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If very frequent periodic measurements ascertain whether a quantum system is still in
its initial state, its evolution is hindered. This peculiar phenomenon is called quantum
Zeno effect. We investigate the large-time limit of the survival probability as the total
observation time scales as a power of the measurement frequency, t /N↵. The limit
survival probability exhibits a sudden jump from 1 to 0 at ↵ = 1/2, the threshold
between the quantum Zeno effect and a diffusive behavior. Moreover, we show that
for ↵ � 1, the limit probability becomes sensitive to the spectral properties of the initial
state and to the arithmetic properties of the measurement periods. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4978851]

I. INTRODUCTION

The evolution of a quantum system is halted when many measurements are performed in a finite
time, in order to check whether the system is still in its initial state. This phenomenon is called the
Quantum Zeno Effect1 (QZE): the survival probability at a given time goes to one as the measurement
frequency increases.

The survival probability after N measurements in a time t is expressed by a product formula
depending on t and N. In this paper we investigate the uniformity in time of the QZE, and study the
behavior of the Zeno product formula for large N and t.

Let us first recall the basics of the QZE. Let a quantum system be prepared, at time t = 0, in the
state  , a normalized vector in the separable Hilbert spaceH . We denote by h·|·i the scalar product in
H . The system evolves under the action of the Hamiltonian H, a self-adjoint operator onH , through
the unitary group t 7! exp(�itH/~). The quantities

A(t)= h | exp
⇣
� it
~

H
⌘
 i (1)

and

p(t)= |A (t)|2 =
�����h | exp

⇣
� it
~

H
⌘
 i

�����
2

(2)

are called survival (or return) amplitude and probability, respectively, and represent the amplitude
and probability that the quantum system is found back in the initial state  at time t.

If the state  is in the domain of the Hamiltonian H, we have for t! 0

p(t)= 1 � t2

~2

⇣
hH |H i � h |H i2

⌘
+ o

⇣
t2

⌘
, (3)

where hH |H i � h |H i2 is the variance of the Hamiltonian in the state  .
Let us now carry out N repeated measurements with period ⌧ = t/N , in order to check whether the

system remains in its initial state. If at each and every time the measurement has a positive outcome

a)paolo.facchi@ba.infn.it
b)marilena.ligabo@uniba.it

0022-2488/2017/58(3)/032103/11/$30.00 58, 032103-1 Published by AIP Publishing.

http://dx.doi.org/10.1063/1.4978851
http://dx.doi.org/10.1063/1.4978851
mailto:paolo.facchi@ba.infn.it
mailto:marilena.ligabo@uniba.it
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4978851&domain=pdf&date_stamp=2017-03-27


032103-2 P. Facchi and M. Ligab`o J. Math. Phys. 58, 032103 (2017)

and the system is found in its initial state, the state “collapses” and the evolution starts anew from  .
Thus, the survival probability after N measurements reads

p(N)(t) := p
✓ t

N

◆N
=

�����h | exp
⇣
� it
~N

H
⌘
 i

�����
2N

. (4)

This is called Zeno product formula and will be the subject of our investigation.
The limit of infinitely frequent measurements, N!+1, of the Zeno product formula can be

easily computed using the Taylor expansion in (3): if the initial state  is in the domain of the
Hamiltonian H one gets

lim
N!+1 p(N)(t)= 1, (5)

uniformly in t on compact subsets of R, see Refs. 2–4. Therefore, if one performs frequent measure-
ments on a quantum system in a given time interval [0, t], a QZE takes place:1 the transitions to states
different from the initial one are hindered, despite the action of the Hamiltonian (in general the state
 is not an eigenstate of the Hamiltonian H).

We have derived the QZE (5) from the Taylor expansion (3), which is valid for a state  in
the domain of the Hamiltonian. However, (5) is of more general validity. For a full characterization
of the limit (5) when  does not belong to the domain of the Hamiltonian, and/or the projective
measurements are on a multidimensional subspace, see Ref. 4.

The QZE has been successfully demonstrated in a variety of physical systems, on experiments
involving ionic hyperfine levels,5 photons,6 nuclear spins,7 optical pumping,8 ultracold atoms,9 level
dynamics of individual ions,10 Bose-Einstein condensates,11 optical systems,12 and cavity quantum
electrodynamics.13 For a review on the mathematical and physical aspects of the subject see Ref. 2.

The QZE can be obtained both by pulsed and continuous measurements as well as by a strong
interaction.14–16 Recently it has been realized that by exploiting the quantum Zeno dynamics, one gets
a powerful approach to control. The key idea is to engineer a given evolution by a rapid sequence of
projections.17–19 This can yield a Berry phase20 or, more generally, non-Abelian geometric phases,21

a resource for holonomic quantum computation. Moreover, the QZE can be seen as an effective
way of imposing constraints and boundary conditions.3,22,23 Finally, notice that the QZE is a purely
quantum phenomenon: in classical mechanics it is not observed, since the measurement process can
be conceived so that it does not interfere with the evolution of the system.

In this article, we want to investigate the behavior of the Zeno product formula (4) as the
observation time becomes large, t!+1, namely, the double limit

lim
t!+1
N!+1

p(N)(t). (6)

Notice that, since the time dependence in (4) is given through the ratio t/~, the long-time limit
(6) is in fact a semiclassical limit, where the Planck constant ~! 0, namely,

lim
t!+1
N!+1

p(N)(t)= lim
t!+1
N!+1

�����h | exp
⇣
� it
~N

H
⌘
 i

�����
2N

= lim
~!0

N!+1

�����h | exp
⇣
� it
~N

H
⌘
 i

�����
2N

. (7)

In this respect, the limit (7) answers the following question: what happens to the evolution of the
system when we compare the period between two successive measurements with the quantum scale
given by ~/E0, with E0 being the relevant energy scale of the state?

For the analysis of the classical limit of the QZE see Ref. 24. By a semiclassical analysis on
phase space,25,26 it can be shown that the QZE vanishes at all orders in the Planck constant ~, in the
limit ~! 0, and thus it is a purely quantum phenomenon without classical analogue, at the same level
of tunneling. (Notice, however, that at variance with Ref. 24, in the present situation the state  and
the Hamiltonian H do not depend on ~.)

Heuristically, if we perform first the limit in N and then the limit in t we get QZE, namely,

lim
t!+1 lim

N!+1 p(N)(t)= 1. (8)
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Conversely, for a decaying system, if we invert the order of the two limits we obtain a classical
behavior, namely,

lim
N!+1 lim

t!+1 p(N)(t)= 0. (9)

Therefore, the limit (6) does not exist because it depends on the way in which it is computed.
In order to better understand the transition from (8) to (9), we look at the double limit (6) when

t diverges as a power of N, i.e.,
t = ⌧N↵, (10)

where ⌧ > 0 is a fixed time and ↵ � 0, see the right panel of Fig. 1. In this case, the survival probability
p(N )(t) depends only on N, ↵, and ⌧. Therefore, in the following we will consider the product formula:

pN ,↵(⌧) := p(N)(⌧N↵)= p(⌧N↵�1)N =
�����h | exp

 
� i⌧
~

N↵�1H

!
 i

�����
2N

, (11)

and investigate the limit
p(1)
↵ (⌧)= lim

N!+1 pN ,↵(⌧), (12)

for different values of ↵ � 0.
The value ↵ = 0 will correspond to the QZE limit (5),

p(1)
0 (⌧)= lim

N!1 p
✓ ⌧

N

◆N
, (13)

while the value↵ = 1 will correspond to the large-time limit of an evolution stroboscopically measured
with period ⌧,

p(1)
1 (⌧)= lim

N!1 p(⌧)N . (14)

The latter regime, describing a quantum system subject to periodic kicks, has become a paradigmatic
example in the study of quantum chaos.27,28 It represents a standard test bed for the investigation of
different features of the quantum systems whose classical counterparts have a chaotic evolution. In
Ref. 29, the dynamics of a kicked quantum system undergoing repeated measurements of momentum
has been investigated. A diffusive behavior has been obtained, even when the dynamics of the classical
counterpart is not chaotic and, in general, the system has been shown to have an anomalous diffusive
behavior, characteristic of intermittent classical dynamical systems and random walks in random
environments.30

Thus as ↵ ranges from 0 to 1, one goes from QZE to a kicked dynamics, and for a decaying
system the limit probability p(1)

↵ (⌧) goes from 1 to 0. We will show that the transition is abrupt with
a threshold at ↵ = 1/2, as shown in Fig. 1.

Moreover, we will also consider larger values of the exponent, i.e., ↵ > 1, which correspond to
repeated measurements with a larger and larger period. In such a case, the limit probability p(1)

↵ (⌧)
of a decaying system is obviously 0, but interesting exceptions will occur at particular values of ↵
and ⌧ for systems with recurrences.

Notice also that, as a consequence of the previous discussion, the limit (12) can be viewed as the
semiclassical limit (7) when ~ goes to zero as a power of N, i.e.,

~=
~0

N↵
, (15)

FIG. 1. Left panel: The value of the limit p(1)(⌧) in (12) as a function of the exponent ↵. Observe the abrupt transition at
↵= 1/2. Right panel: quantum and classical regimes in the N t plane. The QZE effect is along the horizontal axis, but it
keeps holding along all curves under the critical parabola t =⌧N1/2.
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where ~0 > 0 is a fixed constant. Therefore, for short in the following we will often refer to the
regime with zero limit probability as the classical regime as opposed to a nonzero limit probability
characteristic of a quantum regime, see Fig 1.

The article is organized as follows: in Section II, we discuss the case ↵ < 1 and we show that
↵ = 1/2 is the threshold exponent between quantum and classical behaviors; in Section III, we focus
on the case ↵ � 1 and we prove that, essentially, the system exhibits always a classical behavior, but
the limit becomes sensitive to the spectral properties of the state and to some interesting arithmetical
properties of ⌧ and ↵.

II. THRESHOLD EXPONENT BETWEEN QUANTUM AND CLASSICAL BEHAVIORS

In this section, we discuss the case 0  ↵ < 1 and we show that ↵ = 1/2 is the threshold exponent
between quantum and classical behaviors.

Theorem 1. Let  be a normalized state in the domain of H, i.e., kH k < +1. The limit (12)
of the product formula (11) has the following behavior:

(i) If 0  ↵ < 1/2 then
p(1)
↵ (⌧)= 1, (16)

uniformly in ⌧ on compact subsets of R.

(ii) If ↵ = 1/2 then

p(1)
1/2(⌧)= exp *

,�
⌧2

⌧2
Z

+
- , (17)

uniformly in ⌧ on compact subsets of R, where

⌧�2
Z =

1
~2

⇣
hH |H i � h |H i2

⌘
. (18)

(iii) If 1/2 < ↵ < 1 and  is not an eigenstate of H, then

p(1)
↵ (⌧)= 0, (19)

uniformly in ⌧ on compact subsets of R\{0}.

Remark 1. The time ⌧Z > 0 defined by (18) characterizes the initial quadratic behavior of the
survival probability and is known in the literature as the Zeno time.2 Notice that the variance of H
given by (18) is zero if and only if the state  is an eigenstate of H. In such a case, the Zeno time is
⌧Z =+1.

Proof. If 0  ↵ < 1/2 then

pN ,↵(⌧)= p
✓ ⌧

N1�↵
◆N

, (20)

therefore using (3) we obtain that

pN ,↵(⌧)=
2666641 � ⌧2

⌧2
Z N2(1�↵)

+ o

 
⌧2

N2(1�↵)

!377775
N

= 1 � ⌧2

⌧2
Z N1�2↵

+ o

 
⌧2

N1�2↵

!
. (21)

Since 1 � 2↵ > 0, we immediately obtain that

lim
N!+1 pN ,↵(t)= 1, (22)

uniformly in ⌧ on compact subsets of R.
Following the same procedure we obtain that for ↵ = 1/2,

pN ,↵(⌧)=
2666641 � ⌧2

⌧2
Z N

+ o

 
⌧2

N

!377775
N

, (23)
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therefore

lim
N!+1 pN ,↵(⌧)= exp *

,�
⌧2

⌧2
Z

+
- , (24)

uniformly in ⌧ on compact subsets of R.
Finally, we discuss the case 1/2 < ↵ < 1. Notice that

pN ,↵(⌧)= exp
f
N log p(⌧/N1�↵)

g
, (25)

where p is the survival probability (2). By (3), we have

log p(s)= log *
,1 � s2

⌧2
Z

+ o(s2)+
-=�

s2

⌧2
Z

+ o(s2), (26)

as s! 0, with a finite ⌧Z , since  is not an eigenstate of H. Therefore for s sufficiently small, say
|s|  �, one gets

log p(s)  � s2

2⌧2
Z

, (27)

whence

log p(⌧/N1�↵)  � ⌧2

2⌧2
Z

1
N2�2↵

, (28)

for N � (|⌧ |/�)1/(1�↵).
It follows that for ⌧ 2 [⌧1, ⌧2] ⇢R\{0} one gets

pN ,↵(⌧)  exp *
,�

⌧2
m

2⌧2
Z

N2↵�1+
- , (29)

for N � (⌧M/�)1/(1�↵), where ⌧m =min{|⌧1 |, |⌧2 |} > 0 and ⌧M =max{|⌧1 |, |⌧2 |}. Therefore,

lim
N!+1 pN ,↵(⌧)= 0, (30)

uniformly in ⌧ on compact subsets of R\{0}. ⇤

III. SENSITIVITY TO THE SPECTRAL PROPERTIES OF THE INITIAL STATE

In this section, we discuss the case ↵ � 1. We will show that in this regime the limit (12) exhibits
always a classical behavior, but it becomes sensitive to the spectral properties of the state  and to
the arithmetical nature of ↵.

We recall here some basic aspects of spectral theory; see, e.g., Ref. 31. Let ' be a vector in the
Hilbert space H , and let H be a self-adjoint operator. By the spectral theorem there exists a unique
Borel measure µ' on R such that

h'|f (H)'i=
⌅

�(H)
f (�) dµ'(�), (31)

for all f 2Cb(R), where �(H) denotes the spectrum of H and Cb(R) denotes the space of bounded and
continuous functions on R with complex values. The spectral properties of the Hamiltonian induce a
canonical decomposition of the Hilbert spaceH into the direct sum

H =Hc �H pp, H c=H ac �H sc, (32)

where

Hc = {' 2H : µ' is a continuous measure}
is the continuous subspace,

Hpp = {' 2H : µ' is a pure point measure}
is the pure point subspace,

Hac = {' 2H : µ' is absolutely continuous}
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is the absolutely continuous subspace, and

Hsc = {' 2H : µ' is singular continuous}
is the singular continuous subspace.

We recall that a Borel measure µc on R is continuous if it does not concentrate at any point, that
is, if

µc({x})= 0, for all x 2R, (33)

while a measure µpp is pure point (or discrete) if

µpp(B)=
X

x2B
µpp({x}), (34)

for all measurable sets B ⇢R. Moreover, a measure µac is absolutely continuous (with respect to the
Lebesgue measure dx) if it has a density function ⇢ locally integrable so that

dµac(x)= ⇢(x)dx. (35)

Finally, a singular continuous measure µsc is continuous but not absolutely continuous; a paradigmatic
example is the Cantor measure.31

In this section, we investigate how the limit (12) changes if the initial state  belongs to the
spectral subspaces Hpp, Hac, and Hsc, which physically correspond to bound states (made up of
eigenstates), scattering states, and unbound weakly recurrent states, respectively.

In the following theorem, we study the case ↵ = 1.

Theorem 2. If ↵ = 1 the product formula (11) is given by

pN ,1(⌧)=
����h |e�

i⌧H
~  i����

2N
= p(⌧)N (36)

and its limit
p(1)

1 (⌧)= lim
N!+1 p(⌧)N (37)

has the following behavior:

(i) If p(⌧)< 1 for all ⌧ 2R\{0} then
p(1)

1 (⌧)= 0, (38)

uniformly in ⌧ on compact subsets of R\{0}.
(ii) If there exists ⌧0 2R\{0} such that p(⌧0)= 1, then  2Hpp and there exists a positive integer

m such that

p(1)
1 (⌧)=

(
1 if ⌧/⌧0 2 1

mZ
0 otherwise.

(39)

Proof. The assertion (i) is obvious. Now assume that

p(⌧0)= |h |e�i⌧0H/~ i|2 = 1 (40)

for some ⌧0 2R\{0}. Then, we have that

h |e�i⌧0H/~ i= e�i⌧0a/~ (41)

for some a 2R. By the spectral theorem, we have that
⌅

�(H)
e�i⌧0(��a)/~ dµ (�)= 1, (42)

and thus ⌅

�(H)
(1 � cos(⌧0(� � a)/~)) dµ (�)= 0. (43)

Since (1 � cos(⌧0(� � a)/~)) � 0, we have that

(1 � cos(⌧0(� � a)/~))= 0 (44)
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almost everywhere with respect to µ . Therefore, there exist r 2N [ {+1} and a subset of integers
{kj : j = 1, . . . , r} ⇢ Z such that the support of the spectral measure µ is the set

(
�j = a +

2⇡kj~

⌧0
: j = 1, . . . , r

)
. (45)

Therefore the state  2H pp and has the form

 =
rX

j=1

cj j, (46)

where j is a normalized eigenvector belonging to the eigenvalue �j and cj 2C\{0}, for all j = 1, . . . , r;
see Ref. 31. Using (46) it is easy to check that p(⌧) can be written as follows:

p(⌧)=
����
⌅

�(H)
e�i⌧�/~ dµ (�)

����
2
=

����
rX

j=1

pje�i⌧�j/~
����
2

=

rX

j,l=1

pjpl cos
 

2⇡(kj � kl)⌧
⌧0

!
, (47)

where pj = |cj |2, j = 1, . . . , r, with
rX

j=1

pj = 1, (48)

since k k = 1. Consider now the greatest common divisor of the kjs

m= gcd{kj : j = 1, . . . r}, (49)

so that kj =mk̃j with k̃j 2 Z for j = 1, . . . r. We get

pN ,1(⌧)= p(⌧)N =
 rX

j,l=1

pjpl cos
✓2⇡(k̃j � k̃l)m⌧

⌧0

◆�N

. (50)

Therefore, if m⌧/⌧0 is an integer then all cosines are equal to one and pN ,1(⌧)= 1 for all N. On the
other hand, if m⌧/⌧0 is not an integer then there exists at least a pair of integers k̃j and k̃l which are
coprime, and thus (k̃j � k̃l)m⌧/⌧0 is not an integer and the corresponding cosine is not 1. Therefore
(39) holds. ⇤

Remark 2. Notice that |⌧0 |/m is the first return time of the survival probability (2), that is,
p(|⌧0 |/m)= 1 and p(⌧)< 1 for 0 < ⌧ < |⌧0 |/m. Moreover, observe that in the proof of assertion (ii) of
the previous theorem, we have retraced the proof of a well known result in probability, see Ref. 32,
Theorem 5 p. 288.

Now we discuss the case ↵ > 1.

Theorem 3. If ↵ > 1, the product formula (11) is given by

pN ,↵(⌧)= ���h | exp
⇣
� i⌧
~

N↵�1H
⌘
 i���2N

= p(⌧N↵�1)N (51)

and its limit (12) has the following behavior:

(i) If H is bounded from below then

p(1)
↵ (⌧)= lim

N!+1 pN ,↵(⌧)= 0, (52)

almost everywhere in ⌧ 2R.
(ii) If  2H ac then the limit (52) holds uniformly in ⌧ on compact subsets of R\{0};

(iii) If there exists ⌧0 2R\{0} such that p(⌧0)= 1, then  2Hpp and

lim sup
N!+1

pN ,↵(M ⌧0)= 1, (53)

for all ↵ 2Q and all M 2 Z.
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Proof. Notice first that if H is bounded from below, say H � Emin, then H̃ =H � Emin + 1 � 1 is
a strictly positive self-adjoint operator, and

|h |e�itH̃/~ i|2 = |h |e�itH/~ i|2 = p(t), (54)

so we can assume that the Hamiltonian is strictly positive with spectrum

�(H) ⇢ [1, +1). (55)

Then observe that

h |e� i⌧N↵�1H
~  i=

⌅

R
exp

 
� i⌧N↵�1�

~

!
dµ (�)= µ̂ 

 
N↵�1⌧

~

!
, (56)

where µ̂ denotes the Fourier transform of the measure µ. Let µ ,N be the spectral measure of the self
adjoint operator N↵�1H in the state  . Notice that the spectrum of the operator N↵�1H is

�(N↵�1H)=N↵�1�(H)= {N↵�1� : � 2�(H)}. (57)

Using the property of the Fourier transform it is easy to see that
✓
h |e� i⌧N↵�1H

~  i
◆N
=


µ̂ ,N

✓ ⌧
~

◆�N
= ⌫̂ ,N

✓ ⌧
~

◆
, (58)

where
⌫ ,N := µ ,N ⇤ . . . ⇤ µ ,N|               {z               }

N times

(59)

and ⇤ denotes the convolution product, defined by
⌅

R
f (�) d⌫ ,N (�)=

⌅

RN
f (�1 + . . . + �N ) dµ ,N (�1) . . . dµ ,N (�N ), (60)

for all f 2Cb(R).
We prove assertion (i). First we prove that

lim
N!+1

⌅

R
f (�) d⌫ ,N (�)= 0, (61)

for all f 2C0(R), where C0(R) denotes the space of continuous functions vanishing at infinity. Indeed,
if we fix a function f 2C0(R), we have that

⌅

R
f (�) d⌫ ,N (�)=

⌅

RN
f (�1 + . . . + �N ) dµ ,N (�1) . . . dµ ,N (�N )

=

⌅

RN
f
✓
N↵�1

NX

j=1

�j

◆
dµ (�1) . . . dµ (�N )

=

⌅

RN
f
✓
N↵

NX

j=1

�j

N

◆
dµ (�1) . . . dµ (�N )

=

⌅

[1,+1)N
f
✓
N↵

NX

j=1

�j

N

◆
dµ (�1) . . . dµ (�N ). (62)

Therefore, by the mean value theorem, we have that
⌅

R
f (�) d⌫ ,N (�)= f (N↵⇠N ), (63)

where

⇠N =
�̃1 + . . . + �̃N

N
� 1, (64)

for some (�̃1, . . . , �̃N ) 2 [1, +1)N and thus N↵⇠N! +1 as N!+1. Therefore, the limit (61) holds.
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Now we recall that, by the Riemann-Lebesgue lemma, for all � 2 L1(R) its Fourier transform
�̂ 2C0(R), and thus ⌅

R
�(⌧) ⌫̂ ,N

✓ ⌧
~

◆
d⌧ =

⌅

R
�̂

 
�

~

!
d⌫ ,N (�)! 0 (65)

as N!+1. Therefore we have proved that

lim
N!+1 ⌫̂ ,N

✓ ⌧
~

◆
= lim

N!+1

✓
h |e� i⌧N↵�1H

~  i
◆N
= 0 (66)

almost everywhere in ⌧ 2R, whence

lim
N!+1 pN ,↵(⌧)= lim

N!+1
����⌫̂ ,N

✓ ⌧
~

◆ ����
2
= 0 (67)

almost everywhere in ⌧ 2R.
Now we prove assertion (ii). If we assume that 2H ac, then dµ (�)= ⇢(�) d� (where the density

⇢(�)= | ̃(�)|2 2 L1(R) is the squared wave function of  in the energy representation), and thus

p(t)= |h , e�
itH
~  i|2 =

�����
⌅

R
e�i t�

~ ⇢(�)d�
�����
2

! 0 (68)

as t!±1, by the Riemann-Lebesgue lemma. Therefore we have that

p(⌧N↵�1)< � < 1 (69)

definitively in N, for ⌧ , 0, and thus

lim
N!+1 pN ,↵(⌧)= lim

N!+1 p(⌧N↵�1)N = 0, (70)

uniformly in ⌧ on compact sets of R\{0}.
Finally we prove (iii). In the proof of Theorem 2 we have shown that if the survival probability

p(⌧0)= |h |e�i⌧0H/~ i|2 = 1 (71)

for some ⌧0 , 0, then  2H pp and the survival probability has the form (47). Therefore, we have that

pN ,↵(⌧)= p(⌧N↵�1)
N
=

����
rX

j=1

pje�i⌧N↵�1�j/~
����
2N

=
 rX

j,l=1

pjpl cos
✓2⇡(kj � kl)N↵�1⌧

⌧0

◆�N

, (72)

with
P

pj = 1 and kj 2 Z for j = 1, . . . r. Notice that if ↵ 2Q, then ↵�1= n1/n2 for some n1, n2 2N\{0}.
Therefore if we consider the subsequence Nm :=mn2 we have that

pNm ,↵(M ⌧0)=
 rX

j=1

pjpl cos
�
2⇡(kj � kl)mn1 M

��Nm

= 1, (73)

for all m 2N and M 2 Z, therefore we have that

lim
m!+1 pNm ,↵(M ⌧0)= 1. (74)

Since pN ,↵(⌧)  1 for all ⌧ 2R and N 2N, we conclude that

lim
m!+1 pNm ,↵(M ⌧0)= lim sup

N!+1
pN ,↵(M ⌧0)= 1. (75)

⇤

Remark 3. In the case of a finite-dimensional Hilbert space, dimH<+1, all states  are bound,
H =Hpp, and are a (finite) linear combination of eigenstates of H. Therefore, the assertion (ii) of
Theorem 3 is empty, while the assertions (ii) of Theorem 2 and (iii) of Theorem 3 correspond to the
case of a closed orbit on a (finite-dimensional) torus, which happens if and only if the eigenvalue
differences are in complete resonance (all their ratios are in Q).
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IV. CONCLUSIONS

Let us summarize the main results obtained in this article in more intuitive terms, by focusing
on those quantities that are more directly related to physical intuition. We have analyzed the double
limit

lim
t!+1
N!+1

p(N) (t) (76)

in the case t /N↵, for all possible values of ↵ � 0.
We have shown that if 0  ↵ < 1/2 the limit equals 1, namely, the system is frozen in its initial

state and the QZE takes place. At ↵ = 1/2, the limit (76) is strictly smaller than 1 for all times and
decays in time as a Gaussian (17). If 1/2 < ↵ < 1 the limit (76) is equal to 0 for all times, thus we
observe a classical behavior, see Fig. 1.

Moreover, if ↵ � 1 the limit probability is a strange beast and becomes sensitive to the spectral
properties of the state  . In general, the limit (76) is 0 for almost all times, and if the state is decaying,
 2H ac, the limit (76) is always 0 for all times.

The existence of times t at which the limit (76) is nonzero has been clarified, at least for bound
states, 2H pp. In fact there are bound states with a periodic dynamics. Thus, if one performs repeated
measurements at the natural period, namely, if one looks stroboscopically at the particle dynamics, the
presence of the measurements becomes immaterial: the classical and the quantum behaviors simply
coincide and the limit (76) at that time is equal to 1.

Concerning the existence of times at which the limit (76) is not 0 for states in the continuous
singular spectrum  2H sc, i.e., recurrent unbound states, we can only say that the set of those times is
negligible. It is more difficult to grasp this situation by physical intuition and its full comprehension
would require a further analysis which is beyond the scope of this paper.

Summarizing, we have unveiled the presence of two threshold exponents: the threshold between
quantum and classical behaviors at ↵ = 1/2, and the threshold of sensitivity to the spectral properties
of the initial state at ↵ = 1.
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