dilations.

Let us consider a quantum spinless particle of massm confined in a one dimensional box I = [a, b].
The Hamiltonian, describing the kinetic energy of the particle, is (h̄ = 1)

Hψ =
p2

2m
ψ = −

1
2m
ψ ′′, ψ ∈ D(H) = D(I̊), (1)

where D(I̊) is the space of test functions, i.e. the infinitely differentiable functions with compact
support in I̊ = (a, b). The adjoint operator, HĎ, has the same functional form of the operator (1) but
acts on a larger space, namely D(HĎ) = H2(I), the space of square integrable functions on I = [a, b]
whose first and second (distributional) derivatives are square integrable. This Hamiltonian operator
is symmetric but certainly not self-adjoint, H ≠ HĎ, and thus it cannot be associated to an observable
of the physical system.

The Hamiltonian’s deficiency indices, determined by the equation

(HĎ
± i I)ψ = 0, (2)

are equal to 2, so that, by vonNeumann’s theorem (see for example [11]), the self-adjoint extensions of
the operator (1) are in a one-to-one correspondence with the unitary operators on C2. Unfortunately,
this is a non-constructive theorem and one needs to find other ways of working with self-adjoint
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extensions. With this end in view, we define the following maps from D(HĎ) to the space of boundary
data C2 (see Appendix):

ρ1 : D(HĎ) → C2
: ψ →


ψ(a)− iψ ′(a)
ψ(b)+ iψ ′(b)


,

ρ2 : D(HĎ) → C2
: ψ →


ψ(a)+ iψ ′(a)
ψ(b)− iψ ′(b)


. (3)

These are well defined since H2(I) ⊂ C1(I), and the following identity holds
⟨ρ1(ψ)|ρ1(ϕ)⟩C2 − ⟨ρ2(ψ)|ρ2(ϕ)⟩C2 = 2iΓHĎ(ψ, ϕ), (4)

where ΓHĎ(ψ, ϕ) = ⟨HĎψ |ϕ⟩ − ⟨ψ |HĎϕ⟩ is the boundary form defined in (A.1), which measures the
‘‘lack of self-adjointness’’ of the operatorH . Here ⟨ξ |η⟩C2 = ξ 1η1+ξ̄2η2 is the canonical scalar product
of ξ, η ∈ C2, while ⟨ψ |ϕ⟩ =


I ψ̄(x)ϕ(x)dx denotes the scalar product of ψ, ϕ ∈ L2(I).

Given these maps, we have by (4) that (C2, ρ1, ρ2) is a boundary triple (see Appendix) for the
Hamiltonian (1), and all the self-adjoint extensions of H are given by (A.8), which reads

D(HU) =


ψ ∈ H2(I) : (I − U)


ψ(a)
ψ(b)


= i (I + U)


−ψ ′(a)
ψ ′(b)


,

HUψ = −
1
2m
ψ ′′ (5)

where U is a unitary 2 × 2 matrix.
This is the result obtained in [12,13], which expresses all possible self-adjoint extensions of the

Laplacian in terms of unitaries on the Hilbert space of boundary data C2. The choice of particular
unitary matrices gives rise to some well-known boundary conditions, for example:

U = −I, ψ(a) = 0 = ψ(b), Dirichlet; (6)

U = I, ψ ′(a) = 0 = ψ ′(b), Neumann; (7)

U = σ1, ψ(a) = ψ(b), ψ ′(a) = ψ ′(b), periodic; (8)

U = −σ1, ψ(a) = −ψ(b), ψ ′(a) = −ψ ′(b), antiperiodic, (9)
σ1 being the first Pauli matrix.

Now we would like to extract and parametrize a particular subset of boundary conditions which
are invariant under dilations and will be useful in the following. The set we are looking for is made up
by all those boundary conditions which do not mix functions with derivatives at the boundary, that is
of the form

α ψ(a)+ β ψ(b) = 0, (a)
γ ψ ′(a)+ δ ψ ′(b) = 0, (b) (10)

where α, β, γ , δ ∈ C. It is easy to show that the conditions that have to be satisfied by the former four
parameters in order to represent a self-adjoint extension of the Hamiltonian on the interval I = [a, b]
are

βδ̄ = αγ̄ . (11)
If we set η = −β/α, the desired boundary conditions read

ψ(a) = η ψ(b),
ηψ ′(a) = ψ ′(b), (12)

and the unitary matrix in (5) associated to this self-adjoint extension is provided by

U =


|η|2 − 1
1 + |η|2

2η
1 + |η|2

2η
1 + |η|2

1 − |η|2

1 + |η|2

 . (13)
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Fig. 1. After the bending, the functions defined over the interval transform as in figure.

Some comments are in order. If η = ±1 we obtain periodic (8) and antiperiodic (9) boundary con-
ditions, while for η = 0 or η = ∞ mixed Dirichlet and Neumann conditions arise. However, pure
Dirichlet or Neumann conditions cannot be reached by our parametrization. Thus, the family in (13),
which we denote by {U(η)}η∈C∞

, where C∞ = C ∪ {∞}, does not exhaust the whole set of dilation-
invariant boundary conditions, which is instead provided by

{U(η)η∈C∞
, I,−I}. (14)

Moreover, it is worth noticing that the set {U(η)} does not form1 a subgroup of U(2).
From a physical perspective the boundary conditions in (12) are nonlocal, since they connect the

value of the wave function at one end of the interval with its value at the other end. A physical
realization of them requires that the interval be bent into a ringwith the two ends forming a tunneling
junction through which the wave function can acquire a phase given by (13). See Fig. 1. This can be
experimentally implemented bymeans e.g. of superconducting quantum interference devices, where
the properties of the Josephson junction are suitably chosen to give the required phase [14]. Another
possible experimental realization is offered by recent developments in cold-atomphysics. It is possible
to trap Bose Einstein condensates in optical traps andmanipulate them by altering the shape and size
of the trap. By detuning the laser frequency one can introduce optical barriers to bisect a circular
optical trap. A condensate in such a trap would give the same tunneling properties as a Josephson
junction [15] permitting to simulate various boundary conditions.

3. Moving and fixed walls

We start by generalizing the problem of a particle of mass m in a one-dimensional box with
moving walls subject to Dirichlet boundary conditions (extensively discussed in [1,16]) to a larger
class of boundary conditions, which we picked out in (14). For convenience we parametrize the one
dimensional box by

Il,c = [c − l/2, c + l/2], (15)

so that c ∈ R is the center of the interval, and l > 0 is its length, and consider the Hamiltonian (kinetic
energy)

Hψ = −
1
2m
ψ ′′, ψ ∈ Dl,c,

Dl,c =


ψ ∈ H2(Il,c) : ψ


c −

l
2


= ηψ


c +

l
2


, η̄ψ ′


c −

l
2


= ψ ′


c +

l
2


,

(16)

1 In fact, the family in (13) does not support a group structure because it has the topology of S2 which is not parallelizable.
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where η is a fixed complex number representing particular boundary conditions (12), and H2(Il,c) is
the Sobolev space of square integrable functions on Il,c , whose first and second derivatives are square
integrable functions.

Some comments are necessary. In the previous section we proved that the above boundary
conditions yield a good self-adjoint extension of the Hamiltonian on an interval. As already remarked
these do not mix the values of the functions at the border with their derivatives. In what follows we
will see that these are the only ones which are invariant under dilations [17], a crucial property for
what we are going to investigate.

Next we take into account the dynamics of this problem by taking smooth paths in the parameter
space (l, c) ∈ R+ × R: t → l(t) and t → c(t). Clearly we are translating the box by c(t) and
contracting/dilating it by l(t). As underlined in [1] determining the quantum dynamics of this system
is not an easy problem to tackle with, since we have Hilbert spaces, L2(Il(t),c(t)), varying with time
and we need to compare vectors in different spaces. The standard approach is to embed the time-
dependent spaces into a larger one, namely L2(R), extend the two-parameter family of Hamiltonians
(16) to this space and try to unitarilymap the problemwe startedwith into another one, characterized
by a family of time-dependent Hamiltonians on a fixed common domain.

With this end in view, we embed L2(Il,c) into L2(R) in the following way

L2(R) = L2(Il,c)⊕ L2(Icl,c), (17)

where Ic = R \ I is the complement of the set I , so that we can consider the extension of the
Hamiltonians defined in (16) as

H(l, c) =
p2

2m
⊕l,c 0, (18)

where the embedding and the direct sum obviously depend on l and c . Following [1] we recall how to
reduce thismovingwalls problem into a fixed domain one. The composition of a translation x → x−c
and of a subsequent dilation x → x/lmaps the interval Il,c onto

I = I1,0 =


−

1
2
,
1
2


, (19)

which does not depend on c and l. Next we need to define a unitary action of both groups on L2(R). A
possible choice is

(V (c)ψ)(x) = ψ(x − c), (W (s)ψ)(x) = e−s/2ψ(e−sx), ∀ψ ∈ L2(R), (20)

and both c ∈ R → V (c) and s = ln l ∈ R → W (s) form one-parameter (strongly continuous) unitary
groups. The factor exp(−s/2) is consistent with the physical expectation that ψ transforms as the
square root of a density under dilation.

In order tomake the expression ln lmeaningful, from now onwe are going to identify lwith a pure
number given by the ratio of the actual length of the box and a unit length. The infinitesimal generator
of the group of translations is the momentum operator

p : D(p) = H1(R) → L2(R), pψ = −iψ ′, (21)

so that spatial translations are implemented by the unitary group

V (c) = exp (−icp) , ∀ c ∈ R. (22)

Similarly, the generator of the dilation unitary group is given by the virial operator over its maximal
domain:

x ◦ p := xp −
i
2

=
1
2
(xp + px), D(x ◦ p) = {ψ ∈ L2(R) | xψ ′

∈ L2(R)}, (23)

where A denotes the closure of the operator A. Dilations on L2(R) are, thus, implemented by

W (s) = exp (−is x ◦ p) , ∀ s ∈ R. (24)
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Next we define the two-parameter family of unitary operators on L2(R), which are going to fix our
time-dependent problem

U(l, c) : L2(R) → L2(R), U(l, c) = W Ď(ln l)V Ď(c). (25)

By this unitary isomorphism we are mapping H(l, c) into

H(l) = U(l, c)H(l, c)UĎ(l, c) =
p2

2ml2
⊕ 0, (26)

where we have used the identity

W Ď(ln l)pW (ln l) =
p
l
. (27)

The operators in (26) act on the time-independent domain

D(H(l)) = D ⊕ L2(Ic), (28)

where D = U(l, c)Dl,c is given by

D =


ψ ∈ H2(I) : ψ


−

1
2


= ηψ


1
2


, η̄ψ ′


−

1
2


= ψ ′


1
2


. (29)

We have thus achieved our goal, that is mapping the initial family of Hamiltonians with time-
dependent domains (16) into a family with a common fixed domain of self-adjointness (29). This has
been possible thanks to the unitary operator (25) and, most importantly, to the choice of dilation-
invariant boundary conditions (16) as discussed in the previous section. We have taken into account
those boundary conditions (12) which do not mix derivatives and functions at the boundary: these
are the only ones which leave the transformed domain D = U(l, c)Dl,c in (29) time-independent.

4. The Berry phase factor

The main objective of this section will be to exhibit a non-trivial geometric phase associated to
a cyclic adiabatic evolution of the physical system described in (16). Let C be a closed path in the
parameter space (l, c) ∈ R+ × R. Let the nth energy level be nondegenerate; then, in the adiabatic
approximation, the Berry phase associated to the cyclical adiabatic evolution is given by

Φn =


C

A(n)
= i


C

⟨ψn|dψn⟩, (30)

where ψn is the eigenfunction associated to the nth eigenvalue, d is the external differential defined
over the parameter manifold R+ × R, and

⟨ψn|dψn⟩ =


R
ψn(x)(dψn)(x)dx. (31)

In our case dψn reads

(dψn)(x) =


∂

∂ l
ψn


(x)dl +


∂

∂c
ψn


(x)dc. (32)

A technical difficulty arises from Eqs. (30)–(32). In this section we are going to show that, for
fixed η, the eigenfunctions {ψn}n∈N determine an orthonormal basis in L2(R). However, in general
the derivatives in (32) do not belong to L2(R) so that the integral in (31) is ill-posed and needs a
prescription of calculation. No doubt, the ill-posedness of (30) is due to the presence of a boundary in
our system.

First we need to determine the spectral decomposition of the Hamiltonian we started with in
(16) or equivalently in (18). Of course this would be a difficult problem to handle, but thanks to the
unitary operator in (25) we canmove on to the Hamiltonianswith fixed domain, compute the spectral
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Fig. 2. Regularized characteristic function (37).

decomposition and then make our way unitarily back to the problem with time-dependent domain.
Therefore, we need to solve the eigenvalue problem:

−
1

2ml2
φ′′(x) = λφ(x), (33)

where φ ∈ D in (29) and λ ∈ R. The spectral decomposition will heavily rely on the choice of
the parameter η, which, as already stressed, represents a particular choice of boundary conditions.
If η ≠ ±1 the spectrum is non-degenerate, and the normalized eigenfunctions have the form

φn(x) = sin(knx)+ eiα cos(knx), n ∈ Z, (34)

where

α = Arg

1 + η

1 − η


, kn = 2nπ + 2 arctan

1 − η

1 + η

, n ∈ Z, (35)

so that the dispersion relation (λ = k2/2ml2) reads

λn =
2

ml2


nπ + arctan

1 − η

1 + η

2

, n ∈ Z. (36)

Let ϕ be an arbitrary function belonging to L2(Ic); ϕ is clearly an eigenfunction of the 0 operator
on L2(Ic)with zero eigenvalue. Therefore we can extend φn to an eigenfunction of (18),ψn = φn ⊕ ϕ,
which can be conveniently chosen to be a test function: ψn ∈ D(R), the space of smooth functions
with compact support. To make it explicit, let us exhibit a construction of ψn(x; l, c).

Let φ̃n(x; l, c) be a smooth extension of φn(x; l, c) ∈ Dl,c ⊂ L2(Il,c) to the whole real line.
Roughly speaking our eigenfunction can be written as the restriction of this extension, namely
φ̃n(x; l, c)χIl,c (x), where χA(x) is the characteristic function of the set A [χA(x) = 1 if x ∈ A, and = 0
otherwise], showingwhydivergent contributions arise from the boundarywhen taking derivatives. So
the ideawhich underlies the following discussion is to regularize the contribution of the characteristic
function χIl,c .

Let ρ(x) be a nonnegative monotone decreasing function which belongs to C∞([0,∞)), moreover
we require that ρ(0) = 1, ρ(1) = 0 and ρ(n)(0) = 0 for n ≥ 1. We are going to paste two contracted
copies of the latter to χIl,c , such that the final result would be as in Fig. 2. Given ε > 0 we define the
regularized characteristic function of Il,c as follows:

χ εIl,c (x) =


1 for x ∈ Il,c

ρ


|x − c| − l/2

ε


for x ∉ Il,c

(37)

which is a test function, χ εIl,c ∈ D(R). In light of the previous discussion we choose the following
functions and show that they are eigenfunctions for the Hamiltonian (18):

ψn(x; l, c) = φ̃n(x; l, c) ξε(x; l, c), ε > 0, (38)
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Fig. 3. The regularization procedure (38).

where

ξε(x; l, c) =
1

∥φ̃n χ
ε
Il,c

∥
χ εIl,c (x). (39)

See Fig. 3.
Even if φ̃n ∉ L2(R), this will not alter the desired regularity property and the integrability con-

dition of (38). Clearly (38) is still an eigenfunction of (18) because ψn|Il,c = φn is an eigenfunction
of the Hamiltonian defined in (16) and ψn|Icl,c

is trivially an eigenfunction of the 0 operator with null
eigenvalue. Moreover, from the explicit expression in (39) this eigenfunction is normalized.

In this renormalization scheme,which is needed for the definiteness of (32),we are first embedding
Dl,c ⊂ L2(Il,c) into L2(R) and then regularizing the boundary contribution through the introduction of
the regularizer ξε .

Now it is essential to observe that

lim
ε→0

φ̃n(x; l, c) ξε(x; l, c) = φ̃n(x; l, c) χIl,c (x) = φn(x; l, c)⊕ 0, (40)

that is the eigenfunction of a particle confined in Il,c . Here, the convergence of the limit is pointwise
and, by dominated convergence, in L2(R). From a physical perspective, one can understand the above
strategy as obtaining a hard wall as a limit of increasingly steep potentials.

We are now in the right position to compute (31) for ε > 0, which is well posed, and then take the
limit ε → 0. We start by considering separately both the terms in

⟨ψn|dψn⟩ =


R
ψn(x)

∂

∂ l
ψn(x)dx


dl +


R
ψn(x)

∂

∂c
ψn(x)dx


dc, (41)

which, after an integration by parts, become
R
ψn

∂

∂ l
ψndx =

1
2


R

∂

∂ l
|ψn|

2dx + i Im


R


φn
∂

∂ l
φn


ξ 2ε dx, (42)

R
ψn

∂

∂c
ψndx =

1
2


R

∂

∂c
|ψn|

2dx + i Im


R


φn
∂

∂c
φn


ξ 2ε dx. (43)

By plugging the explicit expressions of the eigenfunctions we find, by dominated convergence, that
for ε → 0

Im


R


φn
∂

∂ l
φn


ξ 2ε dx =

kn
l3

sinα


R
(x − c)ξ 2ε (x)dx

→
kn
l3

sinα

Il,c
(x − c)dx = 0, (44)
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Fig. 4. The adiabatic path C.

Im


R


φn
∂

∂c
φn


ξ 2ε dx =

kn
l2

sinα


R
ξ 2ε (x)dx

→
kn
l2

sinα


R
χIl,c (x)dx =

kn
l
sinα. (45)

Moreover, since ψn has inherited from UĎ(l, c) the right regularity properties, for any ε > 0, one
gets 

R

∂

∂ l
|ψn|

2dx =
∂

∂ l


R

|ψn|
2dx = 0,


R

∂

∂c
|ψn|

2dx =
∂

∂c


R

|ψn|
2dx = 0. (46)

Summing up, we finally get the expression of the Berry one-form:

⟨ψn|dψn⟩ = i

kn
l
sinα


dc, (47)

which is manifestly not closed yielding a nontrivial Abelian phase. Notice that the one-form derived
in (47) is purely imaginary, consistently with the general theory of Berry phases [8]. Moreover it does
depend on the energy level through kn in (35) and on the boundary conditions through sin α.

As a simple example, we choose a rectangular path C in the (l, c) half-plane, as shown in Fig. 4,
and compute

Φn =


C

A(n)
= i


C

⟨ψn|dψn⟩, (48)

whose only non-trivial contributions are given by the vertical components of the circuit. The final
result is

Φn =


C

A(n)
= kn


1
l1

−
1
l2


(c2 − c1) sinα, (49)

which, as expected, depends on the particular path chosen. In the spirit of the physical implementation
of our system in terms of a ring with a junction (see Section 2), our cyclic adiabatic evolution could be
illustrated as in Fig. 5.

Another interesting aspect provided by this problem is linked to a nontrivial Berry curvature:

F (n)
= dA(n)

=
kn
l2

sinα dl ∧ dc. (50)

The above formula brings to mind the curvature of a hyperbolic Riemannian manifold. Indeed,
consider the Poincaré half-plane, which by definition is the upper-half plane togetherwith the Poincaré
metric:

ds2 =
dx2 + dy2

y2
. (51)
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Fig. 5. Cyclic evolution according to the path drawn in Fig. 4.

The half-plane is a model of hyperbolic geometry and if we consider the area form on it we have

A =
dx ∧ dy

y2
, (52)

which has the same structure as the Berry curvature (50) of our quantum mechanical model.
We remark that the relevant group in hyperbolic geometry is PSL(2,R) the group of real Möbius

transformations. The Lie algebra of this group is the space of real 2 × 2 traceless matrices which are
spanned by σ1, σ3 and iσ2, where the σ s are the usual Pauli matrices. The two generators σ3 and
σ+ = σ1 + iσ2 form a closed subalgebra. The structure of this Lie subalgebra is exactly the same as
ours: the commutator of the virial operator and the momentum operator is the momentum operator,
namely,

[x ◦ p, p] = ip. (53)

5. The regularization procedure: an equivalent perspective

Onemayobject to the regularization scheme introduced in theprevious section for its arbitrariness.
In fact, in order to have a well-posed problem we embedded our original problem into a larger space,
L2(R), and needed to make sense of the differential in (32). In this section we are going to understand
betterwhatmay be the problem in the definition of the derivativewith respect to our parameters, and,
moreover, we are going to show an alternative, intrinsic, approach to renormalization which does not
make use of any arbitrary embedding. Let us consider the following map:

(l, c) ∈ R+ × R → ζ (l, c) = UĎ(l, c)ζ = V (c)W (ln l)ζ ∈ L2(R), (54)

where ζ ∈ L2(R) is a suitable unit vector independent of (l, c), andU(l, c) is defined in (25).Wewould
like to understand better the following differential:

(dζ )(x) =


∂

∂ l
ζ


(x)dl +


∂

∂c
ζ


(x)dc. (55)

Fix l > 0 and consider the restriction of (54) to its second argument

c ∈ R → UĎ(l, c)ζ = V (c)W (ln l)ζ . (56)
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{V (c)}c∈R in (22) form a one-parameter group, whose generator is the momentum p defined in (21)
Thus,

∂

∂c
ζ (l, c) =


d
dc

V (c)

(W (ln l)ζ ) = −ipV (c) (W (ln l)ζ ) , (57)

which iswell posed if and only ifW (ln l)ζ ∈ H1(R). For this reasonwe can interpret ∂ζ (l, c)/∂c as the
distributional derivative of ζ (l, c)which is forced to belong to L2(R). In our case the extension of the
eigenfunction to the real line is smooth, φ̃n(l, c) ∈ C∞(R), so that the derivatives can be computed
classically. Clearly ∂φ̃n(l, c)/∂c is only locally summable over the real line. Since the restriction of
smooth functions to open subsets is still smooth and since from a physical perspective we can have
information only onwhat happens on the inside of the one dimensional box, Il,c , we give the following
prescription:

∂

∂c
φn(l, c) :=

∂

∂c
φ̃n(l, c)


I̊l,c

(58)

being an element of C∞(I̊l,c) and locally summable. An analogous prescriptionworks for the derivative
with respect to l. Let us return to our problem settled in H = L2(Il,c). This time the one-form is given
by

⟨φn|dφn⟩ =


Il,c
φn(x)


∂

∂ l
φn


(x)dx


dl +


Il,c
φn(x)


∂

∂c
φn


(x)dx


dc, (59)

where the derivatives in (59) are to be considered in the sense stated above, that is as locally integrable
functions in I̊l,c . Once more,

Il,c
φn(x)

∂

∂ l
φn(x)dx =


Il,c

∂

∂ l
|φn(x)|2dx −


Il,c
φn(x)

∂

∂ l
φn(x)dx. (60)

Due to normalization the first factor in the second member vanishes so that

Re


Il,c
φn(x)

∂

∂ l
φn(x)dx


= 0, (61)

while as before we get
Il,c
φn(x)

∂

∂ l
φn(x)dx = i Im


Il,c
φn(x)

∂

∂ l
φn(x)dx, (62)

and an analogous expression for the partial derivative with respect to c holds.
With this in mind we are able to get the same result (47) as before, by reaching the boundary from

the ‘‘inside’’, rather than from the ‘‘outside’’, so that our new prescription, though equivalent to the
one discussed above, may appear more natural. This is coherent from a physical perspective since we
can have information only on what happens on the inside of the one dimensional box Il,c .

6. The degenerate case

For completeness, we are going to investigate the exceptional cases η = ±1, which, as mentioned
before, correspond to degenerate spectra. For η = 1 we have that for any n ≥ 1 the two eigenvalues
λn and λ−n in (35) coalesce, and an orthonormal basis in the nth eigenspace is given by

φI
n(x) =

√
2 cos(2πn x), φII

n (x) =
√
2 sin(2πn x), n ≥ 1. (63)

For η = −1, we have instead that λn = λ−n−1, and a possible choice of an orthonormal basis is

φI
n(x) =

√
2 cos((2n + 1)π x), φII

n (x) =
√
2 sin((2n + 1)π x), n ∈ N. (64)
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From the general theory of geometric phases [18] it is well known that a degenerate spectral
decomposition gives rise to a one-form connection in terms of a Hermitian matrix and from a
geometrical perspective this corresponds to a connection on a principal bundle, whose typical fiber is
identified with a non-Abelian group.

Let us consider the case η = 1, which physically corresponds to periodic boundary conditions. We
need to compute the following matrix one-form:

A(n)
= i


⟨φI

n|dφ
I
n⟩ ⟨φI

n|dφ
II
n ⟩

⟨φII
n |dφI

n⟩ ⟨φII
n |dφII

n ⟩


, (65)

where the coefficients of the differentials are to be considered in the distributional sense. The former
equation yields the following result:

A(n)
= A

(n)
l dl + A(n)

a dc =
kn
l
σ2dc (66)

where σ2 is the second Pauli matrix. For a non-Abelian principal fiber bundle, the curvature two-form,
according to the Cartan structure equation, is provided by

F (n)
= dA(n)

+
1
2
[A(n),A(n)

]. (67)

Plugging in the explicit expression of the above one-form (66) we find that

F (n)
= dA(n). (68)

The latter equation shows explicitly that, although every fiber is two dimensional, the overall bundle
is trivial. The one-form connection in (66) can be globally diagonalizedmaking use of the basis of plane
waves. Indeed, if we had started from a ‘‘rotated’’ basis, instead of (63):

φI
n(x)± iφII

n (x) ∝ e±iknx, (69)

due to Euler’s identity, and computed (66) in this new basis, we would have obtained a diagonal
matrix. In the most general case, instead, one is able to determine only a local basis where the above
one-form (66) is diagonal. On the other hand, in our case the bundle can be globally trivialized.

7. Conclusions

We have considered the problem of a particle in a box with moving walls with a class of boundary
conditions. Unlike the example studied by Berry and Wilkinson (two dimensional region with
Dirichlet boundary conditions), our box is one dimensional and we impose more general boundary
conditions. We consider situations in which the location and the size of the box are slowly varied. Our
problem is complicated by the fact that different points in the parameter space correspond to different
Hilbert spaces. In order to deal with this we need to invoke a larger Hilbert space and exercise care
while varying our two parameters. Within this two parameter space we conclude that there is a non-
trivial geometric phase. The functional form of this phase two-form is suggestive of the area two-form
in hyperbolic geometry.

Our boundary conditions in general violate time reversal symmetry, i.e., the complex conjugate
of a wave function which satisfies the boundary condition described by η may not satisfy the same
boundary condition. In fact, the only boundary conditions that respect time reversal are those where
η is real. In this case, we would expect the geometric phase to reduce to the topological phase (which
only takes values±1). Thus the two form describing the phase must vanish. In fact when η is real (but
not equal to ±1, which is a degenerate case), α in (35) is zero or π and the corresponding geometric
phase two-form (50) vanishes, as it should.

The case of η = ±1 is exceptional since it has degeneracies in the spectrum. In this case one may
expect to find a U(2) non-Abelian geometric phase of the type discussed by Wilczek and Zee [18].
However, we find that the phase is a diagonal subgroup of U(2) and is essentially Abelian. This is easy
to understand from time reversal symmetry. Since translations and dilations are real operations, they
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commute with time reversal and so the allowed U(2) must also be real. This reduces U(2) to O(2),
which is Abelian. By a suitable choice of basis one can render the connection diagonal as in (68). The
‘‘non-Abelian’’ U(2)Wilczek–Zee phase is in fact in an Abelian subgroup. It is also worth noting that
the approach to η = ±1 is a singular limit because of the degeneracy there.

It is also interesting to note that the adiabatic transformations we consider act quite trivially on
the spectrum of the Hamiltonian. Indeed, the translations are isospectral and the dilations only cause
an overall change in the scale of the energy spectrum λn → λn/l2. In particular, there are no level
crossings and no degeneracies (away from η ≠ ±1). This illustrates a remark made by Berry in
the conclusion of [5]: although degeneracies play an important role in Berry’s phase, they are not
a necessary condition for the existence of geometric phase factors. Indeed, our example reiterates this
point. The Berry phases are nonzero even though one of the deformations is isospectral and the other
a simple scaling. It is the twisting of the eigenvectors over the parameter space that determines the
Berry connection and phase, not the energy spectrum.
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Appendix. Boundary triples

In this appendix we briefly recall the technique of boundary triples and their main applications
to the search of self-adjoint extensions of densely defined symmetric operators. For a review on the
subject see [10].

Von Neumann’s theory of self-adjoint extensions does not provide an explicit way to construct
them. The theorem, in fact, guarantees their existence once the dimensions of the deficiency subspaces
are found to be equal. However, self-adjoint extensions canbe constructed as restrictions of the adjoint
operator over suitable domains where a sesquilinear form identically vanishes.

Given T Hermitian, we define the following sesquilinear form:

ΓTĎ : D(T Ď)× D(T Ď) → C, (A.1)
ΓTĎ(ξ , η) := ⟨T Ďξ |η⟩ − ⟨ξ |T Ďη⟩, ∀ξ, η ∈ D(T Ď).

The essential ingredient in the analysis of self-adjoint extensions is given by the deficiency subspaces,
where the boundary form usually does not vanish. Every element ζ ∈ D(T Ď) can be uniquely split into
three components [11]

ζ = η + η+
+ η−, η ∈ D(T ), η+

∈ K+(T ), η−
∈ K−(T ), (A.2)

where K±(T ) are the deficiency subspaces, that is the null spaces of (T Ď
∓i I). From this decomposition

it is easy to prove that

ΓTĎ(ζ1, ζ2) = 2i

⟨η+

1 |η+

2 ⟩ − ⟨η−

1 |η−

2 ⟩

, ∀ζ1, ζ2 ∈ D(T Ď) (A.3)

showing how the boundary form can be used as ameasure of ‘‘lackness of self-adjointness’’. Moreover
von Neumann’s theorem tells us that every self-adjoint extension is in a one-to-one correspondence
with a unitary operator U between the deficiency subspaces. It follows that each self-adjoint
extension of T is given by

D(TU) = {ξ ∈ D(T Ď) : ΓTĎ(ξ , η
−

− Uη−) = 0, ∀η−
∈ K−(T )}. (A.4)

Following [10,19] we now introduce a more general tool useful for unveiling all the self-adjoint
extensions of a symmetric operator. We will show how this naturally arises from von Neumann’s
theory and extends it. Moreover, von Neumann’s theory and the use of boundary forms are helpful
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when studying differential operators, but what could one state about self-adjoint extensions of
Hermitian operators, which are not in general differential operators? A possible answer could be given
by boundary triples, which are a natural generalization of the notion of boundary values in functional
spaces.

Let T be a Hermitian operator with equal deficiency indices. Let h be an auxiliary Hilbert space and
take

ρ1, ρ2 : D(T Ď) → h, (A.5)

which are supposed to be linear and with dense ranges in h,

Ran(ρ1) = Ran(ρ2) = h. (A.6)

Suppose that they satisfy the following condition:

⟨ρ1(ξ)|ρ1(η)⟩ − ⟨ρ2(ξ)|ρ2(η)⟩ = aΓTĎ(ξ , η), ∀ξ, η ∈ D(T Ď), (A.7)

where a ∈ C, a ≠ 0, and ΓTĎ is the boundary form defined in (A.1). A triple (h, ρ1, ρ2) that satisfies
the above conditions is called a boundary triple.

Recall that from (A.3) the non-vanishing of the boundary form is due to non-trivial deficiency
subspaces, so that onemay choose either h = K+(T ) or h = K−(T ), and once more by von Neumann’s
theorem all self-adjoint extensions are in a one-to-one correspondence with unitary operators U :

K−(T ) → K+(T ).
Moreover, it could be useful to consider h with the same dimension of either one of the two

deficiency subspaces. The latter statement is enforced by the fact that two Hilbert spaces are unitarily
equivalent if and only if they have the same dimension.

In general, it can be proved that given a boundary triple (h, ρ1, ρ2) for a Hermitian operator with
equal deficiency indices, all the self-adjoint extensions TU of T are given by

D(TU) =

ξ ∈ D(T Ď) : ρ2(ξ) = Uρ1(ξ)


, TUξ = T Ďξ, (A.8)

for every unitary operator U : h → h [10].
In Section 2 we apply this theorem, by choosing as auxiliary space h the space of boundary data,

and a suitable pair of maps ρ1, ρ2, in order to get the parametrization of the self-adjoint extensions of
the Laplacian exhibited in [12,13].
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