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Preface

Unstable systems decay according to an exponential law. Such a law has been experimentally
verified with very high accuracy on many quantum mechanical systems. Yet, its logical status
is both subtle and delicate, because the temporal behavior of quantum systems is governed by
unitary evolutions. The seminal work by Gamow [1928] on the exponential law, as well as its
derivation by Weisskopf and Wigner [1930a] are based on the assumption that a pole near the
real axis of the complex energy plane dominates the temporal evolution of the quantum system.
This assumption leads to a spectrum of the Breit-Wigner type (Breit and Wigner [1936]) and
to the Fermi Golden Rule (Fermi [1932]; Fermi [1950]). However, it is well known that a purely
exponential decay law can neither be expected for very short (Mandelstam and Tamm [1945];
Fock and Krylov [1947]) nor for very long (Hellund [1953]; Namiki and Mugibayashi [1953];
Khalfin [1957]; Khalfin [1958]) times. The domain of validity of the exponential law is limited:
the long-time power tails and the short-time quadratic behavior are unavoidable consequences
of very general mathematical properties of the Schrödinger equation (Nakazato, Namiki and
Pascazio [1996]).

This thesis is divided in two parts. In the first part we investigate in detail the quantum
time evolution and frame it in a coherent theoretical scheme. Particular attention is devoted
to the role of the form factor of the interaction, which is strictly related to the physical size
of the system. It determines the analytical structure of the complex energy plane and the
characteristic features of the temporal behavior.

It is known that the time evolution of an unstable system can be divided in three distinct
regions: an initial quadratic region, characterized by its concavity τZ, an approximately expo-
nential region and an inverse power-law tail at large times. We clarify, by investigating some
solvable models and realistic decaying systems, that the duration of the initial quadratic region
is in general much shorter than τZ and is indeed proportional to the physical size of the system.
Moreover, we find that this region is nothing but the first of a series of damped oscillations
over the dominant exponential contribution. They are caused by a peculiar interference effect
between the contribution of a pole and that of a cut in the complex energy plane. These
oscillations manifest themselves again at the transition between the exponential regime and
the large-time inverse-power tail. We finally introduce an energy rescaling procedure, strictly
related to the “λ2t” rescaling invented by Van Hove [1955], that enables one to understand in
great detail how the characteristic time scales of the decay behave as a function of the coupling
constant, in the small coupling limit.

All these results (endeavor to) give an answer to the following question: why is the expo-
nential law valid with very good experimental accuracy for most unstable atoms and nuclei
and why do its theoretically predicted deviations seem to escape the experimental investiga-
tion? Moreover, they give suggestions about the experimental conditions that are necessary
to observe them. We stress that the only direct experimental evidence of the nonexponential
behavior of a decaying system at short times is rather recent (Wilkinson, Bharucha, Fischer,
Madison, Morrow, Niu, Sundaram and Raizen [1997]) and that the inverse-power law tails have
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never been observed (Norman, Gazes, Crane and Bennett [1988]; Cho, Kasari and Yamaguchi
[1993]).

One of the most puzzling features of quantum mechanics is the role of the observer, who
can strongly influence the evolution of the system under investigation. This effect is perhaps
nowhere more dramatic than in the phenomenon called “quantum Zeno paradox” (Misra and
Sudarshan [1977]) leading to seemingly paradoxical consequences. The paradox states that a
system that is continuously observed, in order to ascertain if it is decayed, does not decay at
all. In other words, a watched pot never boils. Nowadays the name “quantum Zeno effect”
seems more appropriate: repeated observations “slow down” the evolution. This effect is
strictly related to the short-time deviations from the exponential law, in particular to the
initial vanishing decay rate. Therefore, observation of the former is an indirect evidence of the
initial quadratic behavior.

In the second part of this thesis we study the possibility of controlling the evolution by
“observing” the quantum system. We will find that in the case of decaying systems, as opposed
to oscillating ones, new physical phenomena occur (quantum “Heraclitus” effect): if the system
is observed frequently, but not too frequently, the decay is enhanced, rather then hindered.
Of course, by increasing the frequency of observations, a quantum Zeno effect is eventually
obtained. This richer behavior is ultimately due to the above-mentioned onset of a time scale
different from τZ in systems with a finite extension, i.e. a finite form factor.

Our general philosophy is that there is nothing “magic” in all these phenomena: they
are simply the consequence of a dynamical evolution, that can be explained in terms of the
Schrödinger equation, without making use of the “collapse postulate,” as implied by the pro-
jection operators. The evolution is modified as a consequence of the new dynamical features
introduced by the coupling with an external agent that (through its interaction) “looks” closely
at the system. Only when this interaction can be effectively described in terms of an effective
projection operator we recover the original formulation of quantum Zeno. This idea will consti-
tute the “backbone” of the whole work. When this concept is fully elaborated, one can realize
that a broader definition of Zeno effect is required, that takes into account the very concept
of continuous measurement, performed for example by a quantum field or by the environment.
The novel theoretical scheme we introduce enables one to look at the quantum time evolution
from a different perspective and comprises, in a more general framework, all the examples of
Zeno effects considered in the literature.
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Chapter 1

Introduction and summary

We start off with a bird’s eye view of the subjects analyzed in this thesis. This work is divided
in two parts. In the first part (chapters 2-6) we investigate the characteristic features of the
temporal behavior of quantum mechanical oscillating and unstable systems. In the second part
(chapters 7-12) we study the possibility of controlling the dynamics of the system by coupling
it with an external agent. The leitmotif of the whole work is the role of the form factor of the
interaction and the consequent analytical properties of the propagator in the complex energy
plane.

In chapter 2 we consider some theorems that yield bounds on the temporal behavior at
short and long times, implying deviations from the exponential decay law. We will see that for
a generic quantum system the dynamics cannot be purely Markovian, yielding an exponential
decay, due to a quantal regeneration effect that gives rise to a survived component of the state
at a given time from the decay components at earlier times. At short times the condition of
finite energy dispersion, i.e., a spectral density which vanishes sufficiently fast at large energies,
implies a vanishing decay rate at t = 0. The regeneration effect strongly manifests itself for a
spatially confined system. Such a system, having a discrete energy spectrum, never fully decays
and indeed keeps rebounding from the walls, repopulating almost completely the initial state
at finite time intervals (quantum Poincaré recurrence). Therefore a truly unstable system, i.e.
a system that definitely moves away from the initial state, necessarily must be endowed with a
continuous spectrum. But, in this case too, the physical requirement of the existence of a finite
ground state energy implies that the decay cannot be exponential at large times, this being
another manifestation of the regeneration phenomenon.

In chapter 3 we construct some simple models that exhibit the characteristic features out-
lined in the previous chapter. We first summarize the oscillatory properties of a two-level
system and then generalize to a many-level system with a constant energy level density and a
constant coupling. In this case the energy uncertainty is infinite and indeed the decay is purely
exponential up to a time inversely proportional to the level spacing. On the other hand, the
spectrum is discrete and the recurrence phenomenon occurs at later times. By considering the
continuum limit version of this model we get a discrete state coupled to a flat-band continuum,
yielding a purely exponential behavior at all times. The two-level model and the flat-band
model will serve as references throughout the whole work. They represent two extreme cases,
yielding simple oscillations and exponential decay, respectively.

In chapter 4 we introduce some nonperturbative techniques that enable us to study in
great detail the temporal behavior of a generic quantum system. We will see that the temporal
evolution of the survival amplitude is strictly related to the analytical properties of its Fourier-
Laplace transform, the resolvent, in the complex energy plane. In particular, we will see that
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a truly unstable system has a propagator which is analytic in the complex energy plane except
for a cut along the real axis, which corresponds to the continuous spectrum of the Hamiltonian.
Therefore it can be expressed by a dispersion relation in terms of the discontinuity across the
cut. By using Dyson’s resummation it is possible to write the propagator in terms of the
self-energy function, whose analytical properties are strictly related to those of the propagator.
The exponential decay, as anticipated above, is due to the presence of a simple pole close to
the cut in the second Riemann sheet. All corrections are ascribable to the cut and/or other
(distant) poles contributions. We will see that at short times the latter sum up with the
exponential yielding a quadratic behavior, while at large times, when the pole contribution has
become exponentially small, the cut becomes dominant and yields an inverse power law tail.
In addition, there is an interference term between the pole and the cut contributions, yielding
damped oscillations over the exponential decay. From this perspective, the initial quadratic
region is nothing but the first of this series of oscillations.

An important result introduced in chapter 4 is the off-diagonal decomposition of the total
Hamiltonian in terms of the initial state. It reduces the self-energy function to a second-order
contribution and enables one to write the Hamiltonian in the Lee form, as explained in chapter
5. Using this formulation, the role of the form factor of the interaction becomes fundamental.
As already emphasized, a flat form factor gives rise to a purely exponential decay, i.e. to a
propagator with a simple pole (Weisskopf-Wigner approximation). As a further improvement
we consider a propagator with two poles, which derives from a Lorentzian form factor: it
yields the initial quadratic behavior together with the damped oscillations and eventually the
exponential decay. On the other hand, it reduces to the oscillating two-level system (with
two real poles) and to the flat-band system (with only one complex pole) for limiting values
of the parameters. Moreover, one can think of the two-pole model as a “reduction” of the
real system, with improved and richer characteristics than the Weisskopf-Wigner reduction.
The second part of the chapter is finally devoted to the study of the temporal evolution of
a real (and richer) system, such as the hydrogen atom. In the rotating wave approximation
the Hamiltonian is indeed in the Lee form and the form factor can be exactly evaluated. This
model displays all the general properties introduced earlier, such as a branch cut and a pole
in the second Riemann sheet, and enables us to compute the temporal evolution of a realistic
system with all its characteristic regions and time scales.

In chapter 6 we finally introduce a technique that enables one to evaluate, for a truly un-
stable system, all corrections to the exponential decay in the limit of small coupling. We will
deal with a limiting procedure introduced by Van Hove [1955] in order to rigorously derive
a Markovian master equation from the Schrödinger equation. In particular, we will use the
analogous of Van Hove’s “λ2t” limit in the complex energy plane and rigorously derive the
Weisskopf-Wigner single-pole approximation. Moreover we evaluate all corrections to the ex-
ponential decay law for Hamiltonians which are not of the Lee type, when the coupling constant
is small, but finite.

We stress that the only direct experimental evidence of the nonexponential behavior of
a decaying system at short times is rather recent (Wilkinson, Bharucha, Fischer, Madison,
Morrow, Niu, Sundaram and Raizen [1997]) and that the inverse power law tail has never been
observed (Norman, Gazes, Crane and Bennett [1988]; Cho, Kasari and Yamaguchi [1993]).
On the other hand, the temporal behavior of quantum mechanical systems can be strongly
influenced by the action of an external agent. Moreover, this influence is strictly related to the
deviations from the exponential law, in particular at short times. Therefore such an influence
yields an indirect proof of these deviations.

The second part of this work is devoted to the possibility of modifying the undisturbed
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evolution of a quantum system by coupling it to another system or apparatus. A good example
is the quantum Zeno effect (Misra and Sudarshan [1977]), where the quantum mechanical evo-
lution of a given (not necessarily unstable) state is slowed down (or even halted) by performing
a series of measurements that ascertain whether the system is still in its initial state. This
peculiar effect is historically associated and usually ascribed to what we could call a “pulsed”
quantum mechanical observation on the system. However, it can also be obtained by per-
forming a “continuous” observation of the quantum state, e.g. by means of an intense field
(Mihokova, Pascazio and Schulman [1997]; Schulman [1998]; Facchi and Pascazio [2000a]).

In chapter 7 we introduce the quantum Zeno effect and its relation with the short-time
quadratic behavior of the survival probability. We consider the effect of repeated instanta-
neous measurements on the initial state in the limit of infinite frequency, according to the
formulation of Misra and Sudarshan: the system is forced to remain in the subspace defined by
the measuring projections. We then analyze the more realistic case of a finite period between
successive measurements and exhibit the possibility of increasing, rather then slowing down,
the decay rate of a truly unstable system, i.e. the possibility of an “inverse” quantum Zeno
effect. In particular, we prove a theorem that states the relation between the emergence of
a Zeno–inverse Zeno transition and the value of the wave function renormalization. We then
clarify a subtle difference (related to “repopulation” effects) from the original formulation by
Misra and Sudarshan, by illustrating an application of pulsed measurements to an oscillating
system. In particular we find that the quantum Zeno effect is present even when repopulation
effects take place. This motivates us to formulate a more general framework for the Zeno ef-
fects. An important step in this direction is the understanding that the quantum Zeno effect
does not necessarily require the use of von Neumann’s projections, and it is possible to give a
dynamical explanation (Pascazio and Namiki [1994]), that involves only the Schrödinger equa-
tion and a Hamiltonian yielding a generalized spectral decomposition. As a consequence, it
becomes straightforward to consider the case of continuous measurement, as opposed to pulsed
measurements, by coupling the system with a (quantum) apparatus via a time-independent
interaction. In this case too, even if repopulation phenomena (in amplitude and/or probabil-
ity) take place, a quantum Zeno and, possibly, an inverse quantum Zeno effects occur. The
coupling constant in the continuous case plays the role of the frequency of measurements in
the pulsed version. In fact, it is possible to prove an adiabatic theorem, which is the coun-
terpart of Misra and Sudarshan’s theorem, for a purely dynamical evolution. It states that
by coupling a quantum system with an apparatus and by increasing the coupling constant,
the Hilbert space of the system is split into subspaces which are eigenspaces of the interaction
Hamiltonian and a superselection rule arises between different sectors. Therefore, any possible
interference between different subspaces is destroyed and the system is forced to evolve within
each sector, whence if it starts in one sector it cannot leave it. By using this result we can
finally formulate the Zeno effects in a broader framework (Facchi and Pascazio [2001]), which
includes all possible cases considered in the literature.

In chapter 8 we will study the effect of pulsed and continuous observations in a quantum
optical example, the down-conversion process. This can be viewed as the decay of a pump
photon into a couple of down-converted photons of lower energy, or, alternatively, when the
pump is described classically, as the decay of the vacuum state, which is unstable. Interesting
features of this system are its simplicity, which yields a solvable model, and its richness, for,
by changing the parameters, it is possible to obtain Zeno, inverse Zeno and even an oscillatory
behavior. Last, but not least, we mention its possible experimental implementation.

In chapter 9 we use again a down-conversion process in order to elucidate a subtle rela-
tion between the quantum Zeno effect and the classical stabilization induced by parametric
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resonance. We will study a periodic system, implemented by alternating slices of nonlinear
and linear crystals, and interpret the stabilization condition within the theoretical scheme of
the quantum Zeno effect given above. On the other hand, the Heisenberg equations of mo-
tion are exactly the same equations obtained for a classical inverted pendulum, giving rise to
parametric-resonance stability. In other words, rather surprisingly, the core of the Zeno region
consists of a region of operator stability which has a purely classical origin.

Another interesting system, which is suitable for experimental verification, is studied in
chapter 10. We consider a three-level system (such as an atom or a molecule), initially prepared
in an excited state. The decay will be (approximately) exponential and characterized by a
certain lifetime. But if one shines on the system an intense laser field, tuned at the transition
frequency of the other two levels, the lifetime of the initial state is modified and depends on the
intensity of the laser. A continuous observation is performed by the laser field and an inverse
Zeno effect is obtained. This is a realistic implementation of a continuous (Rabi) observation.
By using the asymptotic properties of the electromagnetic form factors, we can compute the
behavior of the modified lifetime as a function of the intensity of the laser.

The deviations from exponential law in quantum mechanics, given by the regeneration
effects, bear a close relation with localization phenomena and the quantum suppression of
classical chaos. Indeed, all these effects are ultimately due to quantum mechanical interference
effects, contained in the off-diagonal elements of the density matrix. The effectiveness of the
quantum Zeno effects is related to the ability of destroying this coherence. In chapter 11 we
consider the kicked rotator, a classical chaotic system which exhibits momentum localization
and consequent suppression of chaos. We show that by performing perfect measurements
(or equivalently a generalized spectral decomposition) of the momentum variable after each
kick, the localization is completely destroyed, a master equation is obtained and the evolution
becomes completely chaotic, yielding a diffusive behavior of the energy variable. This is a
clear manifestation of an inverse quantum Zeno effect. Moreover, quantum chaos is obtained,
even when the classical system has a regular behavior. This is due to the measurement-induced
exponential behavior of the occupation probability and yields a completely randomized classical
map in the semiclassical limit.

Finally, in chapter 12 we look at the modified (Zeno) dynamics from a different (but fruitful)
perspective. In the previous chapters the Zeno subspaces are always held fixed during the
evolution. Moreover, we stressed that the coherence between different sectors is destroyed due
to a superselection rule and the system is forced to remain in its initial sector. By contrast, we
now consider a situation in which the Zeno subspace changes, by changing the projections. As
a consequence, the system is forced to remain in a continuously varying sector and therefore to
follow an externally imposed trajectory. We call this effect “dynamical” quantum Zeno effect.
In this case we show that the coherence is completely preserved and results in a quantal Berry
phase. In principle, we can construct any geometrical phase, without any additional dynamical
contribution. We exhibit a specific experimental setup in which this effect can be seen for a
neutron spin and model this situation in terms of a nonhermitian Hamiltonian. We will see
that the degree of preserved coherence is related to a condition for adiabaticity, very close to
the original formulation of the geometrical phase given in the seminal paper by Berry [1984].



Part I

FREE DYNAMICS





Chapter 2

The exponential decay law in
quantum mechanics

2.1 The exponential decay law: a heuristic derivation

The simplest way to obtain the exponential decay probability of an unstable system is to
follow a heuristic approach. This derivation is usually called the “classical” theory of decay. It
is essentially based on the assumption that the unstable system has a given decay probability
per unit time Γ, which is constant and does not depend on the total number of unstable
systems or on their past history. Let N(t) be the number of undecayed systems at time t. For
sufficiently large N(t), the number of systems that will decay in the interval (t, t + dt) is

−dN = NΓdt ⇒ dN

dt
= −ΓN, (2.1)

which yields
N(t) = N0e

−Γt, (2.2)

where N0 = N(0) is the number of systems at t = 0. One defines the survival probability at
time t as

P (t) =
N(t)
N0

= e−Γt, (2.3)

where the N0 → ∞ limit is implicitly assumed. The (positive) quantity Γ is the decay rate and
is nothing but the inverse lifetime τ . Indeed the probability that the system survives up to a
time in the interval (t, t + dt) is just the survival probability P (t) at time t times the decay
probability Γdt in the interval dt, whence the lifetime τ is

τ =
∫ ∞

0
te−ΓtΓdt =

1
Γ

. (2.4)

Note that the law (2.3) has the peculiar property

P ′(t)
P (t)

= −Γ = const (2.5)

and at short times P (t) decreases linearly with time

P (t) ∼ 1 − Γt, for t → 0. (2.6)
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Notice that the assumptions underpinning the above derivation are delicate. Indeed the es-
sential ingredients of a Markovian stochastic process, in which memory effects are completely
absent, are apparent. The survival probability (2.3) satisfies the semigroup law

P (t + t′) = P (t)P (t′), (2.7)

namely the probability is invariant under time translation, modulo a scale factor. This property
is ultimately due to the assumption of a constant decay rate [see Eq. (2.5)], which excludes the
possibility that cooperative effects take place.

2.2 Quantum survival amplitude and probability

The derivation of the exponential decay law in quantum mechanics is the result of a series of
approximations, sometimes very subtle, which eventually yield the Fermi Golden Rule. Let
us define the fundamental quantities we will use in this work, their mutual relations and their
links with the physics of the decay problem in quantum mechanics.

Consider a quantum system Q represented by the state |ψ(t)〉. Let |a〉 be the initial state
at t = 0, viz., |ψ(0)〉 = |a〉. The dynamical evolution of Q in the Schrödinger picture is
governed by the unitary operator U(t) = exp(−iHt), where we considered a time-independent
Hamiltonian H. We define the survival amplitude at time t

A(t) = 〈a|U(t)|a〉 = 〈a|e−iHt|a〉 (2.8)

and the survival probability at time t

P (t) = |A(t)|2 = |〈a|e−iHt|a〉|2. (2.9)

2.2.1 The regeneration effect

We write the state at time t in the following form

|ψ(t)〉 = exp(−iHt)|a〉 = A(t)|a〉 + |ψd(t)〉 (2.10)

where
|ψd(t)〉 = Pd|ψ(t)〉 = (1 − Pa)|ψ(t)〉, Pa = |a〉〈a|, Pd = 1 − Pa. (2.11)

Notice that |ψd(t)〉 represents the decay products and is orthogonal to the initial state |a〉.
〈a|ψd(t)〉 = 0. (2.12)

In other words, we have decomposed the Hilbert space H = Ha ⊕ Hd as a direct sum of
the (one-dimensional) space of the survived system Ha = PaH and its orthogonal complement
Hd = PdH, which contains the decay products. The system, under its unitary evolution, decays
by evolving from Ha into Hd.

By applying the unitary operator exp(−iHt′) to both sides of Eq. (2.10) and taking the
inner product with the initial state 〈a|, we get

A(t + t′) = A(t)A(t′) + R(t′, t),
R(t′, t) = 〈a| exp(−iHt′)|ψd(t)〉 (2.13)

This equation, first derived by Ersak [1969], sheds light on the physics of the decay problem.
The additional term R(t′, t) in the r.h.s of Ersak’s equation provides a “regeneration” contri-
bution to the survival amplitude. The decayed components of the state at a given time give
rise to a surviving component at later times. It is just this regeneration effect which prevents
the occurrence of a purely exponential decay. Indeed, if R(t′, t) = 0, the survival probability
would satisfy the “classical” equation (2.7) that necessarily implies an exponential form.
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2.2.2 Spectral density function representation

Consider a complete set of eigenstates {|ν〉} of the Hamiltonian H

H|ν〉 = Eν |ν〉, (2.14)∑
ν

|ν〉〈ν| = 1. (2.15)

By plugging the closure relation (2.15) into Eq. (2.8), the survival amplitude can be written in
the following form

A(t) = 〈a|U(t)|a〉 =
∑

ν

〈a|e−iHt|ν〉〈ν|a〉 =
∫

dE e−iEt�a(E), (2.16)

where
�a(E) =

∑
ν

|〈ν|a〉|2δ(E − Eν) = 〈a|δ(E − H)|a〉 (2.17)

is the spectral density function of the initial state |a〉.
Let us examine the properties of �a(E). It is a nonnegative function with support on the

spectrum of H. Therefore, being integrable and nonnegative, it is an absolutely integrable
function. Indeed, by using Eq. (2.17),∫

dE |�a(E)| =
∫

dE �a(E) =
∑

ν

|〈ν|a〉|2 = 〈a|a〉 = 1. (2.18)

Notice that if the spectrum contains a continuous part σc, the sum in Eq. (2.17) contains
actually an integration over that part. Indeed ν is a shorthand notation for a collective index,
namely {|ν〉 = |E′, s〉}, where E′ is the energy and s are other (possible) quantum numbers
that are degenerate with respect to the energy. We get

�a(E) =
∑

ν

|〈ν|a〉|2δ(E − Eν)

=
∫

σc

dE′∑
s

|〈E′, s|a〉|2δ(E − E′) +
∑

n

∑
s

|〈En, s|a〉|2δ(E − En)

=

(∑
s

|〈E, s|a〉|2
)

χσc(E) +
∑

n

(∑
s

|〈En, s|a〉|2
)

δ(E − En), (2.19)

where χσc(E) is the characteristic function of the set σc [χσc(E) = 1 for E ∈ σc and 0 otherwise].
Therefore the spectral density is an ordinary function over the continuous spectrum σc and has
delta-like singularities over the discrete spectrum.

2.3 Short-time behavior

A naive expansion of Eq. (2.9) yields

P (t) = 〈a|e−iHt|a〉〈a|e+iHt|a〉 ∼
∞∑

n=0

(−i)n

n!
tn〈a|Hn|a〉

∞∑
m=0

(i)m

m!
tm〈a|Hm|a〉

∼
∞∑

n=0

(−1)n

(2n)!
c2n t2n, (2.20)
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where

c2n =
2n∑

k=0

(−1)k

(
2n
k

)
〈a|Hk|a〉〈a|H2n−k|a〉. (2.21)

Note that Eq. (2.20) is a symmetric function of t as a consequence of the invariance of the
theory under time reversal. For small enough times it is sufficient to expand up to order t2,
obtaining

P (t) = 1 − t2
(〈a|H2|a〉 − 〈a|H|a〉2)+ O(t4) = 1 − t2 (	E)2 + O(t4), (2.22)

which, being a quadratic function of t, implies that the decay rate vanishes for t → 0, at
variance with Eq. (2.5). Notice that if the state |a〉 is an eigenstate of H the evolution is
trivially given by P (t) = 1, ∀t.

The asymptotic expansion (2.20) is meaningful if one requires that the state |a〉 is normal-
izable and all moments of H over the state |a〉 are finite. If the moments are finite up to some
order N we get an asymptotic series to N terms.

If the first two moments of the Hamiltonian are finite, the survival probability for short
times reads

P (t) ∼ 1 − t2

τ2
Z

∼ exp
(
− t2

τ2
Z

)
for t → 0, (2.23)

where
τZ ≡ 1/∆E (2.24)

is called the Zeno time 1 and determines the convexity of the survival probability at t = 0.
An accurate estimate of the Zeno time for a truly unstable system is usually a difficult and
delicate problem. A quantitative evaluation of τZ is important, for it enables one to find a
characteristic temporal scale for the short-time behavior of the survival probability. We will
see that for generic systems the asymptotic expansion (2.23) is valid for times much shorter
than τZ.

Notice that the quantum survival probability represents the probability that a system,
prepared at time t = 0 in state |a〉, is found in the same state at time t. In other words,
it represents the experimental probability (namely the frequency for a very large number of
identically prepared systems) of finding the system in the initial state when one lets it evolve
undisturbed for a time t and then measures it exactly at time t. As we will see in the second part
of this work, the survival probability of a system that is measured throughout the time interval
(0, t) is completely different from that considered in this section and this effect is ultimately
ascribable to the nonexponential behavior of the “undisturbed” survival probability.

Moreover, notice that the hypotheses in the derivation of Eq. (2.23) are in general not valid
in quantum field theory, where the energy uncertainty is in general infinite. In this case, as we
will see, the survival probability at short times can exhibit a different behavior (Bernardini,
Maiani and Testa [1993]; Facchi and Pascazio [1999b]).

2.3.1 Vanishing decay rate

We now want to show under what rigorous conditions the survival probability deviates from
the exponential law at the beginning of the decay process. We look therefore for the conditions

1 This time is named after the Greek philosopher Zeno from Elea, for its role in a peculiar quantum phe-
nomenon called quantum Zeno effect. See Chap. 7
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leading to Ṗ (0) = 0. From the Fourier representation (2.16), or from the very definition (2.8),
we see immediately that the survival amplitude must satisfy the reality condition

A(t)∗ = A(−t). (2.25)

Therefore the survival probability satisfies the relation P (t) = P (−t) (time reversal invariance).
On the other hand, �a(E) is an absolutely integrable function due to Eq. (2.18), whence A(t) is
continuous. Notice that if P (t) is differentiable then one gets Ṗ (t) = −Ṗ (−t) and in particular

Ṗ (0+) = −Ṗ (0−). (2.26)

Therefore the time derivative of the survival probability is in general a discontinuous function
at t = 0, unless it vanishes there.

Now suppose that the expectation value of |H| in the state |a〉 exists and is finite (Nakazato
and Pascazio [1995]),

〈a| |H| |a〉 =
∫

dE |E| �a(E) < ∞, (2.27)

i.e., E�a(E) is an absolutely integrable function. From this it follows that the survival ampli-
tude A(t) is differentiable for all t, and the derivative

Ȧ(t) = −i

∫
dE e−iEtE �a(E) (2.28)

is continuous. From Eq. (2.25), the time derivative of the survival probability reads

Ṗ (t) = Ȧ(t)A(t)∗ + A(t)Ȧ(t)∗ = Ȧ(t)A(−t) −A(t)Ȧ(−t), (2.29)

and in particular
Ṗ (0+) = Ṗ (0−) = 0 (2.30)

by virtue of the continuity of A and Ȧ.
Therefore the only condition of finiteness of 〈|H|〉 (with |a〉 normalizable) is sufficient to

assert that the survival probability must deviate from the exponential decay at sufficiently
small times and the decay rate must vanish at t = 0.

Notice that if one requires the physical condition of lower boundeness of the Hamiltonian,
in order to have a stable ground state, the above condition translates into the finiteness of the
expectation value of the energy 〈H〉 (Chiu, Sudarshan and Misra [1977]). Indeed in this case
we can assume, without loss of generality, that the spectrum of H is confined in the positive
semiaxis. Therefore, if the expectation value of energy is finite, we get

〈a|H|a〉 =
∫ ∞

0
dE E �a(E) =

∫ ∞

0
dE |E| �a(E) = 〈a| |H| |a〉 < ∞, (2.31)

and Eq. (2.30) follows again. In other words, for a physical system, i.e. a system with a lower
bounded Hamiltonian and finite energy, the decay rate necessarily vanishes at t = 0 and the
survival probability cannot be exponential at short times.

2.3.2 Fleming’s unitary bound

Let us consider Heisenberg’s uncertainty relation between a time-independent observable A
and a time-independent Hamiltonian H

	A 	E ≥ 1
2
|〈[A, H]〉| =

1
2

∣∣∣∣ d

dt
〈A〉

∣∣∣∣ (2.32)
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where
	A =

√
〈A2〉 − 〈A〉2, 	E =

√
〈H2〉 − 〈H〉2. (2.33)

Equation (2.32) is used in the literature to prove the uncertainty relation between time and
energy. See Messiah [1961], Sec. VII-13. By specializing the observable A to the projection
operator over the initial state |a〉, namely

A = Pa = |a〉〈a|, |ψ(0)〉 = |a〉, (2.34)

one easily obtains
〈A〉 = P (t), 	A =

√
P (t) − P (t)2. (2.35)

Whence Eq. (2.32) reads ∣∣∣∣dP

dt

∣∣∣∣ ≤ 2	E
√

P − P 2. (2.36)

This is an inequality that clearly restricts the rate of change of the survival probability of
a quantum system. This relation can be integrated to give a lower bound on the survival
probability. Indeed one can write∣∣∣∣∣

∫ P (t)

1

dP√
P (1 − P )

∣∣∣∣∣ ≤
∫ t

0

1√
P (1 − P )

∣∣∣∣dP

dt

∣∣∣∣ dt ≤ 2	E t, (2.37)

and, by setting P = cos2 ξ, Eq. (2.37) is easily integrated to yield

arccos
√

P (t) ≤ 	E t, t ≤ π

2	E
. (2.38)

By noting that 	E = 1/τZ, we finally get Fleming’s unitary bound on the survival probability
at short times (Fleming [1973])

P (t) ≥ cos2
(

t

τZ

)
, t ≤ π

2
τZ. (2.39)

Notice that the equality holds for a degenerate two level system oscillating with Rabi frequency
1/τZ. Moreover note that the quantity 	E is assumed to be finite, i.e., τZ > 0. An infinite
	E would mean that the initial state |a〉 is not in the domain of definition of H and, strictly
speaking, in this case there would be no Schrödinger equation.

2.4 Large-time behavior

We examine now the properties of the survival amplitude for large times. We will see that if
the spectrum of the Hamiltonian is discrete, i.e. if the system is constrained in a limited spatial
region, the regeneration described in Sec. 2.2.1 is such that the system never decays completely.
If, on the other hand the spectrum is continuous, the initial state is eventually fully depleted,
but A(t) cannot be a pure exponential if the energy spectrum is bounded from below.

2.4.1 Discrete spectrum: quantum recurrence

If the system is enclosed in a finite volume, the energy spectrum is discrete and the sur-
vival amplitude (2.16) never relaxes toward zero, but has an oscillatory behavior. The system
periodically goes back as close as one wishes to the initial state and exhibits a recurrence
phenomenon.
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When the spectrum is discrete the spectral density �a has delta-like singularities in corre-
spondence of the energy levels of the system. The survival amplitude (2.16) reads

A(t) = 〈a|U(t)|a〉 =
∑

r

〈a|e−iHt|r〉〈r|a〉 =
∑

r

|〈r|a〉|2 e−iErt. (2.40)

Note that the sum in Eq. (2.40) is at most over a countable set of terms. Suppose that
the energies Er have commensurable ratios. In this case Eq. (2.40) is nothing but a Fourier
series and A(t) is exactly periodic with frequency equal to the greatest common divisor of the
Er’s. On the other hand, if some energy levels don’t have a commensurable ratio the survival
amplitude is no longer strictly periodic. In this case the system never goes back to the initial
state in a finite time, but it returns to a neighborhood of that state and the motion is quasi-
periodic. A similar recurrence theorem holds in classical mechanics and is due to Poincaré (for
a modern formulation see Arnold [1989], Sec. III.16). The quantum version is due to Bocchieri
and Loinger [1957].

By letting cr = 〈r|a〉, the state at time t has the following form

|ψ(t)〉 = e−iHt|a〉 =
∞∑

r=1

cre
−iErt|r〉. (2.41)

Therefore the distance between the state |ψ(t)〉 and the initial state |ψ(0)〉 is

D(t) ≡ ‖ψ(t) − ψ(0)‖2 = 〈ψ(t) − ψ(0)|ψ(t) − ψ(0)〉

= 2
∞∑

r=1

|cr|2 [1 − cos(Ert)] = 4
∞∑

r=1

|cr|2 sin2

(
Ert

2

)
. (2.42)

But if the state is normalizable, we get

‖ψ(t)‖2 =
∞∑

r=1

|cr|2 = 1, (2.43)

whence, for any positive number ε, there exists an integer ν such that
∞∑

r=ν+1

|cr|2 <
ε

8
. (2.44)

By using this equation we can write

4
∞∑

r=ν+1

|cr|2 sin2

(
Ert

2

)
≤ 4

∞∑
r=ν+1

|cr|2 <
ε

2
(2.45)

and it follows that

D(t) < f(t) +
ε

2
, f(t) ≡ 4

ν∑
r=1

|cr|2 sin2

(
Ert

2

)
. (2.46)

Note that f(t) is a sum of a finite number of continuous periodic functions, whence it is a
quasi-periodic function (Bohr [1932]). Therefore for any ε > 0, a relatively dense set {T}τ(ε)

exists 2 such that for any T one gets

|f(T ) − f(0)| = f(T ) <
ε

2
. (2.47)

2 A set S of real numbers is said relatively dense (on the real line) if there exists a positive real number σ
such that every interval of size σ contains at the least one element of S. For example the set of relative numbers
is relatively dense (but not dense) on the real line. Physically, τ = inf σ is the recurrence time.
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Therefore the inequality
D(T ) = ‖ψ(T ) − ψ(0)‖2 < ε (2.48)

holds in a relatively dense set of the real line.
In conclusion, we proved that for a spatially confined system, the evolution is quasi-periodic

and the system returns to a neighborhood of the initial state in a finite time.

2.4.2 Continuous spectrum: truly unstable system

Let us now assume that the Hamiltonian H has only a continuous spectrum. In this case the
energy density �a(E) is an ordinary function of energy E with no delta singularities. Therefore,
by Eq. (2.16), the survival probability is the Fourier transform of the energy density, as first
stressed by Fock and Krylov [1947]. Assume now on physical grounds that the energy spectrum
is lower bounded in order to have a stable ground state. It follows that the spectral density
vanishes for E < Eg, where Eg > −∞ is the ground-state energy, and we can write

�a(E) = θ(E − Eg)�a(E), (2.49)

with θ the unit step function. Whence Eq. (2.16) reads

A(t) =
∫ ∞

Eg

dE �a(E)e−iEt. (2.50)

Remember from Eq. (2.18) that �a(E) is an absolutely integrable function. Whence, due to
Riemann-Lebesgue’s lemma, A(t) vanishes at infinity

lim
t→∞A(t) = lim

t→∞

∫ ∞

Eg

dE �a(E)e−iEt = 0 (2.51)

and we can say that the state |a〉 is a truly unstable state.
A theorem on Fourier trasforms due to Paley and Wiener [1934] states that if the function

�a(E) vanishes identically for E < Eg, with Eg > −∞, then its Fourier trasform A(t) must
satisfy the inequality ∫ ∞

−∞
|log |A(t)||

1 + t2
dt < ∞. (2.52)

Therefore, the survival probability cannot be an exponential, for the integral (2.52) would
diverge as log t for t → ∞. At large time the decay must be slower, for example a power law.

Notice that this is a very general result: the only condition required is the existence of a
finite value Eg. The use of Paley-Wiener’s theorem in this context is due to Khalfin [1957];
Khalfin [1958].



Chapter 3

Simple solvable models

3.1 Introduction

In the previous chapter we analyzed some mathematical properties of the time evolution of the
survival probability for a quantum system. At short times, the decay follows a quadratic law
and has a lower bound given by Fleming’s theorem (2.39). At large times, the decay cannot
be an exponential, as a consequence of Paley-Wiener’s theorem (2.52). In order to understand
better the features of the survival probability, a detailed analysis is needed, based on some
subtle properties of the resolvent. Before proceeding in this analysis we want to examine the
emergence of an exponential decay law in some quantum mechanical models. We will examine
three simple solvable models: a two-level system, a many-level discrete system with a flat
spectrum and its continuum version. These examples will enable us to understand the physical
role of the mathematical hypotheses of the previous chapter.

3.2 Two-level systems and Bloch vector

We start by considering a two-level system undergoing Rabi oscillations. This is the simplest
nontrivial quantum mechanical example, for it involves 2×2 matrices and very simple algebra.
One can think of an atom shined by a laser field whose frequency resonates with one of the
atomic transitions, or a neutron spin in a magnetic field.

The two-level Hamiltonian reads

H = ωa|a〉〈a| + ωb|b〉〈b| + λ(|a〉〈b| + |b〉〈a|) =
(

ωa λ
λ ωb

)
,

= ωm +
	ω

2
σ3 + λσ1 = ωm +

( �ω
2 λ

λ −�ω
2

)
, (3.1)

where ωa > ωb, λ is the coupling constant, σj (j = 1, 2, 3) the Pauli matrices,

ωm =
ωa + ωb

2
, 	ω = ωa − ωb, (3.2)

and

|a〉 =
(

1
0

)
, |b〉 =

(
0
1

)
(3.3)

are eigenstates of σ3. We will use the above notation interchangeably. Let the initial state be

|ψ(0)〉 = |a〉 =
(

1
0

)
, (3.4)
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so that the evolution yields

|ψ(t)〉 = e−iHt|a〉 = e−iωmt

[(
cos Ωt − i

	ω

2Ω
sin Ωt

)
|a〉 − i

λ

Ω
sin Ωt |b〉

]
, (3.5)

where

Ω =

√(	ω

2

)2

+ λ2 (3.6)

is the Rabi frequency of the oscillations. The survival amplitude and probability read

A(t) = 〈a|ψ(t)〉 = e−iωmt

(
cos Ωt − i

	ω

2Ω
sin Ωt

)
,

P (t) = |A(t)|2 = 1 − λ2

Ω2
sin2(Ωt), (3.7)

and the oscillations are in general not complete, i.e., the initial state is never fully depleted. It
is well known that when the two unperturbed levels become degenerate, i.e., 	ω = 0, the Rabi
frequency becomes Ω = λ and the oscillations become complete.

For future convenience, let us derive the above results by alternative methods. As a general
procedure, valid for a generic many-level system, we can write the state of the system at time
t as

|ψ(t)〉 = A(t)|a〉 + b(t)|b〉 =
( A(t)

b(t)

)
, (3.8)

where |A(t)|2 + |b(t)|2 = 1. By using the Schrödinger equation we get

iȦ = ωaA + λb, (3.9)
iḃ = ωbb + λA, (3.10)

which yield again Eq. (3.7).
On the other hand we can also find the spectral density. It is straightforward to determine

the eigenvalues and the eigenstates of the total Hamiltonian H

E1,2 = ωm ± Ω, (3.11)

|E1,2〉 = ±
√

1
2

(
1 ± 	ω

2Ω

)
|a〉 +

√
1
2

(
1 ∓ 	ω

2Ω

)
|b〉 =

 ±
√

1
2

(
1 ± �ω

2Ω

)
√

1
2

(
1 ∓ �ω

2Ω

)
 , (3.12)

whence we can write the spectral density

�a(E) = |〈E1|a〉|2δ(E − E1) + |〈E2|a〉|2δ(E − E2)

=
1
2

(
1 +

	ω

2Ω

)
δ(E − ωm − Ω) +

1
2

(
1 − 	ω

2Ω

)
δ(E − ωm + Ω), (3.13)

which consists of two delta functions with different weights, at the energies of the total Hamil-
tonian (symmetric with respect to ωm). The survival amplitude (3.7) is immediately obtained
by a Fourier transform.

Note that 〈a|H2|a〉 = ω2
a + λ2 and 〈a|H|a〉 = ωa. Therefore the Zeno time reads

τZ = 1/	E = 1/λ, (3.14)
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Figure 3.1: The Poincaré sphere and the Bloch vector.

and does not depends on ωa and ωb. Moreover, for this model, all the Hamiltonian moments are
finite, the expansion (2.20) is valid and converges exactly to (3.7). Note also that Fleming’s
unitary bound (2.39) is trivially valid in this case and in fact, as anticipated, becomes an
equality for the degenerate case 	ω = 0.

In the following, we shall often make use of the rotating coordinates introduced by Bloch
[1946] and Rabi, Ramsey and Schwinger [1954], and of well-known computational techniques
due to Feynman, Vernon and Hellwarth [1957]. In terms of the polarization (Bloch) vector

R(t) = 〈ψt|σ|ψt〉 = (R1, R2, R3)T , (3.15)

where T denotes the transposed matrix, the Schrödinger equation, when ωa = ωb = 0, reads

Ṙ(t) = 2Ω × R(t), (3.16)

where
Ω = (Ω, 0, 0)T , (3.17)

with the Rabi frequency Ω = λ. The norm of the Bloch vector is preserved: ‖R(t)‖ = 1,∀t.
See Fig. 3.1.

The density matrix of a two-level system is expressed in terms of the Bloch vector according
to the formula

ρ =
(

ρaa ρab

ρba ρbb

)
=

1
2
(1 + R · σ), (3.18)

so that

ρaa =
1
2
(1 + R3) = Pa, ρbb =

1
2
(1 − R3) = Pb, ρab =

1
2
(R1 − iR2), (3.19)

where Pa ≡ ρaa (Pb ≡ ρbb) is the probability that the system is in level |a〉 (|b〉) and ρba = ρ∗ab.
Notice that Trρ = Pa + Pb = 1 (normalization) and Tr(ρσ) = R. Viceversa, the Bloch vector
is readily expressed in terms of the density matrix:

R1 = ρab + ρba,

R2 = i(ρab − ρba), (3.20)
R3 = ρaa − ρbb = Pa − Pb.
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Figure 3.2: Rabi oscillations in a two-level system.

The level configuration and the dynamics of the oscillations are shown in Fig. 3.2. Observe
that the probability goes back to its initial value after a time TP = π/Ω: this is a very simple
instance of Poincaré recurrence time.

3.3 Many-level system

We now consider a many-level system which exhibits an exponential decay at early times. Let
us improve the two-level model (3.1). Consider the Hamiltonian

H = ωa|a〉〈a| +
∑

n

ωn|n〉〈n| + λ
∑

n

(|a〉〈n| + |n〉〈a|), (3.21)

which couples state |a〉 with many states |n〉. Assume the orthonormality conditions

〈a|a〉 = 1, 〈a|n〉 = 0, 〈n|n′〉 = δn,n′ ∀n, n′. (3.22)

The state of the system at time t reads

|ψ(t)〉 = A(t)|a〉 +
∑

n

bn(t)|n〉, (3.23)

with |A(t)|2 +
∑

n |bn(t)|2 = 1. Let us choose, as usual, the initial state |ψ(0)〉 = |a〉, i.e.,
A(0) = 1. By using the Schrödinger equation i∂t|ψ〉 = H|ψ〉 one gets

iȦ = ωaA + λ
∑

n

bn, (3.24)

iḃn = ωnbn + λA. (3.25)

Equation (3.25) is easily integrated with the initial condition bn(0) = 0

bn(t) = −iλ

∫ t

0
dt1e

−iωn(t−t1)A(t1). (3.26)

By substituting Eq. (3.26) into Eq. (3.24) one gets

Ȧ(t) = −iωaA(t) − λ2

∫ t

0
dt1A(t1)

∑
n

e−iωn(t−t1). (3.27)
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Assume now that the levels are uniformly spaced between −∞ e +∞ (constant level density
ρ = 1/δω):

ωn = n δω, with n = 0,±1,±2, . . . (δω = const). (3.28)

By making use of Poisson’s formula

+∞∑
n=−∞

e−inx = 2π
+∞∑

n=−∞
δ(x − 2πn), (3.29)

we can write
+∞∑

n=−∞
e−iωnt =

+∞∑
n=−∞

e−inδωt =
2π

δω

+∞∑
n=−∞

δ

(
t − 2πn

δω

)
, (3.30)

and Eq. (3.27) yields

Ȧ(t) = −iωaA(t) − λ2

∫ t

0
dt1A(t1)

2π

δω

+∞∑
n=−∞

δ

(
t − t1 − 2πn

δω

)

= −iωaA(t) − 2πλ2

δω

+∞∑
n=−∞

A
(

t − 2πn

δω

)∫ t

0
dt1δ

(
t − t1 − 2πn

δω

)
. (3.31)

By integrating we get

∫ t

0
dt1δ

(
t − t1 − 2πn

δω

)
=


0 per n < 0
1
2θ(t) per n = 0
θ
(
t − 2πn

δω

)
per n > 0

, (3.32)

where we defined
∫ t0
0 δ(t)dt = 1/2 (t0 > 0). Therefore Eq. (3.31) reads

Ȧ(t) = −
(
iωa +

γ

2

)
A(t) − γ

∞∑
n=1

A(t − nT ) θ(t − nT ), (3.33)

where
γ = 2πλ2/δω = 2πλ2ρ, T = 2π/δω = 2πρ. (3.34)

The differential equation (3.33) can be integrated recursively, starting from t = 0. For example
in the interval 0 ≤ t < T only the first term survives

Ȧ(t) = −
(
iωa +

γ

2

)
A(t), (3.35)

whose integral, with the initial condition A(0) = 1, reads

A(t) = exp
[
−
(
iωa +

γ

2

)
t
]

(0 ≤ t < T ), (3.36)

and yields a purely exponential decay. In general, by writing

A(t) = e−(iωa+ γ
2 )t +

∞∑
n=1

e−(iωa+ γ
2 )(t−nT )fn(t − nT ) θ(t − nT ) (3.37)

we get, by differentiation,

Ȧ(t) = −
(
iωa +

γ

2

)
A(t) +

∞∑
n=1

e−(iωa+ γ
2 )(t−nT )ḟn(t − nT ) θ(t − nT ), (3.38)
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where we let fn(0) = 0 for every n, in order to get rid of the terms proportional to δ(t − nT )
which are absent in the original differential equation (3.33). By comparing Eq. (3.38) and Eq.
(3.33) one obtains

∞∑
n=1

e−(iωa+ γ
2 )(t−nT )ḟn(t − nT ) θ(t − nT ) = −γ

∞∑
n=1

A(t − nT ) θ(t − nT ). (3.39)

By plugging Eq. (3.37) into the above equation, after a straightforward algebraic manipulation,
we get

∞∑
n=1

e−(iωa+ γ
2 )(t−nT )ḟn(t − nT ) θ(t − nT ) = −γ

∞∑
n=1

e−(iωa+ γ
2 )(t−nT )θ(t − nT )

−γ
∞∑

n=2

e−(iωa+ γ
2 )(t−nT )θ(t − nT )

n−1∑
m=1

fm(t − nT )

(3.40)

and by comparing the l.h.s. with the r.h.s. we finally get the following recursive relations

ḟ1(t) = −γ, ḟn(t) = −γ − γ
n−1∑
m=1

fm(t), (n ≥ 2). (3.41)

By using the initial condition f1(0) = fn(0) = 0, we can easily integrate the differential
equations (3.41) and obtain

f1(t) = −γt, fn(t) = −γt + (n − 1)
n−1∑
m=2

(−γt)m

m!
+

(−γt)n

n!
, (n ≥ 2). (3.42)

As a result the survival amplitude has the form given by Eq. (3.37), with fn(t) a polynomial
of order n given by (3.42). For example, by explicitly writing the first three terms, we get

A(t) = exp
[
−
(
iωa +

γ

2

)
t
]

−γ (t − T ) exp
[
−
(
iωa +

γ

2

)
(t − T )

]
θ(t − T )

+
[
−γ (t − 2T ) +

γ2

2
(t − 2T )2

]
exp

[
−
(
iωa +

γ

2

)
(t − 2T )

]
θ(t − 2T )

+
∞∑

n=3

terms proportional to θ(t − nT ). (3.43)

Notice that the exponential decay law exactly holds for a time interval T = 2π/δω = 2πρ, that
becomes larger and larger by increasing the level density ρ.

3.3.1 Spectral density

We seek now the eigenstates and the eigenvalues of the total Hamiltonian (3.21), namely we
solve the time-independent Schrödinger equation

H|ν〉 = Eν |ν〉. (3.44)
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Figure 3.3: Graphic determination of the eigenvalues.

By using the definition (3.21) and by projecting Eq. (3.44) over 〈a| and 〈n| we get

ωa〈a|ν〉 + λ
∑

n

〈n|ν〉 = Eν〈a|ν〉, (3.45)

ωn〈n|ν〉 + λ〈a|ν〉 = Eν〈n|ν〉. (3.46)

Incidentally note that Eqs. (3.45)-(3.46) have the same structure of Eqs. (3.25)-(3.24) after
substituting i∂t with Eν . Equation (3.46) gives

〈n|ν〉 = 〈a|ν〉 λ

Eν − ωn
, (3.47)

where we assumed that Eν �= ωn. In fact, we will see that this condition is always satisfied.
By plugging Eq. (3.47) into Eq. (3.45) we get the eigenvalue equation

Eν − ωa = λ2
∑

n

1
Eν − ωn

. (3.48)

By using the definition (3.28) and the formula (Gradshteyn and Ryzhik [1994], 1.421 3)

+∞∑
n=−∞

1
x − n

= π cot(πx), (3.49)

Eq. (3.48) reads

Eν − ωa =
λ2π

δω
cot

(
πEν

δω

)
. (3.50)

Therefore the eigenvalues are given by the intersection between the line y = x − ωa and the
curve (λ2π/δω) cot(πx/δω) as shown in Fig. 3.3. It is apparent that the eigenvalues Eν are
interspersed among (and never coincide with) the unperturbed eigenvalues ωn, i.e., ωn < Eν <
ωn+1.

By making use of Eq. (3.47) and of the normalization condition for the state |ν〉 we get

1 = |〈a|ν〉|2 +
∑

n

|〈n|ν〉|2 = |〈a|ν〉|2
(

1 + λ2
∑

n

1
(Eν − ωn)2

)
. (3.51)
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We can easily evaluate the sum in the previous equation by differentiation of formula (3.49)

+∞∑
n=−∞

1
(x − n)2

= π2(1 + cot2 πx), (3.52)

from which one obtains ∑
n

1
(Eν − ωn)2

=
π2

δω2

[
1 + cot2

(
πEν

δω

)]
. (3.53)

By the eigenvalue equation (3.50) we finally get∑
n

1
(Eν − ωn)2

=
π2

δω2
+
(

Eν − ωa

λ2

)2

, (3.54)

whence

|〈a|ν〉|2 =
λ2

(Eν − ωa)2 + (λ2π/δω)2 + λ2
= δω

γ/2π

(Eν − ωa)2 + (γ/2)2 + λ2
, (3.55)

where the definition (3.34) was used. By plugging Eq. (3.55) into Eq. (2.17), the spectral
density function reads

�a(E) =
∑

ν

δ(E − Eν) δω
γ/2π

(Eν − ωa)2 + (γ/2)2 + λ2
, (3.56)

which is nothing but a Lorentzian function of width
√

γ2 + 4λ2 sampled at the eigenenergies
Eν . As noted above the Eν ’s are interspersed among the ωn’s, whence the level density is
approximately ρ = 1/δω, for there is a state inside any energy interval (ωn, ωn+1) of size δω
(see Fig. 3.3).

Some comments are now in order. First of all, note that the condition on the mean energy
value 〈a|H|a〉 = ωa < ∞ is satisfied, but the Hamiltonian (3.21) is not lower bounded and the
spectral density (3.56) extends between −∞ and +∞. In fact, the condition on 〈|H|〉 is not
satisfied, for

〈a| |H| |a〉 =
∫

dE |E| �a(E) =
∑

ν

δω
γ

2π

|Eν |
(Eν − ωa)2 + (γ/2)2 + λ2

= ∞, (3.57)

is divergent, being a positive series with terms of order 1/ν. Therefore the time derivative of
the survival probability at the origin is discontinuous and nonvanishing, Ṗ (0±) = ±γ, with a
decay rate γ > 0.

On the other hand, the spectrum is discrete, whence |a〉 is not a truly unstable state and
Eq. (2.51) does not hold. In fact, as noted above, the exponential law holds only for a time
interval T = 2πρ. The last sum in the survival amplitude (3.37) modifies the exponential
decay, which is eventually superseded, and the initial state is repopulated accordingly to the
recurrence theorem proved in Sec. 2.4.1. See Fig. 3.4. In our case the Poincaré time is obviously
proportional to the density ρ and becomes larger and larger by decreasing the level spacing δω,
i.e., by enlarging the box volume.

In order to obtain a purely exponential decay for all times, only the first term in the
survival amplitude (3.37) must contribute. To this end, since the other terms are proportional
to θ(t − nT ), with T = 2πρ, the level density ρ = 1/δω should be increased, by keeping the
decay rate γ = 2πλ2ρ constant. In the ρ → ∞ limit, i.e. by letting the box volume become
infinite, the initial state |a〉 will decay into a flat continuum of states and we expect a purely
exponential decay.
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Figure 3.4: Time evolution of the survival probability P (t) = |A(t)|2. We chose ωa = 0 and
γ = 4/T .

3.4 Continuum limit

By performing the δω → 0 limit in Eq. (3.28) we get a continuous spectrum. We now want to
examine in detail the rescaling and limiting procedure of the Hamiltonian (3.21).

First, consider the rescaled states |ωn〉 = (δω)−1/2|n〉. The orthonormality condition (3.22)
becomes

〈ωn|ωn′〉 =
δn,n′

δω
−→ 〈ω|ω′〉 = δ(ω − ω′). (3.58)

In this limit the Hamiltonian (3.21) becomes

H = ωa|a〉〈a| +
∑

n

δω ωn|ωn〉〈ωn| + λ

δω1/2

∑
n

δω(|a〉〈ωn| + |ωn〉〈a|)

−→ ωa|a〉〈a| +
∫

dω ω|ω〉〈ω| + λ̃

∫
dω(|a〉〈ω| + |ω〉〈a|),

(3.59)

where we are forced to keep λ̃ = λ/δω1/2 finite, in order to avoid an explosive interaction term
in the δω → 0 limit. But this is exactly what we required in the final discussion of the last
section in order to get a finite decay rate (3.34). In other words, this is a natural ingredient of
the continuum limit.

Notice that in the rescaling procedure the quantity δω plays the role of infinitesimal inte-
gration interval and a Riemann integral is built up in the limit∑

n

fnδω −→
∫

f(ω)dω. (3.60)

Now the procedure is straightforward: the receipt is simply to substitute sums with integrals.
The state of the system at time t reads

|ψ(t)〉 = A(t)|a〉 +
∫

dω b(ω, t)|ω〉, (3.61)
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where |A(t)|2 +
∫

dω|b(ω, t)|2 = 1. The equations (3.24)-(3.25) become

iȦ(t) = ωaA(t) + λ̃

∫ ∞

−∞
dω b(ω, t), (3.62)

iḃ(ω, t) = ωb(ω, t) + λ̃A(t). (3.63)

Equation (3.63) with the initial condition b(ω, 0) = 0 is integrated to give

b(ω, t) = −iλ̃

∫ t

0
dt1e

−iω(t−t1)A(t1), (3.64)

and Eq. (3.62) reads

Ȧ(t) = −iωaA(t) − λ̃2

∫ t

0
dt1A(t1)

∫ ∞

−∞
dω e−iω(t−t1). (3.65)

By using again the prescription
∫ t0
0 δ(t)dt= 1/2 (t0 > 0) [see Eq. (3.32)], we easily obtain

Ȧ(t) = −iωaA(t) − λ̃2

∫ t

0
dt1A(t1)2πδ(t − t1)

= −
(γ

2
+ iωa

)
A(t), (3.66)

with γ = 2πλ̃2 = lim
λ→0
ρ→∞

2πλ2ρ.

The solution is a pure exponential decay at all times

A(t) = exp
[
−
(γ

2
+ iωa

)
t
]
. (3.67)

Let us now evaluate the spectral density. By noting that

ωn < Eν < ωn+1 −→ ω ≤ Eν ≤ ω, for δω → 0, (3.68)

i.e., Eν = ω in the limit, and that we must require λ → 0, the spectral density (3.56) becomes

�a(E) =
∫

dω δ(E − ω)
γ

2π

1
(ω − ωa)2 + (γ/2)2

=
γ

2π

1
(E − ωa)2 + (γ/2)2

, (3.69)

which, as expected, is a Lorentzian function, the Fourier transform of the exponential.
Note that we could obtain the eigenstates of H and the spectral density directly from the

continuum Hamiltonian (3.59), by following a procedure analogous to that followed in Sec.
3.3.1. In fact this is a very instructive derivation (Fano [1961]), for it must deal with the
singularity arising from the inversion of the continuum-limit version of Eq. (3.46). [Loosely
speaking, in the continuum limit the energies Eν coincide with the unperturbed energies ωn,
as shown by Eq. (3.68), and one has to apply distributions theory.]

The comments made after Eq. (3.56) for the discrete case are also valid for its continuum
version. The expectation value 〈H〉 = ωa is finite, but the spectrum is not lower bounded, and
〈|H|〉 is infinite. Whence the decay rate does not vanish at t = 0. On the other hand in the
continuum limit, the state |a〉 becomes a truly unstable state, and no recurrence phenomena
take place. Moreover Paley-Wiener’s inequality (2.52) does not hold, for the spectrum is not
lower bounded, and the exponential decay holds at all times. Some long-living resonances can be
well approximated by a Breit-Wigner distribution (3.69) and the effectiveness of Paley-Wiener’s
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theorem is more and more reduced by increasing the available energy Ea − Eg (Ea = ωa =
initial state energy). On the other hand, a near-threshold unstable system exhibits deviations
from exponential decay for not extremely long times.

The main conclusion of the above analysis is that the discrete-spectrum Hamiltonian (3.21)
yields exactly the same dynamics of the continuum-spectrum Hamiltonian (3.59) for a time
interval T = 2π/δω inversely proportional to the level spacing, i.e. directly proportional to
some power of the box length. Therefore a system enclosed in a sufficiently large box (namely,
every physical system in a lab) is “practically” a truly unstable system up to times T . This is
the physical definition of “infinite” volume.





Chapter 4

Nonperturbative analysis

4.1 Introduction

In order to understand in detail the temporal behavior of quantum systems, it is necessary
to introduce nonperturbative techniques, that take into account the role of the interaction at
all orders in the coupling constant. In section 2.4.1 we have seen that a spatially confined
quantum system exhibits a recurrence phenomenon and has a finite Poincaré time, whence, in
order to get a truly unstable system, one needs a continuous energy spectrum. In this case, by
perturbation theory, one can calculate an exponential decay with constant decay rate γ, given
by the Fermi Golden Rule. But the perturbative result P (t) � exp(−γt) is not completely
satisfactory, for its derivation is valid in a region shorter than the lifetime, where the decay
probability is approximately unity. On the other hand, one always observes an exponential
decay rate at times much larger than the lifetime. Therefore one is led to ask what are the
theoretical reasons of such a well established experimental law. In this chapter, by using a
nonperturbative approach, we will tackle this problem and will understand that, for a small
coupling constant, the decay is very well approximated by an exponential for times much larger
than the lifetime, before the deviations at large times given by Paley-Wiener’s theorem (2.52)
become effective. We will derive the exponential decay law (with a decay rate given by the
Fermi Golden Rule) and the corrections at short and long times. We will see that there is
a profound link between the properties of the temporal evolution operator and the analytical
properties of its Fourier-Laplace transform, the resolvent operator, in the complex energy plane.
In particular, we will see that the resolvent has a branch cut along the continuous spectrum of
the total Hamiltonian H and that the exponential decay law is due to the presence of a pole
(close to the cut in the second Riemann sheet of the complex energy plane) which dominates
the temporal behavior at intermediate times. All corrections are only due to the branch cut
and become effective at short and long times.

4.2 The resolvent

We introduce the resolvent of the Hamiltonian and its perturbative expansion and set up the
notation to tackle the problem of quantum decay with nonperturbative techniques. We will see
in the next section that the resolvent is related to the temporal evolution operator by a Fourier-
Laplace transform. The use of the resolvent in the study of some nonperturbative properties
of quantum systems was first introduced by Kato [1949]. We will use the same notation of
Messiah [1961], Vol. II, Cap. XVI.
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The resolvent of an operator H is the function of the complex variable E defined as

G(E) =
1

E − H
. (4.1)

The resolvent G is a bounded operator for every complex value of E with the exception of the
eigenvalues of H. Notice that if H is hermitian, its eigenvalues are real. Let 	(E) be the
distance between E and the closest eigenvalue of H . The norm of the resolvent satisfies the
relation

‖G(E)‖ =
1

	(E)
. (4.2)

Consider a Hamiltonian H with a purely discrete spectrum of distinct eigenvalues

E0(= Eg), E1, . . . , Ej , . . . .

Assume, on physical ground, that the spectrum is lower bounded. Let Pj be the projection
operator on the subspace belonging to Ej :

HPj = EjPj . (4.3)

The following relations of orthogonality and closeness hold

PjPk = δjkPj ,
∑

j

Pj = 1. (4.4)

From Eq. (4.1) one gets

G(E)Pj =
Pj

E − Ej
, (4.5)

whence
G(E) =

∑
j

Pj

E − Ej
. (4.6)

An eigenvalue of H is therefore a simple pole of G and one gets

Pj =
1

2πi

∮
Γj

G(E)dE, (4.7)

where Γj is a closed anticlockwise contour in the complex E plane around point Ej and does
not contain any other eigenvalue of H. The projection Pj is therefore the residue of G at the
pole Ej . In general, if the contour Γ encloses a (countable) set S of eigenvalues Es, one gets

PΓ =
∑
s∈S

Ps =
1

2πi

∮
Γ

G(E)dE. (4.8)

It is easy to prove that
(E − H)G = G(E − H) = 1, (4.9)

whence, from Eq. (4.8),

HPΓ =
1

2πi

∮
Γ

EG(E)dE. (4.10)

Let us write, as usual, the Hamiltonian operator as a sum of two terms H = H0 + Hint,
where H0 is the free Hamiltonian and Hint the interaction one. We can define

G(E) =
1

E − H0 − Hint
, G0(E) =

1
E − H0

(4.11)
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and it is easy to prove that G satisfies the identity

G(E) = G0(E) (1 + HintG(E)) , (4.12)

whose iteration yields

G = G0 + G0HintG0 + G0HintG0HintG0 + · · ·

= G0

∞∑
n=0

(HintG0)
n . (4.13)

Explicitly,

G(E) =
1

E − H0
+

1
E − H0

Hint
1

E − H0

+
1

E − H0
Hint

1
E − H0

Hint
1

E − H0
+ · · · . (4.14)

From the property (4.2), the series (4.13)-(4.14) converges absolutely for ‖Hint‖ < ‖G0‖−1 =
	0(E), where 	0(E) is the distance between E and the closest eigenvalue of H0 . By using this
approach, we can therefore put forward rigorous statements about the convergence conditions
of the perturbative expansion.

4.3 Fourier-Laplace transform

Our main interest in the resolvent is due to its link with the temporal evolution operator
U(t) = exp(−iHt). The following operatorial relations hold

U(t) =
i

2π

∫
Γ

e−iEt 1
E − H

dE =
i

2π

∫
Γ

e−iEtG(E)dE, (4.15)

G(E) = −i

∫ η ∞

0
eiEte−iHtdt = −i

∫ η ∞

0
eiEtU(t)dt, (4.16)

where E is a complex variable, Γ a clockwise contour around all singularities of the resolvent,
i.e., around the spectrum of H, and η = sign(ImE).

For t > 0, the integral (4.16) converges for ImE > 0 (η = +1) and G(E) can be written as
a Fourier-Laplace transform

U(t)θ(t) =
i

2π

∫
B

dE e−iEt 1
E − H

=
i

2π

∫
B

dE e−iEtG(E), (4.17)

G(E) = −i

∫ ∞

0
dt eiEte−iHt = −i

∫ ∞

0
dt eiEtU(t)dt, (4.18)

where the Bromwich path B is a horizontal line ImE = const > 0 in the half plane of conver-
gence of the Fourier-Laplace transform (4.18) (upper half-plane). The link with Eqs. (4.15)-
(4.16) is apparent: the Bromwich path B is above all the singularities of the resolvent (they
are all real. See fig. 4.1). For t > 0, we can close the contour in the lower half plane ImE < 0
such that all singularities are enclosed. On the other hand, for t < 0 the contour is closed in
the upper plane ImE > 0, where there are no singularities and the result is null. Therefore,
the integration of the Fourier-Laplace transform (4.18) goes from 0 to +∞, for the evolution
operator vanishes for negative times.
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B

E

Figure 4.1: Singularities of G0(E) or G(E) for a discrete spectrum and integration path B.

We now show that the resolvent identity (4.12) and its perturbative expansion correspond
in the time domain to an integral equation for the time evolution operator and to Dyson’s
expansion, respectively. Remember that the ordinary product of two transforms corresponds
to a convolution product in the time domain, namely

f̃(E) g̃(E) ←→
∫ t

0
dτ f(t − τ)g(τ), (4.19)

where f̃(E) e g̃(E) are the Fourier-Laplace transforms of f(t) e g(t). By using Eq. (4.19), Eq.
(4.12) becomes

U(t) = U0(t) − i

∫ t

0
dτU0(t − τ)HintU(τ), (4.20)

where U0(t) = exp(−iH0t). By multiplying to the left with U †
0(t) = U0(−t) and inserting the

unity 1 = U0(τ)U †
0(τ) between Hint and U(τ) one gets

U †
0(t)U(t) = 1 − i

∫ t

0
dτU †

0(τ)HintU0(τ)U †
0(τ)U(τ), (4.21)

whence

UI(t) = 1 − i

∫ t

0
dτHint(τ)UI(τ), (4.22)

where Hint(t) = eiH0tHinte
−iH0t and UI(t) = eiH0te−iHt. This is the usual integral equation for

the time evolution operator in the interaction picture, yielding Dyson’s perturbative expansion

UI(t) =
∞∑

n=0

(−i)n

∫ t

0
dt1

∫ t1

0
dt2...

∫ tn−1

0
dtnHint(t1)Hint(t2)...Hint(tn)

= T exp
(
−i

∫ t

0
dτ Hint(τ)

)
, (4.23)

with T the time ordering operator.
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g

B

E

E

Figure 4.2: Singularities of Ga(E) for a continuous spectrum. The branch cut is placed on the
spectrum of H.

4.4 Dyson resummation

Consider a Hamiltonian H = H0+Hint. Let {|n〉} be a complete orthonormal set of eigenvectors
of the free Hamiltonian H0. One gets

H0|n〉 = En|n〉, 1 =
∑

n

|n〉〈n|. (4.24)

At t = 0, the system is represented by the state |a〉, which is not an eigenstate of the total
Hamiltonian. (In this case the evolution is a trivial phase.) We assume, for simplicity, that
|a〉 is an eigenstate of H0. This is not a restrictive assumption and it is natural. On the other
hand, notice that we can always define a free Hamiltonian, whose eigenstate is |a〉.

We have seen in the previous section that the unitary operators U0(t) = e−iH0t and U(t) =
e−iHt are related to the resolvents by Fourier-Laplace transforms for t > 0

U0(t) =
i

2π

∫
B

dE e−iEtG0(E), G0(E) =
1

E − H0
,

U(t) =
i

2π

∫
B

dE e−iEtG(E), G(E) =
1

E − H
, (4.25)

where the Bromwich path B is shown in Fig. 4.1. If we consider a system enclosed in a box
of volume V , then H0 and H have a discrete spectrum, whence the singularities of G0(E) and
G(E) are simple poles placed on the real axis from the ground-state energies E

(0)
g and Eg up

to +∞. The survival amplitude reads

A(t) = 〈a|U(t)|a〉 =
i

2π

∫
B

dE e−iEtGa(E), Ga(E) ≡ 〈a|G(E)|a〉. (4.26)

By inserting a complete set {|λ〉} of eigenstates of the total Hamiltonian H

H|λ〉 = Eλ|λ〉,
∑

λ

|λ〉〈λ| = 1, (4.27)

one gets

Ga(E) =
∑

λ

〈a|λ〉〈λ| 1
E − H

|a〉 =
∑

λ

|〈a|λ〉|2
E − Eλ

, (4.28)



32 Nonperturbative analysis

where the positions of the poles of the propagator are apparent. Consider now the V → ∞
limit: the discrete energy spectrum becomes continuous and the poles of Ga(E) shrink into a
continuous line. Therefore there is a branching point at Eg and a cut [Eg, +∞). By inserting
the unity

∫
dEδ(E − Eλ) = 1, Eq. (4.28) reads

Ga(E) =
∫ ∞

−∞
dE′∑

λ

|〈a|λ〉|2
E − E′ δ(E

′ − Eλ) =
∫ ∞

Eg

dE′�a(E′)
E − E′ , (4.29)

where
�a(E) =

∑
λ

|〈a|λ〉|2δ(E − Eλ) ≥ 0, (4.30)

is the spectral density function. Therefore the propagator Ga(E) is an analytic function in the
whole cut E plane (see Fig. 4.2).

4.4.1 Diagrammatics

By taking the expectation value on |a〉 of the perturbative expansion (4.13) one gets

Ga(E) = G0
a(E) + G0

aVaaG
0
a +

∑
n

G0
aVanG0

nVnaG
0
a

+
∑
n,n′

G0
aVanG0

nVnn′G0
n′Vn′aG

0
a + · · · , (4.31)

where
G0

n(E) ≡ 〈n|G0(E)|n〉 =
1

E − En
and Vnn′ ≡ 〈n|Hint|n′〉. (4.32)

Equation (4.31) can be represented by the diagram in Fig. 4.3a. The complete propagator
Ga(E) is represented by a bold line and the free propagator G0

a(E) by a thin line. The interac-
tion Vnn′ corresponds to an X and the free propagator of the decayed states G0

n(E) corresponds
to three parallel lines.

We are searching for a closed expression of the expansion (4.31). To this end we put together
all diagrams in Fig. 4.3a according to the number of thin lines G0

a(E), i.e., to the power of the
pole at E = Ea.

Ga(E) = G0
a + G0

aVaaG
0
a +

∑
n�=a

G0
aVanG0

nVnaG
0
a +

∑
n,n′ �=a

G0
aVanG0

nVnn′G0
n′Vn′aG

0
a

+G0
aVaaG

0
aVaaG

0
a +

∑
n�=a

G0
aVanG0

nVnaG
0
aVaaG

0
a +

∑
n�=a

G0
aVaaG

0
aVanG0

nVnaG
0
a

+G0
aVaaG

0
aVaaG

0
aVaaG

0
a

+ · · ·

= G0
a + G0

a

Vaa +
∑
n�=a

VanG0
nVna +

∑
n,n′ �=a

VanG0
nVnn′G0

n′Vn′a + · · ·
G0

a

+G0
a

Vaa +
∑
n�=a

VanG0
nVna + · · ·

G0
a

Vaa +
∑
n�=a

VanG0
nVna + · · ·

G0
a

+G0
a

[
Vaa + · · ·

]
G0

a

[
Vaa + · · ·

]
G0

a

[
Vaa + · · ·

]
G0

a

+ · · · . (4.33)
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Figure 4.3: Diagrammatic representation of Eqs. (4.31)-(4.35): a) total propagator Ga(E), Eq.
(4.31); b) self-energy function Σa(E), Eq. (4.34); c) Dyson resummation of a), Eq. (4.35).

By resumming, we get the self-energy function

Σa(E) = Vaa +
∑
n�=a

VanG0
n(E)Vna +

∑
n,n′ �=a

VanG0
n(E)Vnn′G0

n′(E)Vn′a + · · ·

= Vaa +
∑
n�=a

Van
1

E − En
Vna +

∑
n,n′ �=a

Van
1

E − En
Vnn′

1
E − En′

Vn′a + · · · (4.34)

which represents all possible intermediate states of the total propagator Ga(E) that do not
contain the free propagator G0

a(E) = 1/(E − Ea) and the pole in E = Ea. Represent Σa(E)
with a blob in Fig. 4.3b. We can now express Ga(E) in terms of Σa(E), as in Fig. 4.3c, namely

Ga(E) = G0
a(E) + G0

a(E) Σa(E) G0
a(E)

+G0
a(E) Σa(E) G0

a(E) Σa(E) G0
a(E) + · · ·

= G0
a(E) + G0

a(E) Σa(E) Ga(E). (4.35)

The above equation is a purely algebraic one and is immediately solved

Ga(E) =
1

G0
a(E)−1 − Σa(E)

=
1

E − Ea − Σa(E)
, (4.36)

where the link between the total propagator Ga(E) and the self-energy function Σa(E) is
apparent.

Note that the analytical properties of the self-energy function derive from the properties of
the propagator we outlined after Eq. (4.30). Indeed Σa(E) has obviously the same branch cut
of Ga(E) in [Eg, +∞). Moreover Σa(E) is an analytic function in the cut E plane, for a pole
of Σa(E) corresponds to a zero of Ga(E). But, by taking the real and imaginary part of Eq.
(4.29), it is easy to show that the propagator never vanishes in the cut plane. Therefore the
self-energy function can be written in the same form as the propagator (4.29):

Σa(E) =
∫ ∞

Eg

dE′ κa(E′)
E − E′ , (4.37)

with a (positive: see Eq. (4.60) below) spectral density function κa(E) ≥ 0.
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4.4.2 Operator derivation

Consider the operator identity (4.9) when the total Hamiltonian is written as a sum H =
H0 + Hint

(E − H0 − Hint) G(E) = 1. (4.38)

Introduce a (not necessarily one dimensional) orthogonal projection Pa, which commutes with
H0, i.e.

[H0, Pa] = 0. (4.39)

The projection Pa represents the subspace Ha of the initial “undecayed” states and is spanned
by a subset of eigenvectors of the free Hamiltonian H0. Of course, when Ha is one dimensional
Pa reduces to Pa = |a〉〈a| and H0Pa = EaPa. The orthogonal subspace Hd = H⊥

a contains the
decay products and is represented by the projection Pd = 1 − Pa. Note that the total Hilbert
space H is decomposed in a direct sum H = Ha ⊕Hd

Multiplying Eq. (4.38) by Pa or Pd to the left and by Pa to the right and by inserting the
identity 1 = Pa + Pd just before G(E) in the l.h.s. one gets (Cohen-Tannoudji, Dupont-Roc
and Grynberg [1998])

(E − PaHPa) PaG(E)Pa − PaHintPd PdG(E)Pa = Pa, (4.40)
−PdHintPa PaG(E)Pa + (E − PdHPd) PdG(E)Pa = 0, (4.41)

which are two coupled linear equations for PaG(E)Pa and PdG(E)Pa. Equation (4.41) can be
immediately solved

PdG(E)Pa =
Pd

E − PdHPd
HintPa PaG(E)Pa (4.42)

and, substituting into Eq. (4.40), one gets(
E − PaH0Pa − PaHintPa − PaHint

Pd

E − PdHPd
HintPa

)
PaG(E)Pa = Pa. (4.43)

By introducing the level shift operator (Goldberger and Watson [1964])

R(E) = Hint + Hint
Pd

E − PdHPd
Hint (4.44)

into Eq. (4.43) and solving, we finally get the restricted propagator to the initial subspace Ha

PaG(E)Pa =
Pa

E − PaH0Pa − PaR(E)Pa
. (4.45)

This is the operator version of Eq. (4.36). It generalizes Eq. (4.36) for a generic orthogonal
projection Pa and reduces to it when Pa = |a〉〈a| is one dimensional. Indeed, in this case one
gets

PaG(E)Pa =
Pa

E − Ea − 〈a|R(E)|a〉 . (4.46)

On the other hand, a perturbative expansion of the level shift operator (4.44) reads

R(E) = Hint + Hint
Pd

E − H0
Hint + Hint

Pd

E − H0
Hint

Pd

E − H0
Hint + · · ·

= Hint + Hint
Pd

E − H0
R(E). (4.47)
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It is apparent that R(E) contains as intermediate states only the decayed ones, given by the
projector Pd, and by taking the expectation value in the initial state |a〉 one obtains again Eq.
(4.34). Therefore we can write

Σa(E) = 〈a|R(E)|a〉, (4.48)

i.e., the self-energy function Σa(E) is the expectation value in the initial state |a〉 of the level
shift operator R(E).

4.5 Off-diagonal decomposition

In the previous section we found that the total propagator Ga(E) can be written as in Eq.
(4.36) in terms of the self-energy function Σa(E), which is in turn given by the perturbative
expansion (4.34) or equivalently by the expectation value (4.48) of the level shift operator.

Consider, as usual, a Hamiltonian H = H0 + Hint split in a free part H0 and an interaction
part Hint. Choose the initial state |a〉 and consider the orthogonal projections

Pa = |a〉〈a|, Pd = 1 − Pa (4.49)

Now decompose the total Hamiltonian as (Peres [1980b])

H = Ha
0 + Ha

int, (4.50)

where
Ha

0 = PaHPa + PdHPd and Ha
int = PaHPd + PdHPa. (4.51)

Notice that, if |a〉 is an eigenstate of H0 with eigenvalue Ea, it is also an eigenstate of the new
free Hamiltonian Ha

0 , for we get

Ha
0 |a〉 = (Ea + 〈a|Hint|a〉) |a〉. (4.52)

The interesting feature of the decomposition (4.50) is that all diagonal contributions of the
interaction Hint have been absorbed in the free Hamiltonian Ha

0 , and only the off-diagonal
terms with respect to the eigenstates of H0 are contained in the new interaction Ha

int. This is
apparent by rewriting Ha

0 and Ha
int in the following form

Ha
0 = H0 + PaHintPa + PdHintPd,

Ha
int = PaHintPd + PdHintPa = Hint − PaHintPa − PdHintPd. (4.53)

Moreover, notice that the only nonvanishing off-diagonal elements of Ha
int are those between

|a〉 and |n〉 with n �= a. In terms of matrix elements

〈a|Ha
int|a〉 = 〈n|Ha

int|n′〉 = 0, for n, n′ �= a. (4.54)

Reconsider now the analysis of the previous section in terms of the new decomposition (4.50).
The level shift operator (4.44) reads

R(E) = Ha
int + Ha

int

Pd

E − PdH
a
0 Pd

Ha
int = Ha

int + Ha
int

Pd

E − Ha
0

Ha
int, (4.55)

i.e., the perturbative expansion (4.47) reduces exactly to the sum of the first two terms only.
Therefore the self-energy function consists only of its second order contribution

Σa(E) = 〈a|R(E)|a〉 = 〈a|Ha
int

Pd

E − Ha
0

Ha
int|a〉 =

∑
ñ�=ã

|〈a|Ha
int|ñ〉|2

E − Ẽn

, (4.56)
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where |ñ〉 are the eigenvectors of Ha
0 with energies Ẽn, namely

Ha
0 |ñ〉 = Ẽn|ñ〉, (4.57)

with, as noted above, |ã〉 = |a〉 and Ẽa = Ea + 〈a|Hint|a〉. Incidentally, notice that (4.54)
translates immediately into the new basis (Dirac [1958], Chap. 13; Messiah [1961], Chap. XXI)

〈ã|Ha
int|ã〉 = 〈ñ|Ha

int|ñ′〉 = 0, for ñ, ñ′ �= ã, (4.58)

as it is apparent already in the far r.h.s. of Eq. (4.56).
Henceforth, if not otherwise stated, we will always consider the total Hamiltonian decom-

posed in a free and an interaction part as in Eq. (4.50) and we will consequently drop all
superscripts a and all tildes.

A final comment is now in order. From Eq. (4.56) and Eq. (4.58) we get

Σa(E) =
∑

n

|〈a|Hint|n〉|2
E − En

=
∫ ∞

Eg

dE′ κa(E′)
E − E′ , (4.59)

with
κa(E) =

∑
n

|〈a|Hint|n〉|2 δ(E − En) = 〈a|Hintδ(E − H0)Hint|a〉 ≥ 0. (4.60)

Thus we obtain again Eq. (4.37) and, as a byproduct, the definition of κa(E) in terms of the
initial state |a〉 and the Hamiltonian and the positivity condition mentioned after Eq. (4.37).
By plugging the definitions (4.51) into Eq. (4.60) we get the alternative form

κa(E) = 〈a|HPd δ(E − PdHPd) PdH|a〉. (4.61)

Incidentally, notice that κa (whence Σa) are small quantities of order O(λ2), λ being the
coupling constant.

4.6 Analytical continuation of the propagator

Equation (4.59), together with Eq. (4.36), states that Ga(E) has a branching point at E = Eg,
a branch cut extending to E = +∞ and no other singularities on the first Riemann sheet.
However, it can happen that some singularities show up on the second sheet. The analytical
properties of the propagator and its continuation into the second Riemann sheet were first
studied by Peierls [1991], Sec. 5.3; Araki, Munakata, Kawaguchi and Goto [1957] and Schwinger
[1960].

4.6.1 Analytical continuation of the self-energy function

We can evaluate the self-energy function across the cut by letting E → E ± i0+ with E real.
We get

Σa(E±i0+) =
∫ ∞

Eg

dE′ κa(E′)
E − E′ + i0+

= P
∫ ∞

Eg

dE′ κa(E′)
E − E′ ∓iπ

∫ ∞

Eg

dE′κa(E′)δ(E−E′), (4.62)

where P denotes the principal value. Therefore we can write

Σa(E ± i0+) = ∆a(E) ∓ i

2
Γa(E) (4.63)
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Figure 4.4: Integration path in the complex E′ plane (a) for ImE > 0 and (b) for ImE < 0.
The initial contour C0 is placed on the real axis and starts from the ground state energy Eg.
The new contour C1 is deformed in order to keep E′ = E above it. (c) The contour C1 can be
deformed again into the initial contour C0 and a small circle around the pole.

where

Γa(E) = 2πκa(E) ≥ 0, ∆a(E) = P
∫ +∞

−∞

dE′

2π

Γa(E′)
E − E′ (4.64)

are reciprocal Hilbert transforms. It is apparent that the discontinuity is purely imaginary and
reads

Σa(E + i0+) − Σa(E − i0+) = −iΓa(E) = −2πiκa(E) (4.65)

Notice that, in general, Σa(E∗) = Σa(E)∗.
Remember that the Fourier-Laplace transform Ga(E) of the survival amplitude (4.26) is

defined for ImE > 0, in order to assure the convergence of Eq. (4.16) for t > 0. Therefore, the
pole at E′ = E in the integral (4.59) is placed above the integration path in the complex E′

plane. During the continuation process into the second Riemann sheet through the cut, the
integration path must be modified so that the pole is always above it, as shown in Fig. 4.4.
After the whole process, on the second Riemann sheet the self-energy function (4.59) will get
an additional term

Σa(E) −→ ΣaII(E) =
∫ ∞

Eg

dE′ κa(E′)
E − E′ − 2πiκa(E) = Σa(E) − 2πiκa(E) , E ∈ C. (4.66)

Note that the new term has in general a nonvanishing imaginary part and obviously represents
the analytical continuation of the discontinuity of the self-energy function across the cut.

4.6.2 The pole in the second Riemann sheet

From Eq. (4.36), a pole Epole of Ga(E) on the second sheet must satisfy the equation

Epole = Ea + ΣaII(Epole), (4.67)

where ΣaII(E) is the determination (4.66) of the self-energy function in the second sheet. By
setting

Epole = Ea + ∆E − i
γ

2
, (4.68)

one gets

∆E − i
γ

2
=

[
Σa(E) − 2πiκa(E)

]
E=Ea+∆E−i γ

2

, (4.69)
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whose imaginary and real part read

γ

2

[
1 +

∫ ∞

Eg

dE
κa(E)

|Ea − E + ∆E − iγ
2 |2

]
= 2πRe

[
κa(E)

]
E=Ea+∆E−i γ

2

, (4.70)

∆E =
∫ ∞

Eg

dE
(Ea − E + ∆E)κa(E)
|Ea − E + ∆E − iγ

2 |2
+ 2πIm

[
κa(E)

]
E=Ea+∆E−i γ

2

. (4.71)

By noting that

lim
γ→0

γ

E2 + γ2

4

= 2πδ(E), lim
γ→0

E

E2 + γ2

4

=
P
E

, (4.72)

where P denotes the principal value, and remembering that κa(E) = O(λ2), with λ coupling
constant, we can solve perturbatively (for small λ) the above equations

γ = 2πκa(Ea) + O(λ4) = 2π
∑

n

|〈n|Hint|a〉|2 δ(Ea − En) + O(λ4), (4.73)

∆E = P
∫ ∞

Eg

dE
κa(E)
Ea − E

+ O(λ4) = P
∑

n

|〈n|Hint|a〉|2
Ea − En

+ O(λ4), (4.74)

which are respectively the Fermi Golden Rule (Fermi [1932]; Fermi [1950]; Fermi [1960]) and
the level shift.

The procedure just shown (Nakazato, Namiki and Pascazio [1996]) is general (and histor-
ical), but involves limiting procedure like (4.72). It is also difficult to implement at higher
orders in λ. For a general (and more practical) procedure, we note that Σa(E) is O(λ2), so
that the pole can be found perturbatively: by expanding ΣaII(E) around E = Ea we get a
power series

ΣaII(E) = ΣaII(Ea − i0+) + Σ′
aII(Ea − i0+) (E − Ea) + . . . , (4.75)

whose radius of convergence is Rc = Ea − Eg because of the branching point at E = Eg. The
circle of convergence lies half on the first Riemann sheet and half on the second sheet, as shown
in Fig. 4.5. For sufficiently small λ, the pole is well inside the convergence circle, because
|Epole − Ea| ∼ λ2Ea � Rc, and we can rewrite Eq. (4.67) as

Epole = Ea + Σa(Ea + i0+) + Σ′
a(Ea + i0+)(Epole − Ea) + . . . , (4.76)

where we used the fact that ΣaII(E) is the analytical continuation of Σa(E) below the branch
cut, whence ΣaII(Ea − i0+) = Σa(Ea + i0+). We can now iteratively solve Eq. (4.76) to obtain

Epole = Ea + Σa(Ea + i0+) + Σ′
a(Ea + i0+)Σa(Ea + i0+) + O(λ6). (4.77)

From Eq. (4.77) and Eq. (4.63) we get

γ = −2 Im
[
Σa(Ea + i0+)

]
+ O(λ4) = Γa(Ea) + O(λ4), (4.78)

∆E = Re
[
Σa(Ea + i0+)

]
+ O(λ4) = ∆a(Ea) + O(λ4), (4.79)

which, by using the definition (4.64), yield again Eqs. (4.73)-(4.74). Therefore, for small cou-
pling, there is a simple pole with negative imaginary part, placed in the second Riemann sheet
in a neighborhood of E = Ea of radius O(λ2).
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Figure 4.5: Cut and pole in the complex E-plane and convergence circle for the expansion of
Σa(E) around E = Ea. I and II are the first and second Riemann sheets, respectively. The
pole is on the second Riemann sheet, at a distance O(λ2) from Ea.

4.6.3 Lorentzian spectral density and Weisskopf-Wigner approximation

We now investigate the relationship between the propagator Ga(E), and hence the self-energy
function Σa(E), and the spectral density function �a(E). As we have seen, they yield two
different representations of the survival amplitude A(t): Eq. (4.26) and Eq. (2.16), respectively.
The link between this two representations is given by the dispersion relation (4.29), which
expresses the propagator in terms of an integral over its discontinuity, the spectral density. In
other words

Ga(E + i0+) − Ga(E − i0+) = −2iπ�a(E), E ∈ R. (4.80)

By using the analytical property of the resolvent Ga(E∗) = Ga(E)∗ we get the relation we seek

�a(E) =
i

2π
[Ga(E + i0+) − Ga(E + i0+)∗] = − 1

π
Im
[
Ga(E + i0+)

]
. (4.81)

The spectral density (4.81) can be given an interesting form in terms of the real and imaginary
part of the self-energy function (4.63). One can write

�a(E) = − 1
π

Im

[
1

E − Ea − ∆a(E) + iΓa(E)
2

]

=
Γa(E)

2π

1(
E − Ea − ∆a(E)

)2
+
(

Γa(E)
2

)2 , (4.82)

which has a Lorentzian form, with energy-dependent coefficients. It is apparent that if the
two coefficients are slowly varying functions of energy within the peak of the Lorentzian, the
decay is well approximated by an exponential law. A purely exponential decay is obtained by
assuming constant coefficients (evaluated at Ea), namely

�a(E) =
Γa(Ea)

2π

1(
E − Ea − ∆a(Ea)

)2
+
(

Γa(Ea)
2

)2 , (4.83)
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which is the Breit-Wigner spectrum (Breit and Wigner [1936]).
More generally, in order to obtain a purely exponential decay, one neglects all branch cut

and/or other distant poles contributions, and considers only the dominant pole contribution.
In other words, one does not look at the rich analytical structure of the propagator and retains
only its pole singularity. In this case the self-energy function becomes a constant (equal to its
value at the pole), namely

Ga(E) =
1

E − Ea − Σa(E)
−→ GWW

a (E) =
1

E − Ea − ΣaII(Epole)
=

1
E − Epole

, (4.84)

where in the last equality we used the pole equation (4.67). This is the celebrated Weisskopf-
Wigner approximation (Weisskopf and Wigner [1930a]; Weisskopf and Wigner [1930b]) and
yields a purely exponential behavior, A(t) = exp(−iEpolet), without short- and long-time
corrections. From Eq. (4.84) we immediately get the spectral density function

�WW
a (E) =

γ

2π

1(
E − Ea − ∆E

)2
+
(

γ
2

)2 , (4.85)

which reduces to (4.83) if one retains only the second-order contribution of the perturbation
expansion of the pole coordinates (4.78)-(4.79).

4.7 Temporal behavior of the survival amplitude

In order to analyze the temporal behavior of the survival amplitude it is rather convenient to
deform the Bromwich path B in a new contour C = h + c, where h is the so-called Hankel
contour, running from E = Eg − i∞ on the first Riemann sheet, going around the branch point
E = Eg and returning back to E = Eg − i∞ on the second sheet, and c is a small circle around
the pole Epole on the second Riemann sheet (see Fig. 4.6). From Eq. (4.26) one gets

A(t) = Ze−i(Ea+∆E)t− γ
2
t +

i

2π

∫
h
e−iEtGa(E)dE

≡ Apole(t) + Acut(t), (4.86)

where

Z =
[
dG−1

a (E)
dE

]−1

E=Epole

=
1

1 − Σ′
aII(Epole)

(4.87)

is the residue at the pole. The simple pole yields therefore an exponential decay, but this law
is modified by the cut contribution. As we will see, at early times the latter sums up with the
exponential and gives a quadratic behavior, while at large times, when the pole contribution
becomes exponentially small, the cut becomes dominant and yields an inverse power law tail.
Notice that the integral over h is of order

i

2π

∫ Eg

Eg−i∞
dE e−iEt[Ga(E) − GaII(E)] = O(λ2), (4.88)

for [Ga(E)−GaII(E)] ∝ [Σa(E)−ΣaII(E)] = O(λ2). Therefore at intermediate times the decay
is exponential with a correction of order O(λ2).
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Figure 4.6: The deformed integration path C, sum of the Hankel contour h and the small circle
c. The contour h originates in Eg − i∞ on the first Riemann sheet, goes around the branching
point Eg and returns back to Eg − i∞ on the second sheet. The circle c runs clockwise around
the pole Epole on the second sheet.

4.7.1 Small times

Now we study in detail the temporal behavior of the survival amplitude A(t) for t → 0. By
changing the integration variable η = Et, Eq. (4.26) becomes

A(t) =
i

2π

∫
B

dη
e−iη

f(η, t)
, (4.89)

where, from Eq. (4.36), f(η, t) reads

f(η, t) = η − Eat − t Σa

(η

t

)
. (4.90)

From the above equation it is apparent that the temporal behavior of the survival amplitude
at short times is determined by the behavior of the self-energy function in the complex E
plane in the neighborhood of E = η/t = ∞. From a physical perspective this is related to the
time-energy uncertainty relations: at short times the system is allowed to explore intermediate
states with large energies E. (Remember also the role of the time-energy uncertainty relation
in the derivation of Fleming’s unitary bound in Sec. 2.3.2.) Let us analyze the behavior of
Σa(1/u) = 〈a|R(1/u)|a〉 in a neighborhood of the origin u = 0. By expanding (4.44), with
E = 1/u, we get

R

(
1
u

)
= Hint + uHint

Pd

1 − uPdHPd
Hint = Hint + uHintPdHint + O(u2), (4.91)

whence

Σa

(
1
u

)
= u〈a|HintPdHint|a〉 + O(u2) = u〈a|H2

int|a〉 + O(u2), (4.92)

where we used Eq. (4.58), which gives PaHintPdHintPa = PaH
2
intPa. Notice now that, being |a〉

an eigenstate of the free Hamiltonian H0 and being Hint completely off-diagonal, one gets

〈a|H2
int|a〉 = 〈a|H2|a〉 − 〈a|H|a〉2 = (	H)2 = τ−2

Z , (4.93)
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i.e., the Zeno time depends only on the off-diagonal part of the Hamiltonian. By using Eq.
(4.93), Eq. (4.92) finally becomes

Σa

(
1
u

)
=

u

τ2
Z

+ O(u2), (4.94)

whence the function f(η, t) for t → 0 reads

f(η, t) = η − Eat − 1
η

t2

τ2
Z

+ O(t3). (4.95)

Therefore the survival amplitude at small times has the asymptotic expansion

A(t) ∼ i

2π

∫
B

dη
ηe−iη

η2 − Eatη − t2/τ2
Z

=
i

2π

∫
B

dη
ηe−iη

(η − tη1)(η − tη2)
, (4.96)

where

η1,2 =
Ea

2
±
√(

Ea

2

)2

+
1
τ2
Z

. (4.97)

By closing the Bromwich path in Eq. (4.96) with a large semicircle in the lower half plane, the
integral reduces to the sum of the residues at the real poles tη1,2:

A(t) ∼
(

η1

η1 − η2
e−iη1t − η2

η1 − η2
e−iη2t

)
. (4.98)

Therefore the survival probability at small times reads

P (t) = |A(t)|2 ∼ η2
1 + η2

2 − 2η1η2 cos[t(η1 − η2)]
(η1 − η2)2

∼ 1 + η1η2t
2 = 1 − t2

τ2
Z

, (4.99)

in agreement with the expansion (2.23). Notice that at short times the behavior is governed
by two “effective” poles which replace the global contribution of the cut and the pole on the
second sheet. We will come back to this point later.

4.7.2 Large times

We look now at the temporal behavior of the survival amplitude at large times. In order to
evaluate the cut contribution at large times, change the integration variable in the integral in
Eq. (4.86), and get [x = i(E − Eg)t]

Acut(t) =
e−iEgt

2π

∫ ∞

0
dx e−x

(
1

g(x, t)
− 1

g(xe−2πi, t)

)
, (4.100)

where g(x, t) = ix+t(Ea−Eg)+tΣa(Eg−ix/t) and the second term represents the contribution
of the second Riemann sheet (it is easy to show that the branching point contribution vanishes).
One obtains

Acut(t) =
e−iEgt

2π

∫ ∞

0
dx e−x

(
1

tEag + tΣa(Eg − ix
t ) + ix

− 1
tEag + tΣaII(Eg − ix

t ) + ix

)
,

(4.101)
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where we let Eag = Ea − Eg. Let us evaluate the difference between the two terms by using
Eq. (4.66)

Acut(t) =
−ie−iEgt

t

∫ ∞

0
dx e−x κa

(
Eg − ix

t

)(
Eag + Σa(Eg − ix

t ) + ix
t

) (
Eag + ΣaII(Eg − ix

t ) + ix
t

) . (4.102)

Notice that, from Eq. (4.37), κa(E) must vanish sufficiently fast at the ends of the integration
domain in order to assure the convergence of the integral ∀E, namely

κa(E) ∼ Eag


C0

(
E−Eg

Eag

)δ
for E → Eg, δ > 0,

C∞
(

E
Eag

)−δ′
for E → ∞, δ′ > 0,

(4.103)

where we introduced the constant Eag for dimensional reason, whence C0 e C∞ are adimen-
sional. From a physical perspective Eqs. (4.103) have the following meaning: there is an energy
scale E0 (E∞) such that the first (second) equation is valid for E < E0 (E > E∞). Such energy
scales depend, obviously, on the model under investigation.

The dominant contribution to the integral (4.102) comes from the region x <∼ 1 due to
the negative exponential. For sufficiently large times such that x <∼ 1 � (E0 − Eg)t, i.e. for
t � (E0 − Eg)−1, we can evaluate the integral by using the approximation (4.103) for the
numerator and letting x/t = 0 in the denominator. We get (Goldberger and Watson [1964];
Nakazato, Namiki and Pascazio [1996])

Acut(t) ∼ −ie−iEgt

t

∫ ∞

0
dx e−x

EagC0

(
−i x

Eagt

)δ

(Eag + Σa(Eg))2

= C0(−i)δ+1Γ(δ + 1)
(

Eag

Eag + Σa(Eg)

)2 e−iEgt

(Eagt)δ+1

≡ C
e−iEgt

(Eagt)δ+1
(4.104)

where Γ(t) =
∫∞
0 dxe−xxt−1 is the Euler function, C a constant, and Eq. (4.66) and the first

of Eqs. (4.103) were used in order to write

Σa(Eg) = ΣaII(Eg). (4.105)

Therefore we proved that the survival amplitude has an inverse-power law contribution, t−(1+δ),
at sufficiently large times. This contribution will eventually supersede the exponential contri-
bution in Eq. (4.86).

Let us summarize our results. The survival amplitude A(t) = 〈a|U(t)|a〉 at large times has
the asymptotic behavior

A(t) ∼ Ze−
γ
2
t−i(Ea+∆E)t + C

e−iEgt

(Eagt)1+δ
, (4.106)

whence, the survival probability reads

P (t) ∼ Ze−γt +
C

(Eagt)2(1+δ)
+

2
√CZ

(Eagt)1+δ
e−

γ
2
t cos[(Eag + ∆E)t − ξ], (4.107)

where we set Z = |Z|2, C = |C|2 and ξ = Arg(Z) − Arg(C). Notice that together with
the exponential, exp(−γt), and the inverse-power term, (Eagt)−2(1+δ), there is an interference
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t

P(t)

(arbitrary units)

Figure 4.7: Temporal behavior of the survival probability P (t). All characteristics are greatly
exaggerated by a convenient choice of the parameters. The frequency of the oscillations reaches
its asymptotic value after a few oscillations. Notice that different scales have been used for the
two graphs. The dashed line is the exponential and the dotted line the power law. Notice the
transition between the two laws at large times.

term between the pole and the cut contribution (Facchi and Pascazio [1998]). This term
yields damped oscillations (of frequency approximately equal to the distance between the pole
and the branching cut, because ∆E = O(λ2)) over the exponential decay. This interference
effect is important for intermediate times, and becomes dominant at the transition between the
exponential and the inverse-power law. Therefore, the short time behavior, yielding a vanishing
decay rate, is nothing but the first of a series of oscillations. The temporal behavior of the
survival probability is sketched in Fig. 4.7. Notice the transition from exponential decay to the
inverse-power law for large times.



Chapter 5

Lee model and form factors

5.1 Introduction

We will now study the temporal evolution in greater detail, by making use of a quantum
field theoretical framework, and discuss the primary role played by the form factors of the
interaction.

5.2 The Lee Hamiltonian

Consider the total Hamiltonian H and the initial state |a〉. As we saw in Sec. 4.5 we can write
the total Hilbert space as a direct sum H = Ha ⊕Hd, with Ha = PaH and Hd = PdH, find an
orthonormal basis {|n〉} in Hd

〈a|a〉 = 1, 〈a|n〉 = 0, 〈n|n′〉 = δnn′ (5.1)

and split the total Hamiltonian in the free and interaction part (4.51), which satisfy the relations

H0|a〉 = ωa|a〉, H0|n〉 = ωn|n〉,
〈a|Hint|a〉 = 〈n|Hint|n′〉 = 0, ∀n, n′. (5.2)

The interaction Hamiltonian Hint is completely off-diagonal and has nonvanishing matrix ele-
ments only between Ha and Hd, namely

〈a|Hint|n〉 = 〈n|Hint|a〉∗ = gn. (5.3)

Equations (5.1)-(5.3) completely determine the free and interaction Hamiltonians in terms of
the chosen basis. Indeed we get

H = H0 + Hint, (5.4)

where

H0 = ωa|a〉〈a| +
∑

n

ωn|n〉〈n|, Hint =
∑

n

gn (|a〉〈n| + g∗n|n〉〈a|) . (5.5)

This is called the Lee Hamiltonian and was first introduced by Lee [1954] as a solvable quantum
field model for studying the renormalization problem.

As before, we take as initial state |ψ(0)〉 = |a〉. The interaction of this normalizable state
with the states |n〉 (the formal sum in the above equation usually represents an integral over a
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continuum of states) is responsible for its decay and depends on the form factor gn. Note that
the many-level Hamiltonian (3.21) is of the Lee type with gn = λ = const.

As we saw in the previous chapter, the propagator can be expressed as

Ga(E) =
1

E − ωa − Σa(E)
, (5.6)

where the self-energy function Σa(E) consists only of a second order contribution and is related
to the form factor gn by the equation

Σa(E) =
∑

n

|〈a|Hint|n〉|2
E − ωn

=
∫

dω
κa(ω)
E − ω

, (5.7)

with
κa(E) =

∑
n

|〈a|Hint|n〉|2 δ(E − ωn) =
∑

n

|gn|2δ(E − ωn). (5.8)

A comment is now in order. If one is simply interested in the survival amplitude [or, equiva-
lently, in the expression of the propagator (5.6)] and not in the details of the interactions gn

between |a〉 and different states |n〉 with the same energy ωn = ω, one can simply replace this
set of states with a single, representative, state |ω〉 and the Hamiltonian (5.5) can be replaced
by the following equivalent one

H = H0 + Hint = ωa|a〉〈a| +
∫

dω ω|ω〉〈ω| +
∫

dω g(ω)(|a〉〈ω| + |ω〉〈a|), (5.9)

with the form factor g(ω) =
√

κa(ω) and with

|a〉〈a| +
∫

dω |ω〉〈ω| = 1. (5.10)

In terms of the Hamiltonian (5.9) the self-energy function simply reads

Σa(E) =
∫

dω
|〈a|Hint|ω〉|2

E − ω
=
∫

dω
g2(ω)
E − ω

. (5.11)

As usual the survival amplitude is given by the inverse Fourier-Laplace transform of the prop-
agator

A(t) =
i

2π

∫
B

dE e−iEtGa(E) =
i

2π

∫
B

dE
e−iEt

E − ωa − Σa(E)
, (5.12)

the Bromwich path B being a horizontal line ImE =const> 0 in the half plane of convergence
of the Fourier-Laplace transform (upper half plane).

5.3 Two-pole model

We consider now a particular case: let the form factor be Lorentzian

g(ω) =
λ√
π

√
Λ

ω2 + Λ2
. (5.13)

This describes, for instance, an atom-field coupling in a cavity with high finesse mirrors (Lang,
Scully and Lamb [1973]; Ley and Loudon [1987]; Gea-Banacloche, Lu, Pedrotti, Prasad, Scully
and Wodkiewicz [1990]). (Notice that the Hamiltonian in this case is not lower bounded and
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Figure 5.1: (a) Form factor g2(ω) and initial state energy ωa. (b) Poles of the propagator in
the complex E-plane.

we expect no deviations from exponential behavior at very large times.) In this case one easily
obtains (for ImE > 0)

Σa(E) =
λ2

E + iΛ
= λ2 E

E2 + Λ2
− iλ2 Λ

E2 + Λ2
= ∆a(E) − i

2
Γa(E), (5.14)

whence the propagator

Ga(E) =
E + iΛ

(E − ωa)(E + iΛ) − λ2
(5.15)

has two poles in the lower half energy plane (see Fig. 5.1). Their values are

E1 = ωa + ∆ − i
γ

2
, E2 = −∆ − i

(
Λ − γ

2

)
, (5.16)

where 
∆ = −ωa

2 + ωa
2

√√
υ4+4ω2

aΛ2+υ2

2ω2
a

γ = Λ −
√√

υ4+4ω2
aΛ2−υ2

2

, with υ2 = ω2
a + 4λ2 − Λ2. (5.17)

(Notice that υ2 can be negative.) The propagator and the survival amplitude read

Ga(E) =
E1 + iΛ
E1 − E2

1
E − E1

− E2 + iΛ
E1 − E2

1
E − E2

=
1 −R

E − (ωa + ∆) + iγ/2
+

R
E + ∆ + i(Λ − γ/2)

(5.18)

and

A(t) = (1 −R)e−i(ωa+∆)te−γt/2 + Rei∆te−(Λ−γ/2)t, (5.19)

respectively, where

1 −R = Res[Ga(E1)] =
1

1 − Σ′
a(E1)

=
ωa + ∆ + i(Λ − γ/2)
ωa + 2∆ + i(Λ − γ)

(5.20)
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is the residue of the pole E1 of the propagator. The survival probability reads

P (t) = Z exp(−γt) + 2Re[R∗(1 −R)e−i(ωa+2∆)t] exp(−Λt) + |R|2 exp[−(2Λ − γ)t], (5.21)

where Z = |1 −R|2 is the wave function renormalization

Z =
(ωa + ∆)2 + (Λ − γ/2)2

(ωa + 2∆)2 + (Λ − γ)2
. (5.22)

On the other hand, by substituting the expression of the self-energy function (5.14) into Eq.
(4.82) the spectral density function reads

�a(E) =
λ2

π

Λ
E2+Λ2(

E − ωa − λ2 E
E2+Λ2

)2
+
(
λ2 Λ

E2+Λ2

)2 . (5.23)

Small coupling

It is interesting to consider some limits of the model investigated. Consider the weak coupling
limit λ � ωa, Λ. One obtains from Eq. (5.17)

∆ =
λ2

ω2
a + Λ2

ωa + O(λ4) = P
∫

dω
g2(ω)
ωa − ω

+ O(λ4),

γ = 2Λ
λ2

ω2
a + Λ2

+ O(λ4) = 2πg2(ωa) + O(λ4). (5.24)

Notice that the latter formula is the Fermi Golden Rule and that E1 is the “dominant” pole.
Indeed, the second exponential in Eq. (5.19) is damped very quickly, on a time scale Λ−1 much
faster than γ−1, whence, after a short initial quadratic (Zeno) region of duration Λ−1, the decay
becomes purely exponential with decay rate γ. Note that the corrections are of order λ2

R =
λ2

ω2
a + Λ2

ωa − iΛ
ωa + iΛ

+ O(λ4) (5.25)

and the Zeno time is τZ = λ−1 � Λ−1, i.e. the initial quadratic (Zeno) region is much shorter
than the Zeno time: in general, the Zeno time does not yield a correct estimate of the duration
of the Zeno region. The approximation P (t) � 1 − t2/τ2

Z holds for times t < Λ−1 � τZ.

Large bandwidth

In the limit of large bandwidth Λ � ωa, λ, from Eq. (5.17) one gets γ = 2λ2/Λ + O(Λ−2) and
in order to have a non trivial result with a finite decay rate, we let

Λ → ∞, λ → ∞, with
λ2

Λ
=

γ

2
= const. (5.26)

In this limit the continuum has a flat band, g(ω) =
√

γ/2π =const, and we expect to recover
the results of Sec. 3.4. Indeed, in this case one gets R = 0 and ∆ = 0, whence

Ga(E) =
1

E − ωa + iγ/2
, (5.27)

so that the survival amplitude and probability read

A(t) = exp
(
−iωat − γ

2
t
)

and P (t) = exp(−γt). (5.28)

In this case the propagator (5.27) has only a simple pole and the survival probability (5.28) is
purely exponential.
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Narrow bandwidth

In the limit of narrow bandwidth Λ � ωa, λ, the form factor becomes

g2(ω) = λ2δ(ω) (5.29)

and the continuum is “concentrated” in ω = 0. Therefore the continuum behaves as a second
discrete level and one obtains Rabi oscillations. In fact one gets

γ = 0, ∆ = −ωa

2
+ Ω, R =

1
2

(
1 − ωa

2Ω

)
, (5.30)

where

Ω =

√
λ2 +

ω2
a

4
(5.31)

is the usual Rabi frequency of a two-level system with energy difference ωa and coupling λ. By
(5.30) the survival amplitude and probability read

A(t) =
1
2

(
1 +

ωa

2Ω

)
e−i(ωa

2
+Ω)t +

1
2

(
1 − ωa

2Ω

)
e−i(ωa

2
−Ω)t,

P (t) = 1 − λ2

Ω2
sin2 (Ωt) . (5.32)

In this case, if ωa = 0, the survival probability (5.32) oscillates between 1 and 0. On the other
hand, if ωa �= 0 the initial state never decays completely.

Incidentally, notice that the Zeno time is still τZ = λ−1 and yields now a good estimate
of the duration of the Zeno region. This is, so to say, a “coincidence” due to the oscillatory
features of the system. (Remember that for ωa = 0 Fleming’s unitary bound (2.39) becomes
an equality and that τZ depends only on the off-diagonal part of the total Hamiltonian.)

Strong coupling

Another interesting case is that of strong coupling, λ → ∞. This is a typical case in which the
strong coupling provokes violent oscillations before the system reaches the asymptotic regime.
In the limit λ � Λ, ωa, we get

∆ = λ − ωa

2
+ O(λ−1), γ = −i

Λ
2

+ O(λ−1), R =
1
2
− ωa + iΛ

4λ
+ O(λ−3), (5.33)

whence the survival amplitude reads

A(t) � exp
(
−i

ωa

2
t − Λ

2
t

)[(
1
2

+
ωa + iΛ

4λ

)
e−iλt +

(
1
2
− ωa + iΛ

4λ

)
eiλt

]
, (5.34)

which yields fast oscillations of frequency λ damped at a rate Λ � λ.

5.3.1 Two-pole reduction

We show that the two-pole model is the first improvement, after the Weisskopf-Wigner single
pole, in the approximation of a generic realistic model. First note that, according to the
Weisskopf-Wigner approximation, an exponential decay is obtained by considering a constant
self-energy function Σa = −iγ/2, i.e. a resolvent with a single pole with negative imaginary
part. On the other hand, as we noted in Sec. 4.7.1, the initial quadratic behavior of the survival
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amplitude is governed by two effective poles of the resolvent, which ultimately derive from the
behavior (4.94) of the self-energy function at infinity

Σa(E) ∼ 1
τ2
ZE

, for E → ∞. (5.35)

If one wants to capture this short time behavior maintaining the exponential law at later times,
and is not interested in the large-time power-law deviations, one can proceed in the following
way. The requirement for having an exponential decay, with decay rate γ for t → ∞ translates
in the behavior of the self-energy function for E → 0, namely in the requirement of having a
Weisskopf-Wigner constant self-energy function with negative imaginary part

Σa(0) = −ib. (5.36)

The simplest form of the self-energy function satisfying both requirements (5.35) and (5.36) is

Σa(E) =
1

τ2
ZE + i/b

=
1/τ2

Z

E + i/bτ2
Z

(5.37)

By letting τZ = 1/λ and 1/bτ2
Z = Λ, this becomes exactly the self-energy function of the two-

pole model (5.14). Therefore the two-pole model is the simplest approximation which yields
the short quadratic behavior together with the exponential one.

Note that the process outlined above can be iterated to find better approximations of the
real Σa(E) by adding other poles and/or zeros. But notice also that this approach does not
yield the inverse power-law tail. Indeed the latter is essentially due to the nonanalytic behavior
of the self energy function at the branching point, a feature that cannot be captured by an
olomorphic function.

5.4 An equivalence method

We apply now a method of equivalence to the Lee Hamiltonian (5.9), which enables us to look
at the Zeno region from a different perspective. The Hamiltonian (5.9) describes the decay of
a discrete state |a〉 into the continuum of states |ω〉 with a given form factor g(ω). According
to Eq. (4.94) and Eq. (5.11), the Zeno time is related to the integral of the squared form factor
by the simple relation

1
τ2
Z

=
∫

dω g2(ω). (5.38)

On the other hand, for a two-level system the Zeno time is just the inverse off-diagonal element
of the Hamiltonian, namely τZ = 1/λ [and, of course, this is in agreement with the above
equation, as shown by Eq. (5.29)]. We seek now an equivalent decay model, that shares with
the two-level model this nice property. To this end, let us add a new “intermediate” discrete
state |b〉 to the Lee model. Consider then the Rabi oscillation λ of the two-level system |a〉,
|b〉 and let the initial state |a〉 decay only through state |b〉, i.e. couple |b〉 to a continuum with
form factor gb(ω). In other words, the Hamiltonian (5.9) is substituted by the following one

H = ωa|a〉〈a|+ωb|b〉〈b|+
∫

dω ω|ω〉〈ω|+λ (|a〉〈b| + |b〉〈a|)+
∫

dω gb(ω)(|b〉〈ω|+|ω〉〈b|). (5.39)

We require that this Hamiltonian is equivalent to the original one in describing the decay of
the initial state |a〉. To this end, notice that the part of Hamiltonian describing the decay of
state |b〉 (and neglecting the coupling with |a〉) is just a Lee Hamiltonian and gives

Gb(E) =
1

E − ωb − Σb(E)
, Σb(E) =

∫
dω

g2
b (ω)

E − ω
. (5.40)
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On the other hand, state |a〉 couples only to state |b〉 with a coupling λ. Therefore the evolution
of state |a〉 is just a Rabi oscillation between state |b〉 dressed by the continuum |ω〉 and state
|a〉, namely

Ga = G0
a + G0

aλGbλGa , (5.41)

whence

Ga(E) =
1

E − ωa − λ2Gb(E)
. (5.42)

Therefore, in the modified model, the self-energy function of the initial state |a〉 is nothing but
the coupling λ2 times the dressed propagator Gb(E)

Σa(E) = λ2Gb(E) =
λ2

E − ωb − Σb(E)
. (5.43)

Equation (5.43) is the equivalence relation sought. One has to choose the auxiliary form factor
gb(ω) in Eq. (5.39) as a function of the original one g(ω), in order to satisfy this relation and get
an equivalent description of the decay. Our interest in this equivalence is due to the asymptotic
behavior of formula (5.43)

Σa(E) ∼ λ2

E
=

1
τ2
ZE

, for E → ∞ , (5.44)

which explicitly shows the relation between the coupling λ and the Zeno time τZ. In the
equivalent model, therefore, the initial quadratic behavior is singled out from the remaining part
of the decay: the Zeno region, i.e., the first oscillation, is nothing but the initial unperturbed
Rabi oscillation between states |a〉 and |b〉 (which initially “represents” the original continuum
in its globality). After the initial stage of the decay, the coupling gb(ω) between |b〉 and |ω〉
(namely the details of the original continuum) comes into play and modifies the initial Rabi
oscillation with its characteristic time scale. This explains from a different perspective the
difference, already stressed in previous sections, between the Zeno time and the duration of the
initial quadratic region.

As an example, we recover the self-energy function (5.14) of the two-pole model, by requiring
that Σb be the constant

Σb(E) = −ωb − iΛ , (5.45)

which implies that

gb(ω) =

√
Λ
π

and ωb = 0. (5.46)

In other words, the auxiliary state |b〉 is placed at the mean energy of the original contin-
uum g(ω) and decays into a flat-band continuum with decay rate γb = 2Λ: the decay into
a Lorentzian continuum is exactly equivalent to a Rabi coupling with a level that in turn
exponentially decays into a flat continuum.

A final comment is now in order. One can draw a clear picture of the two-pole reduction,
discussed in the previous section, just by looking at the construction of the equivalent model.
The first approximation of a real decay, the Weisskopf-Wigner approximation, is represented by
the simple exponential decay of level |b〉 with its time scale γ−1

b . The two-pole approximation
superimposes an oscillating dynamics with time scale λ−1 to the latter, yielding the initial Zeno
region. By complicating the model with the addition of other dynamical elements with their
characteristic scales, one can construct a better approximation of the real decay law.
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5.5 The decay of a two-level atom

It is interesting and instructive to apply the techniques and considerations sketched above to
a real physical system. For this purpose we shall look at the properties of the hydrogen atom
in the electromagnetic field.

Consider the Hamiltonian of a two-level atom interacting with the photon field (Cohen-
Tannoudji, Dupont-Roc and Grynberg [1998])

H = Ha + Hf + Hint

= ω0|2〉〈2| +
∑
k,λ

ωka
†
kλakλ +

∑
k,λ

(
φkλa†kλ|1〉〈2| + φ∗

kλakλ|2〉〈1|
)

. (5.47)

We considered only the linear part of the interaction in the rotating wave approximation and
neglected the atom translational degree of freedom. akλ is the annihilation operator of a
photon with momentum k (energy ωk = |k|) and polarization λ = 1, 2 and satisfying the usual
commutation relations

[akλ, a†
k′λ′ ] = δλλ′δ3(k − k′). (5.48)

The quantities φkλ are the matrix elements of the interaction Hamiltonian between the states

|1; 1kλ〉 ≡ |1〉 ⊗ |k, λ〉, |2; 0〉 ≡ |2〉 ⊗ |0〉, (5.49)

where the first ket refers to the atom and the second to the photon.
Note that the rotating wave Hamiltonian (5.47) is in fact a Lee Hamiltonian (5.5), and

therefore the self-energy function is exact at the second order in the coupling constant.

5.5.1 Matrix elements

The matrix elements of the interaction Hamiltonian are

φkλ =
e

me

√
2ε0V ω

ε∗kλ · 〈1| exp(−ik · x) p|2〉 (5.50)

and in the dipole approximation read

φkλ =
−ieω0√
2ε0V ω

ε∗kλ · x12. (5.51)

They were exactly evaluated by Moses [1972a]; Moses [1973] and Seke [1994a] in the energy-
angular momentum basis for photons. Here we will derive them by using the atomic eigen-
function in the momentum representation (Facchi and Pascazio [1999b]). For concreteness we
concentrate our attention on the 2P-1S transition of hydrogen: |1〉 ≡ |n1 = 1, l1 = 0, m1 =
0〉, |2〉 ≡ |n2 = 2, l2 = 1, m2〉.

We can write

〈r1| exp(−ik · x)p|r2〉 =
∫

d3p〈r1| exp(−ik · x)|p〉〈p|p|r2〉. (5.52)

By using the property of the momentum eigenstates |p〉
exp(−ik · x)|p〉 = |p − k〉, (5.53)

Eq. (5.52) becomes

〈r1| exp(−ik · x)p|r2〉 =
∫

d3p ũ∗
r1

(p − k) p ũr2(p), (5.54)
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where ũr(p) ≡ 〈p|r〉 is the atomic eigenfunction in the momentum representation.
For the ground state 1S one gets (a0 is the Bohr radius)

ũ100(p) =
∫

d3x〈p|x〉〈x|100〉 =
∫

d3x

(2π)3/2
e−ip·xu100(x)

=
∫

d3x

(2π)3/2
e−ip·x 1√

πa3
0

e−r/a0 =

√
8

π2a5
0

1[
(1/a0)

2 + p2
]2 , (5.55)

and for the 2P state one gets

ũ21m2(p) =
∫

d3x

(2π)3/2
e−ip·x 1√

25πa5
0

x · ξm2
e−r/2a0 = −i

√
1

π2a7
0

p · ξm2[
(1/2a0)

2 + p2
]3 , (5.56)

where the unit spherical vectors ξq are linear combinations of the unit orthogonal vectors ex,
ey and ez:

ξ0 = ez, ξ±1 = ∓ex ± iey√
2

. (5.57)

By plugging Eqs. (5.55) and (5.56) into Eq. (5.54) we obtain

〈100| exp(−ik · x)p|21m2〉 = −i

√
23

π4a12
0

∫
d3p

1[
(1/a0)

2 + (p − k)2
]2 p

p · ξm2[
(1/2a0)

2 + p2
]3 .

(5.58)

By utilizing spherical coordinates with the azimuth axes in the k direction, Eq. (5.58) trans-
forms into

−i

√
2

π4a12
0

ξm2

∫ 1

−1
dη(1 − η2)

∫ ∞

−∞
dp

p4[
p2 − 2pkη + k2 + (1/a0)

2
]2 [

p2 + (1/2a0)
2
]3 . (5.59)

By calculating the residues in the complex p plane and integrating over η, a straightforward
calculation finally gives

〈100| exp(−ik · x)p|21m2〉 = −i
29/2

34

1
a0

1[
1 + (ωk/Λn)2

]2 ξm2
, (5.60)

where (α is the fine structure constant and me the electron mass)

Λn =
3

2a0
=

3
2
αme � 8.498 · 1018rad/s (5.61)

is the natural cutoff, that characterizes the form factor, given by the finite extension of the
atomic orbitals. By increasing ωk above the frequency cutoff Λn, the matrix element (5.60)
couples less and less the atom and the photons.

In conclusion, the exact matrix element (5.50) reads

φkλ = −iλ

(
3∆
8π

) 1
2

ε∗kλ · ξm2

1

ω
1
2

[
1 + (ωk/Λn)2

]2 , (5.62)
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Figure 5.2: The spectral density κa(ω), for the 2P-1S transition. The maximum value is at
ω = Λn/

√
7. Horizontal axis in units Λn, vertical axis in units λ2Λn.

where λ is the photon-atom coupling constant

λ =
(

2
π

) 1
2
(

2
3

) 9
2

α
3
2 � 8.022 · 10−5, (5.63)

and ∆ = 2π3/V is the unit cell in k space, when the electromagnetic field is confined in a box
of volume V . The spectral density

κa(ω) =
∑
k,λ

|φkλ|2δ(ω − ωk), (5.64)

reads in the continuum limit (V → ∞)

κa(ω) = λ2 ω[
1 + (ω/Λn)2

]4 (5.65)

and is shown in Fig. 5.2. Notice again that the natural cutoff Λn is proportional to the inverse
of the Bohr radius a0, which measures the atomic size. Photons with wavelengths shorter than
the atomic size couple less and less to the atom. This is apparent in Eq. (5.50), where for
larger frequencies the imaginary exponential oscillates more and more inside the integration
volume v � a3

0. An alternative description is given by Eqs. (5.54), (5.58): the two momentum
eigenfunctions have an extension of order 1/a0 and are shifted by |k| (frequency of the emitted
or absorbed photon): when ω = |k| � a−1

0 (� cutoff), the integral (5.54) vanishes.
Note that for ω/Λn � 1 in Eq. (5.62) the denominator behaves like ω1/2 and one obtains

the matrix element in the dipole approximation

φkλ =
−ieω0√
2ε0V ω

ε∗kλ · 2
15
2

35
a0 ξm2

= −iλ

(
3∆
8π

) 1
2 1

ω
1
2

ε∗kλ · ξm2
, (5.66)

which yields a linear spectral density function

κa(ω) = λ2ω. (5.67)
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5.5.2 Analysis in the time and energy domain

The Hamiltonian (5.47) yields a conservation law. Indeed it is easy to prove that the excitation
number operator

N = |2〉〈2| +
∑
k,λ

a†kλakλ, (5.68)

commutes with the Hamiltonian (5.47):

[N , H] = 0. (5.69)

(This is of course a general property of Lee Hamiltonians.) Therefore the Hilbert space is
naturally split into subspaces (Tamm-Dancoff sectors) which are invariant under the action of
H, whence under the system evolution (Tamm [1945]; Dancoff [1950]). They are labeled by the
eigenvalues of N , whose restriction within each subspace is proportional to the unit operator.
The Hilbert space is therefore written as a direct sum

H =
∞⊕

N=0

HN . (5.70)

We will consider the evolution in the subspace H1 belonging to the eigenvalue N = 1 (sponta-
neous decay). A state |ψ〉 belonging to H1 has the form

|ψ(t)〉 = A(t)|2; 0〉 +
∑
k,λ

ykλ(t)|1; 1kλ〉, (5.71)

with
〈ψ(t)|ψ(t)〉 = |A(t)|2 +

∑
k,λ

|yk,λ(t)|2 = 1, ∀t. (5.72)

The Schrödinger equation reads

i Ȧ(t) = ω0A(t) +
∑
k,λ

φ∗
kλykλ(t),

i ẏkλ(t) = ωkykλ(t) + φkλA(t), (5.73)

that can be Fourier-Laplace transformed, with the initial condition A(0) = 1, ykλ(0) = 0, in
the following equations

EÃ(E) = ω0Ã(E) +
∑
k,λ

φ∗
kλỹkλ(E) + 1,

Eỹkλ(E) = ωkỹkλ(E) + φkλÃ(E). (5.74)

The above algebraic equations can be immediately solved to give the familiar expression for
the propagator

Ga(E) = Ã(E) =
1

E − ω0 − Σa(E)
, (5.75)

and
ỹkλ(E) =

φkλ

E − ωk
Ga(E), (5.76)

with the self-energy function

Σa(E) =
∑
k,λ

|φkλ|2
E − ωk

=
∫ ∞

0

κa(ω)
E − ω

, (5.77)



56 Lee model and form factors

where κa is given by Eq. (5.65). The survival amplitude is given by the inverse transform
(5.12), which reads (ε = E/Λn)

A(t) =
i

2π

∫
B

dε
e−iεΛnt

ε − ω0
Λn

− λ2Σ̄(ε)
, (5.78)

where
Σ̄(ε) =

1
λ2Λn

Σa(εΛn) =
∫ ∞

0
dx

x

(1 + x2)4
1

ε − x
. (5.79)

This is an exact result for the Hamiltonian under investigation. As we have seen, the dipole
approximation would give a linear spectral density function (5.67), whence

Σa(E) = λ2

∫ Λ

0
dω

ω

E − ω
= −λ2Λ − λ2E log

(
1 − Λ

E

)
. (5.80)

The artificial cutoff Λ, introduced in order to assure the convergence of the integral, provides
the appearance of a nonphysical plasmon mode (Gaveau and Schulman [1995]), and the survival
amplitude never decays fully (Facchi and Pascazio [1999b]).

The integral (5.79) can be analytically solved to yield

Σ̄(ε) =
−15π + (88 − 96iπ)ε + 45πε2 + 144ε3

96(ε2 + 1)4

+
15πε4 + 72ε5 + 3πε6 + 16ε7

96(ε2 + 1)4
+

ε

(ε2 + 1)4
log ε. (5.81)

Σ̄(ε) has a logarithmic branch cut in the complex ε plane and no singularities in the first
Riemann sheet. Indeed the seemingly fourth order poles at ε = ±i, are also fourth order zeros
of the numerator and one gets

Σ̄(±i) =
−5π ∓ 32i

256
. (5.82)

It is easy to verify that the discontinuity across the cut reads [κ̄a(η) = κa(ηΛn)/λ2Λn]

Σ̄(η + i0+) − Σ̄(η − i0+) = −2πiκ̄a(η) = −2πi
η

(η2 + 1)4
θ(η), (5.83)

whence
Σ̄II(ε) = Σ̄(ε) − 2πiκ̄a(ε) = Σ̄(ε) − 2πi

ε

(ε2 + 1)4
, (5.84)

in agreement with Eq. (4.66).

Pole coordinates

The exponential decay is governed by the pole on the second Riemann sheet, whose coordinates
are given by

Epole = ω0 + ∆E − i
γ

2
, (5.85)

with

γ = −2 Im
[
Σ
(
ω0 + i0+

)]
+ O(λ4) = 2πκa(ω0) + O(λ4)

= 2πλ2 ω0[
1 +

(
α
4

)2]4 + O(λ4) � 6.2682 · 108s−1 (5.86)

∆E = Re
[
Σ
(
ω0 + i0+

)]
+ O(λ4) = P

∫ ∞

0
dω

κa(ω)
ω0 − ω

+ O(λ4)

= λ2Λn P
∫ ∞

0
dx

x

(1 + x2)4
1

α
4 − x

+ O(λ4) � −2.7380 · 1010rad/s, (5.87)
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where we used Eqs. (4.78)-(4.79) and the spectral density (5.65).

5.5.3 Temporal behavior

By deforming the integration path in the second Riemann sheet we can write the survival
amplitude as the sum of two contributions

A(t) = Apole(t) + Acut(t). (5.88)

The first term, due to the pole, yields the exponential decay law

Apole(t) = Res

{
e−iεΛnt

ε − ω0
Λn

− λ2Σ̄(ε)
,
Epole

Λn

}
=

√
Ze−

γ
2
te−i(ω0+∆E)t+iζ , (5.89)

where √
Zeiζ ≡ 1

1 − λ2Σ̄′
II(Epole/Λn)

� (1 − 4.38λ2)e−i1.00λ2π. (5.90)

with
√Z and ζ real numbers [their numerical values refer to the 2P-1S transition and are very

small, for λ2 = O(α3)]. The second term, Acut, due to the branch cut, contains all deviations
from exponential decay. For short times it modifies the exponential law yielding a quadratic
law, and for large times it eventually becomes dominant yielding an inverse power law. The
interference between the two terms yields a damped oscillatory behavior over the exponential
law.

Short times and Zeno time τZ

For short times the survival probability has a quadratic behavior

P (t) ∼ 1 − t2

τ2
Z

, (5.91)

where the Zeno time τZ is related to the asymptotic behavior of the self-energy function at large
energies, as in Eq. (4.94). From the analytical expression of the self-energy function (5.81) and
the definition (5.79) one easily gets for ε → ∞

Σ̄(ε) ∼ 1
6ε

⇒ Σa(E) ∼ λ2Λ2
n

6
1
E

, (5.92)

whence
1
τ2
Z

=
λ2

6
Λ2

n. (5.93)

According to Eq. (4.93) this is nothing but the expectation value of H2
int in the initial state

|2, 0〉. Indeed we get

1
τ2
Z

= 〈2, 0|H2
int|2, 0〉 =

∑
λ

∫
d3k |〈2, 0|Hint|1, 1kλ〉|2

=
∫ ∞

0
dω κa(ω) = λ2Λ2

n

∫ ∞

0
dx

x

(1 + x2)4
=

λ2

6
Λ2

n. (5.94)

By substituting the expressions for Λn and λ from Eqs. (5.61) and (5.63) into (5.93), the Zeno
time reads (Facchi and Pascazio [1998])

τZ =
√

6
λ

1
Λn

= (3π)
1
2

(
3
2

) 7
2 1

α
5
2 me

� 3.593 · 10−15s. (5.95)
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Figure 5.3: The functions h(t) (solid line) and η(t)/π (dashed line). The horizontal scale is in
units Λ−1

n . Notice that for t � 5000Λ−1
n the curves have approximately reached their asymptotic

values.

This is an accurate estimate of the value of τZ for a physical unstable system. Notice that it is
a time comparable with modern pulsed-laser time resolution. But, as stressed before, strictly
speaking, τZ is only the convexity of the survival probability at t = 0 and indeed, as we shall
see soon, the quadratic expansion holds for times much shorter than τZ.

Large times and inverse power law

The exponent of the inverse power law is related to the asymptotic behavior of the spectral
density function κa(E) in the neighborhood of the ground energy Eg. From Eq. (5.65) we get
(Eg = 0)

κa(ω) ∼ λ2ω, for ω → 0. (5.96)

Therefore Eq. (4.103) holds with δ = 1 and the inverse power law will be quadratic 1/t2.
Indeed, the asymptotics of Acut is given by Eq. (4.104) with Eag = ω0 and C0 = λ2, namely

Acut(t) ∼ −λ2

(
ω0

ω0 + Σa(0)

)2 Γ(2)
(ω0t)2

(5.97)

From the analytical expression (5.81) one gets Σ̄(0) = − 5
32π, whence

Acut(t) ∼ −λ2

√C
(ω0t)2

, C ≡ 1(
1 − 5

8π λ2

α

)4 = 1 + 1076.2λ2 (5.98)

(the numerical values refer to the 2P-1S hydrogen transition). This quadratic power tail is
well known in the literature (Knight and Milonni [1976]; Davidovich and Nussenzveig [1980];
Hillery [1981]; Seke and Herfort [1989]; Seke [1992]; Facchi and Pascazio [1998]).
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Figure 5.4: Short time behavior of the survival probability. The behavior of P (t) − 1 (solid
line), the pole contribution (dashed line) and the quadratic behavior (5.102) (dotted line) are
shown. The horizontal scale is in units Λ−1

n , the vertical scale in units λ2.

Oscillations

Summarizing, the general expression (valid ∀t ≥ 0) for the survival amplitude A(t) is

A(t) =
√
Ze−

γ
2
te−i(ω0+∆E)t+iζ + λ2

√C
(ω0t)2

h(t)eiη(t), (5.99)

where h(t) and η(t) are real functions satisfying

lim
t→0

h(t)
(ω0t)2

=

√
1 + Z − 2

√Z cos ζ

λ2
√C lim

t→∞h(t) = 1,

η(0) = arctan

( √Z sin ζ√Z cos ζ − 1

)
lim
t→∞ η(t) = π, (5.100)

and are plotted in Fig. 5.3. The survival probability reads

P (t) = Ze−γt + λ4 C
(ω0t)4

h2(t) + 2λ2

√CZ
(ω0t)2

e−
γ
2
th(t) cos [(ω0 + ∆E)t + η(t) − ζ] . (5.101)

The temporal behavior of the survival probability is shown in Figs. 5.4 and 5.5. For short and
large times Eq. (5.101) has the asymptotic expansions

P (t) ∼ 1 − t2

τ2
Z

, for t � τZ (5.102)

P (t) ∼ Ze−γt − 2λ2

√CZ
(ω0t)2

e−
γ
2
t cos [(ω0 + ∆E)t − ζ] + λ4 C

(ω0t)4
, for t � Λ−1

n , (5.103)

respectively. Notice that the “long-time” expansion (5.103) is already valid for rather short
times t � Λ−1

n � 10−19s, much shorter than the Zeno time τZ � 10−15s. Notice also that the
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Figure 5.5: Temporal behavior of the survival probability. In order to emphasize the presence of
oscillations [of order O(α3)], the dominant exponential contribution was subtracted. We utilize
the same scales of the previous figure: horizontal = Λ−1

n , vertical = λ2. The first oscillation
(out of scale) is much shorter and wider than the following ones: see previous figure.

first oscillation is much shorter than the other ones. In fact, the system relaxes towards the
asymptotic expression (5.103) within 2 or 3 oscillations (see Figs. 5.3 and 5.5).

The transition to a power law occurs when the two addenda in Eq. (5.99) are comparable,
namely

√
Ze−

γ
2
τpow = λ2

√C
(ω0τpow)2

h(τpow) ⇒ (ω0τpow)2e−
γ
2
τpow � λ2, (5.104)

i.e., for τpow � 98 τE.
In figures 5.4 and 5.5, it is apparent that the deviations from the exponential are very small

and difficult to observe experimentally. In addition, there is the problem of the initial state
preparation: the first half oscillation has a duration of about 200Λ−1

n � 2.3 · 10−17s, so that
a sharp initial state preparation, even by modern pulsed-laser techniques, appears difficult.
On the other hand, the problem of sharply defining the initial moment of excitation might be
circumvented: close scrutiny of Eqs. (5.99)-(5.103) suggests that experimental observation of
the probability oscillations would not only provide a direct evidence of the cut contribution
Acut to the survival amplitude, but also an indirect, yet convincing, proof of the presence of
the Zeno region.



Chapter 6

Van Hove’s limit

6.1 Introduction

The deviations from a purely exponential behavior in a decay process will now be analyzed in
relation to Van Hove’s “λ2t” limiting procedure. Our attention will be focused on the effects
that arise when the coupling constant is small but nonvanishing. We first consider the two-
level atom model studied in Sec. 5.5, then gradually extend our analysis to a more general
framework. We estimate all deviations from exponential behavior at leading orders in the
coupling constant.

We have seen in chapters 4 and 5 that the quantum mechanical derivation of the exponential
law is based on the sensible idea that the temporal evolution of a quantum system is dominated
by a pole near the real axis of the complex energy plane (Weisskopf-Wigner approximation).
This yields an irreversible evolution, characterized by a master equation and exponential decay
(Gardiner [1990]; van Kampen [1992]). An important contribution to this issue was given by
Van Hove [1955], who rigorously showed that it is possible to obtain a master equation (lead-
ing to exponential behavior) for a quantum mechanical system endowed with many (infinite)
degrees of freedom, by making use of the so-called “λ2t” limit. The crucial idea is to consider
the limit

λ → 0 keeping t̃ = λ2t finite (λ-independent constant), (6.1)

where λ is the coupling constant and t time. One then looks at the evolution of the quantum
system as a function of the rescaled time t̃. There has recently been a renewed interest in the
physical literature for this time-scale transformation and its subtle mathematical features: see
Accardi, Kozyrev and Volovich [1997] and Accardi, Lu and Volovich [2000].

We look in particular at the rescaling procedure from the perspective of the complex energy
plane (Facchi and Pascazio [1999c]), rather than in terms of the time variable. This enables
us to pin down the different sources of non-exponential behavior. Our analysis is extended to
a general field-theoretical framework: general estimates are given of all deviations from the
exponential law (both at short and long times) at leading orders in the coupling constant.

6.2 Two-level atom in the rotating-wave approximation

In section 5.5 we studied the decay of a two-level atom in the quantized radiation field. Let us
summarize our results, emphasizing the role of the coupling constant λ.
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At short and long times the survival probability reads

P (t) ∼ 1 − t2

τ2
Z

(t � τZ), (6.2)

P (t) ∼ Ze−γt + λ4 C
(ω0t)4

− 2λ2

√CZ
(ω0t)2

e−
γ
2
t cos [(ω0 + ∆E)t − ζ] (t � Λ−1

n ), (6.3)

where

τZ =
√

6
λΛn

� 3.593 · 10−15s, (6.4)

γ = 2πλ2κa(ω0) + O(λ4) = 2πλ2ω0 + O(λ4) � 6.268 · 108s−1, (6.5)

∆E = λ2P
∫ ∞

0
dω

κa(ω)
ω0 − ω

+ O(λ4) � −0.5λ2Λn, (6.6)
√
Zeiζ � (1 − 4.38λ2)e−i1.00πλ2

= 1 + O(λ2), (6.7)√
C � 1 + 538λ2 = 1 + O(λ2). (6.8)

The second formula gives the Fermi Golden Rule, yielding the lifetime

τE = γ−1 � 1.595 · 10−9s, (6.9)

and the third formula the second order correction to the energy level ω0. The exact expressions
for the quantities (6.5)-(6.8) are given in the previous chapter.

6.2.1 Van Hove’s limit

Let us look at Van Hove’s “λ2t” limiting procedure applied to the above model. Before pro-
ceeding to a detailed analysis, it is worth putting forward a few preliminary remarks: we shall
scrutinize (in terms of the coupling constant) the mechanisms that make the nonexponential
contributions in (6.2)-(6.3) vanish. To this end, observe first that as λ → 0 the Zeno time (6.4)
diverges, while the rescaled Zeno time vanishes

τ̃Z ≡ λ2τZ = λ

√
6

Λn
= O(λ). (6.10)

On the other hand, the rescaled lifetime (6.9) remains constant [see (6.5)]:

τ̃E ≡ λ2τE =
1

2πω0
= O(1). (6.11)

Moreover, the transition to a power law occurs when the first two terms in the right hand side
of (6.3) are comparable, so that

(ω0t)2e−
γ
2
t � λ2, (6.12)

because both C and Z are � 1. In the limit of small λ, (6.12) yields t = τpow, with

2 log(ω0τpow) − γ

2
τpow � 2 log λ, (6.13)

namely, by (6.5),

τpow

τE
� 4 log

1
λ

+ 4 log
τpow

2πλ2τE
= 12 log

1
λ

+ 4 log
τpow

τE
+ 4 log

1
2π

. (6.14)
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Therefore, when time is rescaled,

τ̃pow ≡ λ2τpow = 12τ̃E log
1
λ

+ O
(

log log
1
λ

)
= O

(
log

1
λ

)
. (6.15)

Finally, the power contributions are ∼ O(λ3α) t̃−α (α = 2, 4), the period of the oscillations [last
term in (6.3)] behaves like λ2/ω0 and the quantities (6.7)-(6.8) become both unity.

In conclusion, only the exponential law survives in the limit (6.1), with the correct nor-
malization factor (Z = 1), and one is able to derive a purely exponential behavior (Markovian
dynamics) from the quantum mechanical Schrödinger equation (unitary dynamics). It is im-
portant to notice that, in order to obtain the exponential law, a normalizable state (such as a
wave packet) must be taken as initial state. Our initial state |2; 0〉 is indeed normalizable.

6.2.2 The limit in the complex energy plane

Let us now proceed to a more formal analysis in the complex energy domain. In the rotating-
wave approximation the self-energy function Σ(2)(E) consists only of a second order diagram
and can be evaluated exactly:

Σa(E) = λ2Σ(2)(E) ≡ λ2

∫ ∞

0
dω

κa(ω)
E − ω

, (6.16)

where the spectral density κa(E) is given (for the 2P-1S transition) by (5.65) and the self-
energy function Σ is computed in (5.81). In the complex E-plane Σ(2)(E) has a branch cut
running from 0 to ∞, a branching point in the origin and no singularity on the first Riemann
sheet. Dyson’s resummation yields

Ga(E) =
1

E − ω0 − λ2Σ(2)(E)
, (6.17)

and we obtain for the survival amplitude (in the interaction representation)

A(t) ≡ 〈2; 0|eiH0tU(t)|2; 0〉 =
i

2π

∫
B

dE e−iEtGa(E + ω0)

=
i

2π

∫
B

dE
e−iEt

E − λ2Σ(2)(E + ω0)
. (6.18)

In Van Hove’s limit one looks at the evolution of the system over time intervals of order t = t̃/λ2

(t̃ independent of λ), in the limit of small λ. Our purpose is to see how this limit works in
the complex-energy plane, i.e. what is the limiting form of the propagator. To this end, by
rescaling time t̃ ≡ λ2t, we can write

A
(

t̃

λ2

)
=

i

2π

∫
B

dẼ
e−iẼt̃

Ẽ − Σ(2)(λ2Ẽ + ω0)
, (6.19)

where we are naturally led to introduce the rescaled energy Ẽ ≡ E/λ2. Taking the Van Hove
limit we get

Ã(t̃) ≡ lim
λ→0

A
(

t̃

λ2

)
=

i

2π

∫
B

dẼ e−iẼt̃G̃a(Ẽ), (6.20)

where the propagator in the rescaled energy reads
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Figure 6.1: Singularities of the propagator (6.18) in the complex-E plane. The first Riemann
sheet (I) is singularity free. The logarithmic cut is due to Σ(2)(E) and the pole is located on
the second Riemann sheet (II). In the complex-Ẽ plane, the pole has coordinates (6.23)-(6.24).

G̃a(Ẽ) ≡ lim
λ→0

1
Ẽ − Σ(2)(λ2Ẽ + ω0)

=
1

Ẽ − Σ(2)(ω0 + i0+)
, (6.21)

the term +i0+ being due to the fact that ImẼ > 0. The self-energy function in the λ → 0 limit
becomes

Σ(2)(ω0 + i0+) =
∫ ∞

0
dω

κa(ω)
ω0 − ω + i0+

= ∆(ω0) − i

2
Γ(ω0) (6.22)

where

∆(ω0) ≡ P
∫ ∞

0
dω

κa(ω)
ω0 − ω

, (6.23)

Γ(ω0) ≡ 2πκa(ω), (6.24)

which yields a purely exponential decay (Weisskopf-Wigner approximation and Fermi Golden
Rule). In figure 6.1 we endeavoured to clarify the role played by the time-energy rescaling in
the complex-E plane.

One can get a more detailed understanding of the mechanisms that underpin the limiting
procedure by looking at higher order terms in the coupling constant. The pole of the original
propagator (6.17) satisfies the equation

Epole − λ2Σ(2)(Epole + ω0) = 0, (6.25)

which can be solved by using the technique outlined in Sec. 4.6.2, namely by expanding the
self-energy function around E = 0 in power series

Σ(2)(E + ω0) = Σ(2)(ω0) + EΣ(2)′(ω0) +
E2

2
Σ(2)′′(ω0) + . . . , (6.26)

whose radius of convergence is ω0, due to the branching point of Σ(2) in the origin. We get
(iteratively)

Epole = λ2Σ(2)(ω0) + λ4Σ(2)′(ω0)Σ(2)(ω0) + O(λ6), (6.27)
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which, due to (6.22), becomes

Epole ≡ ∆E − i

2
γ = λ2∆(ω0) − i

λ2

2
Γ(ω0) + O(λ4). (6.28)

In the rescaled energy (6.28) reads

Ẽpole =
Epole

λ2
= ∆(ω0) − i

2
Γ(ω0) + O(λ2) λ→0−→ ∆(ω0) − i

2
Γ(ω0), (6.29)

which is the same as (6.22). This is again the Fermi Golden Rule.

6.3 N-level atom with counter-rotating terms

Before proceeding to a general analysis it is interesting to see how the above model is modified
by the presence of the other atomic levels and the inclusion of counter-rotating terms in the
interaction Hamiltonian. This will enable us to pin down other salient features of the λ2t limit.
The Hamiltonian is

H = H ′
0 + λV ′, (6.30)

where

H ′
0 ≡

∑
ν

ωνb
†
νbν +

∑
β

∫ ∞

0
dω ωa†ωβaωβ, (6.31)

V ′ =
∑
µ,ν

∑
β

∫ ∞

0
dω

[
ϕµν

β (ω)b†µbνa
†
ωβ + ϕµν∗

β (ω)b†νbµaωβ

]
, (6.32)

where ν runs over all the atomic states and b†ν , bν and a†ωβ, aωβ satisfy anticommutation and
commutation relations, respectively. [The Hamiltonian of a two-level atom in the rotating-wave
approximation is recovered if we set ω2 = ω0, ω1 = 0 and neglect the counter-rotating terms.]
Starting from the initial state |µ; 0〉, Dyson’s resummation yields

Gµ(E) =
1

E − ωµ − Σµ(E)
(6.33)

and the 1-particle irreducible self-energy function takes the form

Σµ(E) = λ2Σ(E) = λ2Σ(2)(E) + λ4Σ(4)(E) + . . . , (6.34)

with

Σ(2)(E) ≡
∑
ν,β

∫ ∞

0
dω

|ϕνµ
β (ω)|2

E − ων − ω
. (6.35)

Both Σ(2) and Σ(4) are shown as Feynman diagrams in Fig. 6.2. In the Van Hove limit one
obtains

Σ(λ2Ẽ + ωµ) λ→0−→ Σ(2)(λ2Ẽ + ωµ)
∣∣∣
λ=0

= Σ(2)(ωµ + i0+). (6.36)

The propagator in the rescaled energy takes now the form

G̃µ(Ẽ) = lim
λ→0

1
Ẽ − Σ(2)(λ2Ẽ + ωµ) + O(λ2)

=
1

Ẽ − Σ(2)(ωµ + i0+)
, (6.37)
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Figure 6.2: Graphic representation of (6.34): Σ(2) and Σ(4) are in the first and second line,
respectively.

where

Σ(2)(ωµ + i0+) =
∑
ν,β

∫ ∞

0
dω

|ϕνµ
β (ω)|2

ωµ − ων − ω + i0+
. (6.38)

The last two equations correspond to (6.21)-(6.22): the propagator reduces to that of a gener-
alized rotating-wave approximation.

We see that the Van Hove limit works by following two logical steps. First, it constrains
the evolution in a Tamm-Dancoff sector: the system can only “explore” those states that are
directly related to the initial state |µ〉 by the interaction V ′. In other words, in this limit, the
excitation number Nµ ≡ b†µbµ +

∑
β,ω a†ωβaωβ becomes a conserved quantity (even though the

original Hamiltonian contains counter-rotating terms), the Hamiltonian dynamics effectively
becomes of the Lee type and, as a consequence, the self-energy function consists only of a
second order contribution that can be evaluated exactly. Second, it reduces this second order
contribution, which depends on energy as in (6.35), to a constant (its value in the energy ωµ

of the initial state), like in (6.36). Hence the analytical properties of the propagator, which
had branch-cut singularities, reduce to those of a single complex pole, whose imaginary part
(responsible for exponential decay) yields the Fermi Golden Rule, evaluated at second order of
perturbation theory.

Notice that it is the latter step (and not the former one) which is strictly necessary to obtain
a dissipative behavior: Indeed, as we have seen in Sec. 4.6.3, substitution of the pole value in
the total self-energy function yields exponential decay, including all higher-order corrections
to the Fermi Golden Rule. On the other hand, the first step is very important when one is
interested in computing the leading order corrections to the exponential behavior. To this
purpose one can solve the problem in a restricted Tamm-Duncoff sector of the total Hilbert
space (i.e., in an eigenspace of Nµ — in our case, Nµ = 1) and exactly evaluate the evolution
of the system with its deviations from exponential law.

Let us add a final remark. As is well known, a nondispersive propagator yields a Markovian
evolution. Let us briefly sketch how this occurs in the present model. From (6.33), antitrans-
forming,

i

2π

∫
B

dE e−iEt [E Gµ(E + ωµ) − 1] =
i

2π

∫
B

dE e−iEtλ2Σ(E + ωµ) Gµ(E + ωµ), (6.39)

we obtain (for t > 0)

iȦ(t) = λ2

∫ t

0
dτ σ(t − τ) A(τ), (6.40)

where A(t) is the survival amplitude and

σ(t) ≡ 1
2π

∫
B

dE e−iEtΣ(E + ωµ) =
eiωµt

2π

∫
B

dE e−iEtΣ(E). (6.41)



6.4 General framework 67

Equation (6.40) is clearly nonlocal in time and all memory effects are contained in σ(t), the
inverse transform of the self-energy function. If such a self-energy function is a complex constant
(energy independent), Σ(E) = C, then σ(t) = Cδ(t) and equation (6.40) becomes

iȦ(t) = λ2CA(t), (6.42)

describing a Markovian behavior, without memory effects (Gardiner [1990]; van Kampen
[1992]). In particular, the Van Hove limit is equivalent to set C = Σ(2)(ωµ + i0+) and the
Weisskopf-Wigner approximation is C = Σ(2)(ωµ + i0+) + O(λ2).

In conclusion, in the Van Hove limit, the evolution of the survival amplitude, which was
nonlocal in time due to the dispersive character of the propagator (the self-energy function
depended on E) becomes local and Markovian (only the value of the self-energy function in ωµ

determines the evolution).

6.4 General framework

We can now further generalize our analysis: consider the Hamiltonian

H = H0 + λV (6.43)

and suppose that the initial state |a〉 has the following properties

H0|a〉 = Ea|a〉, 〈a|V |a〉 = 0, 〈a|a〉 = 1. (6.44)

The survival amplitude (in the interaction representation) of state |a〉 reads

A(t) = 〈a|eiH0tU(t)|a〉 =
i

2π

∫
B

dE e−iEtGa(E + Ea) =
i

2π

∫
B

dE
e−iEt

E − λ2Σ(E + Ea)
, (6.45)

where λ2Σ(E) is the 1-particle irreducible self-energy function, that can be expressed by a
perturbation expansion

Σa(E) = λ2Σ(E) = λ2Σ(2)(E) + λ4Σ(4)(E) + · · · . (6.46)

The second order contribution has the general form

Σ(2)(E) ≡ 〈a|V Pd
1

E − H0
PdV |a〉 =

∑
n�=a

|〈a|V |n〉|2 1
E − En

=
∫ ∞

0

dE′

2π

Γ(E′)
E − E′ , (6.47)

where Pd = 1 − |a〉〈a| is the projector over the decayed states, {|n〉} is a complete set of
eingenstates of H0 (H0|n〉 = En|n〉 and we set E0 = 0) and

Γ(E) ≡ 2π
∑
n�=a

|〈a|V |n〉|2 δ(E − En). (6.48)

Notice that Γ(E) ≥ 0 for E > 0 and is zero otherwise. In the Van Hove limit we get

Ã(t̃) ≡ lim
λ→0

A
(

t̃

λ2

)
=

i

2π

∫
B

dẼ e−iẼt̃G̃a(Ẽ), (6.49)

where the resulting propagator in the rescaled energy Ẽ = E/λ2 reads

G̃a(Ẽ) =
1

Ẽ − Σ(2)(Ea + i0+)
. (6.50)
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To obtain this result we used

Σ(λ2Ẽ + Ea)
λ→0−→ Σ(2)(λ2Ẽ + Ea)

∣∣∣
λ=0

= Σ(2)(Ea + i0+) (6.51)

(Weisskopf-Wigner approximation and Fermi Golden Rule).
Just above the positive real axis we can write

Σ(2)(E + i0+) = ∆(E) − i

2
Γ(E), (6.52)

where

∆(E) = P
∫ ∞

0

dE′

2π

Γ(E′)
E − E′ . (6.53)

Let Γ(E) be sommable in (0, +∞). Furthermore by assuming as in Eq. (4.103) the near-
threshold behavior

Γ(E) ∝ Eη−1 for E → 0, (6.54)

for some η > 1, one gets the following asymptotic behavior at short and long times:

P (t) ∼ 1 − t2

τ2
Z

(t � τZ), (6.55)

P (t) ∼ |Z|2e−t/τE + λ4 |C|2
(Eat)2η

+ 2λ2 |CZ|
(Eat)η

e−t/2τE cos [(Ea + ∆E)t − ξ] (t � τZ),

(6.56)

where

τZ =
1
λ

[∫ ∞

0

dE

2π
Γ(E)

]−1/2

, (6.57)

τE =
1

λ2Γ(Ea)
+ O(1), (6.58)

∆E = λ2∆(Ea) + O(λ4), (6.59)
ξ = ArgZ − ArgC, (6.60)
Z = 1 + O(λ2), (6.61)
C = 1 + O(λ2). (6.62)

The transition to a power law occurs when the first two terms in the r.h.s. of (6.56) are
comparable, namely for t = τpow, where τpow is the solution of the equation

τpow

τE
= 4(η + 1) log

1
λ

+ 2η log
Ea

Γ(Ea)
+ log

∣∣∣∣ZC
∣∣∣∣+ η log

τpow

τE
, (6.63)

i.e., for λ → 0
τpow = 4τE(η + 1) log λ−1 + O

(
log log λ−1

)
. (6.64)

Let us now look at the temporal behavior for a small but finite value of λ, using Van Hove’s
technique. In the rescaled time, t̃ = λ2t, the Zeno region vanishes

τ̃Z ≡ λ2τZ = λ

[∫ ∞

0

dE

2π
Γ(E)

]−1/2

= O(λ) (6.65)
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Figure 6.3: Essential features (not in scale!) of the survival probability as a function of the
rescaled time t̃. The Zeno time is O(λ), the lifetime O(1), during the whole evolution there
are oscillations of amplitude O(λ2η+2) and the transition to a power law occurs after a time
O(log(1/λ)) [see (6.65)-(6.68)]. From (6.61), the normalization factor becomes unity like 1 −
O(λ2). The dashed line is the exponential and the dotted line the power law.

and Eq. (6.56) becomes valid at shorter and shorter (rescaled) times and reads

P (t̃) ∼ |Z|2e−t̃/τ̃E + λ4(η+1) |C|2
(Eat̃)2η

+ 2λ2(η+1) |CZ|
(Eat)η

e−t̃/2τ̃E cos
(

Ea + ∆E

λ2
t̃ − ξ

)
, (6.66)

where

τ̃E ≡ λ2τE =
1

Γ(Ea)
= O(1), (6.67)

τ̃pow ≡ λ2τpow � 4τ̃E(η + 1) log
1
λ

= O
(

log
1
λ

)
. (6.68)

Figure 6.3 displays the main features of the temporal behavior of the survival probability. The
typical values of the physical constants yield very small deviations from the exponential law.
For this reason, we displayed in Fig. 6.3 the survival probability by greatly exaggerating its
most salient features.

The Van Hove limit performs several actions at once: It makes the initial quadratic (quan-
tum Zeno) region vanish, it “squeezes” out the oscillations and it “pushes” the power law to
infinity, leaving only a clean exponential law at all times, with the right normalization. All
this is not surprising, being implied by the Weisskopf-Wigner approximation. However, the
concomitance of these features is so remarkable that one cannot but wonder at the effectiveness
of this limiting procedure.





Part II

CONTROLLED DYNAMICS





Chapter 7

Quantum Zeno and inverse quantum
Zeno effect

7.1 Introduction

In this chapter we shall investigate the main features of the so-called quantum Zeno effect (von
Neumann [1932]; Beskow and Nilsson [1967]; Khalfin [1968]; Misra and Sudarshan [1977]),
named after the Greek philosopher Zeno from Elea, famous for his paradoxical argumentations
against motion. One of Zeno’s paradoxes is the object of the present investigation: A sped
arrow never reaches its target, because at every instant of time, if we look at the arrow, we
see that it occupies a portion of space equal to its own size. At any given moment the arrow
is therefore immobile, and by summing up many such “immobilities” it is clearly impossible,
according to Zeno, to obtain motion. It is amusing that some quantum mechanical states,
under particular conditions, behave in a way that is reminiscent of this paradox. In very few
words, the evolution of a quantum mechanical state can be slowed down (or even halted in
some limit) when very frequent measurements are performed on the system, in order to check
whether it is still in its initial state: Zeno’s quantum arrow (the wave function) does not move,
if it is continuously observed.

The interest in the quantum Zeno effect (QZE) has been revived, during the last decade,
mainly because of some interesting proposals that made it liable to experimental investigation.
Unlike previous studies, confined to a purely academic level, the investigation of the last few
years has focused on practical experiments, possible applications, as well as theoretical im-
plications and interpretative issues. The quantum Zeno effect has been mainly investigated
for oscillating systems (Cook [1988]; Itano, Heinzen, Bollinger and Wineland [1990]; Pascazio,
Namiki, Badurek and Rauch [1993]; Kwiat, Weinfurter, Herzog, Zeilinger and Kasevich [1995]),
whose Poincaré time is finite. However, the discussion cannot be limited to oscillating systems:
new and somewhat unexpected phenomena are disclosed when one considers unstable systems,
whose Poincaré time is infinite (Bernardini, Maiani and Testa [1993]; Facchi and Pascazio
[1998]; Maiani and Testa [1998]; Joichi, Matsumoto and Yoshimura [1998]; Alvarez-Estrada
and Sánchez-Gómez [1999]). In this case the analysis becomes more complicated and requires
a quantum field theoretical framework.

In this chapter, we introduce the fundamentals of the quantum Zeno and “inverse” quantum
Zeno effect (IZE), by making use of elementary quantum mechanical techniques. We shall first
use the seminal formulation of QZE in terms of projection operators: this is the usual approach
and makes use of what we might call a “pulsed” observation of the quantum state (Mihokova,
Pascazio and Schulman [1997]; Schulman [1998]). We then explain that it is not necessary to
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Figure 7.1: Evolution with frequent “pulsed” measurements: quantum Zeno effect. The dashed
(full) line is the survival probability without (with) measurements.

use projection operators and nonunitary dynamics: a fully dynamical explanation of the QZE
is possible, involving Hamiltonians and no projectors (Petrosky, Tasaki and Prigogine [1990];
Pascazio and Namiki [1994]). Then we introduce the notion of “continuous” observation of
the quantum state, e.g. performed by means of an intense field. Although this idea has been
revived only recently (Mihokova, Pascazio and Schulman [1997]; Schulman [1998]; Pascazio
and Facchi [1999]), it is contained, in embryo, in earlier papers (Kraus [1981]; Peres [1980a];
Plenio, Knight and Thompson [1996]). This idea will lead us to formulate a theorem which
is somewhat complementary to Misra and Sudarshan’s and a novel definition of QZE (Facchi
and Pascazio [2001]).

The leitmotif of this chapter and, in fact, of the whole second part of this work is that
the quantum Zeno effect is a dynamical phenomenon, that can be explained in terms of the
Schrödinger equation, without making use of projection operators. We will implicitly assume,
throughout our discussion, that a projection operators is just a shorthand notation, that sum-
marizes the effects of a much more complicated underlying dynamical process, involving a huge
number of elementary quantum mechanical systems (Namiki, Pascazio and Nakazato [1997]).

7.2 Pulsed observation

Let us introduce the fundamental features of the quantum Zeno effect. We shall follow the
“historical” approach (von Neumann [1932]; Beskow and Nilsson [1967]; Khalfin [1968]; Misra
and Sudarshan [1977]), by considering “pulsed” measurements. The alternative notion of con-
tinuous measurement will be discussed in Sec. 7.4.

7.2.1 Survival probability under pulsed measurements

We have seen in the first part of this work that, under general conditions, the undisturbed
survival probability

P (t) = |A(t)|2 = |〈a|e−iHt|a〉|2 (7.1)

exhibits at short times a quadratic behavior

P (t) = 1 − t2/τ2
Z + · · · , τ−2

Z ≡ 〈a|H2|a〉 − 〈a|H|a〉2. (7.2)
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Figure 7.2: Short-time evolution of phase and probability.

For instance, with the two-level Hamiltonian (3.1), when ωa = ωb = 0, one finds

A(t) = cos λt, (7.3)
P (t) = cos2 λt, (7.4)

τZ = λ−1. (7.5)

Let us now perform N measurements at time intervals τ , in order to check whether the system
is still in its initial state. The survival probability after the measurements reads

P (N)(t) = P (τ)N = P (t/N)N ∼ [
1 − (t/NτZ)2

]N ∼ exp(−t2/Nτ2
Z) N→∞−→ 1, (7.6)

where t = Nτ is the total duration of the experiment. The N → ∞ limit was originally named
limit of “continuous observation” and regarded as a paradoxical result (Misra and Sudarshan
[1977]): Infinitely frequent measurements halt the quantum mechanical evolution and “freeze”
the system in its initial state. Zeno’s quantum mechanical arrow (the wave function), sped
by the Hamiltonian, does not move, if it is continuously observed. The investigation of the
last few years has shown that the QZE is not paradoxical: although the N → ∞ limit must
be considered as a mathematical abstraction (Ghirardi, Omero, Weber and Rimini [1979];
Nakazato, Namiki, Pascazio and Rauch [1995]; Venugopalan and Ghosh [1995]; Pati [1996];
Hradil, Nakazato, Namiki, Pascazio and Rauch [1998]), the evolution of a quantum system
can indeed be slowed down for sufficiently large N (Itano, Heinzen, Bollinger and Wineland
[1990]; Petrosky, Tasaki and Prigogine [1990]; Petrosky, Tasaki and Prigogine [1991]; Peres
and Ron [1990]; Ballentine [1991]; Itano, Heinzen, Bollinger and Wineland [1991]; Frerichs
and Schenzle [1992]; Inagaki, Namiki and Tajiri [1992]; Home and Whitaker [1992]; Pascazio,
Namiki, Badurek and Rauch [1993]; Home and Whitaker [1993]; Blanchard and Jadczyk [1993];
Altenmuller and Schenzle [1994]; Pascazio and Namiki [1994]; Schulman, Ranfagni and Mugnai
[1994]; Berry [1995]; Beige and Hegerfeldt [1996]; Schulman [1997]; Thun and Peřina [1998]).
The Zeno evolution is shown in Fig. 7.1.

In a few words, the QZE is ascribable to the following mathematical properties of the
Schrödinger equation: in a short time δτ ∼ 1/N , the phase of the wave function evolves like
O(δτ), while the probability changes by O(δτ2), so that

P (N)(t) � [
1 − O(1/N2)

]N N→∞−→ 1. (7.7)

This is sketched in Fig. 7.2 and is a very general feature of the Schrödinger equation.
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7.2.2 Misra and Sudarshan’s theorem

We consider here the derivation of the quantum Zeno paradox given by Misra and Sudarshan
[1977]. The proof makes use of von Neumann’s projections and therefore assumes that the
measurement is instantaneous. Consider a quantum system Q, whose states belong to the
Hilbert space H and whose evolution is described by the unitary operator U(t) = exp(−iHt),
where H is a time-independent semi-bounded Hamiltonian. Let E be a projection operator
that does not commute with the Hamiltonian, [E, H] �= 0, and EHE = HE the subspace
spanned by its eigenstates. The initial density matrix ρ0 of system Q is taken to belong to HE .
If Q is let to follow its “undisturbed” evolution, under the action of the Hamiltonian H (i.e.,
no measurements are performed in order to get information about its quantum state), the final
state at time T reads

ρ(T ) = U(T )ρ0U
†(T ) (7.8)

and the probability that the system is still in HE at time T is

P (T ) = Tr
[
U(T )ρ0U

†(T )E
]
. (7.9)

This is the survival probability: it is in general smaller than 1, since the Hamiltonian H induces
transitions out of HE . We shall say that the quantum system has “survived” if it is found to
be in HE by means of a suitable measurement process. We stress that we do not distinguish
between one- and many-dimensional projections.

Assume that we perform a measurement at time t, in order to check whether Q has survived.
Such a measurement is formally represented by the projection operator E. By definition,

ρ0 = Eρ0E, Tr[ρ0E] = 1. (7.10)

After the measurement, the state of Q changes into

ρ0 → ρ(t) = EU(t)ρ0U
†(t)E, (7.11)

with probability

P (t) = Tr
[
U(t)ρ0U

†(t)E
]

= Tr
[
EU(t)Eρ0EU †(t)E

]
= Tr

[
V (t)ρ0V

†(t)
]
,

where V (t) ≡ EU(t)E. (7.12)

This is the probability that the system has “survived” in HE . There is, of course, a probability
1−P that the system has not survived (i.e., it has made a transition outside HE) and its state
has changed into ρ′(t) = (1 − E)U(t)ρ0U

†(t)(1 − E). The states ρ and ρ′ together make up a
block diagonal matrix: The initial density matrix is reduced to a mixture and any possibility of
interference between “survived” and “not survived” states is destroyed (complete decoherence).

We shall concentrate henceforth our attention on the measurement outcome (7.11)-(7.12).
We observe that the evolution just described is time-translation invariant and the dynamics is
not reversible (not only not time-reversal invariant).

The above is the Copenhagen interpretation: the measurement is considered to be instan-
taneous. The quantum Zeno paradox is the following. We prepare Q in the initial state ρ0 at
time 0 and perform a series of E-observations at times tj = jT/N (j = 1, · · · , N). The state
of Q after the above-mentioned N measurements reads

ρ(N)(T ) = VN (T )ρ0V
†
N (T ), VN (T ) ≡ [EU(T/N)E]N (7.13)
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and the probability to find the system in HE (survival probability) is given by

P (N)(T ) = Tr
[
VN (T )ρ0V

†
N (T )

]
. (7.14)

Equations (7.13)-(7.14) display the “quantum Zeno effect:” repeated observations in succession
modify the dynamics of the quantum system; under general conditions, if N is sufficiently large,
all transitions outside HE are inhibited. Notice again that the dynamics (7.13)-(7.14) is not
reversible.

In order to consider the N → ∞ limit (“continuous observation”), one needs some mathe-
matical requirements: assume that the limit

V(T ) ≡ lim
N→∞

VN (T ) (7.15)

exists in the strong sense for T ≥ 0. The final state of Q is then

ρ(T ) = V(T )ρ0V†(T ) (7.16)

and the probability to find the system in HE is

P(T ) ≡ lim
N→∞

P (N)(T ) = Tr
[
V(T )ρ0V†(T )

]
. (7.17)

One should carefully notice that nothing is said about the final state ρ(T ), which depends
on the characteristics of the model investigated and on the very measurement performed (i.e.
on the projection operator E, by means of which VN is defined). By assuming the strong
continuity of V(t)

lim
t→0+

V(t) = E, (7.18)

one can prove that, under general conditions, the operators

V(T ) exist for all real T and form a semigroup. (7.19)

Moreover, by time-reversal invariance

V†(T ) = V(−T ), (7.20)

so that V†(T )V(T ) = E. This implies, by (7.10), that

P(T ) = Tr
[
ρ0V†(T )V(T )

]
= Tr [ρ0E] = 1. (7.21)

If the particle is “continuously” observed, in order to check whether it has survived inside HE ,
it will never make a transition to H⊥

E . This was named quantum Zeno paradox (Misra and
Sudarshan [1977]). The expression quantum Zeno effect seems more appropriate, nowadays, in
particular when one considers the evolution for large, but not infinite, values of N .

Two important remarks are now in order: first, it is not clear whether the dynamics in
the N → ∞ limit is time reversible. Although one ends up, in general, with a semigroup,
there are concrete elements of reversibility in the above equations. Second, the theorem just
summarized does not state that the system remains in its initial state, after the series of very
frequent measurements. Rather, the system is left in the subspace HE , instead of evolving
“naturally” in the total Hilbert space H. This subtle point, implied by Eqs. (7.16)-(7.21), is
not duely stressed in the literature (a concrete example is considered by Machida, Nakazato,
Pascazio, Rauch and Yu [1999]).

We also emphasize that there is a conceptual gap between Eqs. (7.14) and (7.17): to perform
an experiment with N finite is only a practical problem, from the physical point of view. On
the other hand, the N → ∞ case is physically unattainable, and is rather to be regarded as a
mathematical limit (although a very interesting one).



78 Quantum Zeno and inverse quantum Zeno effect

7.2.3 Quantum Zeno and Inverse quantum Zeno effects

It is convenient to rewrite (7.6) in the following way (t = Nτ)

P (N)(t) = P (τ)N = exp(N log P (τ)) = exp(−γeff(τ)t), (7.22)

where we introduced an effective decay rate

γeff(τ) ≡ −1
τ

log P (τ) ≥ 0 . (7.23)

For instance, for times τ such that P (τ) ∼ exp(−τ2/τ2
Z) with good approximation, one easily

checks that γeff is a linear function of τ

γeff(τ) ∼ τ/τ2
Z, for τ → 0. (7.24)

Notice that γeff(τ) in (7.23) represents the effective decay rate of a system that evolves freely
up to time τ and is measured at time τ . One expects to recover the “natural” decay rate γ (if
it exists), in agreement with the Fermi Golden Rule, for sufficiently long times, i.e., after the
initial quadratic region is over

γeff(τ)
“long”τ−→ γ. (7.25)

The quantitative meaning of the expression “long” in the above equation represents an in-
teresting conceptual problem and has been tackled in chapter 5, where we found that τZ is
not the right time scale, for the quadratic behavior is in general valid at times much shorter
(proportional to the inverse bandwidth).

We now concentrate our attention on a truly unstable system, with decay rate γ. We ask
whether it is possible to find a finite time τ∗ such that

γeff(τ∗) = γ. (7.26)

If such a time exists, then by performing measurements at time intervals τ∗ the system decays
according to its “natural” lifetime, as if no measurements were performed. By Eqs. (7.26) and
(7.23) one gets

P (τ∗) = e−γτ∗
, (7.27)

i.e., τ∗ is the intersection between the curves P (t) and e−γt. Figure 7.3 illustrates an example
in which such a time τ∗ exists. By looking at this figure, it is evident that if τ = τ1 < τ∗ one
obtains a QZE. Vice versa, if τ = τ2 > τ∗, one obtains an inverse Zeno effect (IZE). In this
sense, τ∗ can be viewed as a transition time from a quantum Zeno to an inverse Zeno effect.
Paraphrasing Misra and Sudarshan [1977] we can say that τ∗ determines the transition from
Zeno (who argued that a sped arrow, if observed, does not move) to Heraclitus (who replied
that everything flows). We shall see that in general it is not always possible to determine τ∗:
Eq. (7.26) may have no finite solutions. This will be thoroughly discussed in the following, but
it is interesting to anticipate some general conclusions. As we have seen in the first part of this
work, at intermediate times the survival probability of a truly unstable system is dominated
by the pole contribution and reads with very good approximation

P (t) = |A(t)|2 � Ze−γt, (7.28)

where Z, the intersection of the asymptotic exponential with the t = 0 axis, is the wave function
renormalization, given by the square modulus of the residue of the pole of the propagator.
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Figure 7.3: (a) Determination of τ∗. The full line is the survival probability, the dashed line
the exponential e−γt and the dotted line the asymptotic exponential Ze−γt in (7.28). (b)
Quantum Zeno vs inverse Zeno (“Heraclitus”) effect. The dashed line represents a typical
behavior of the survival probability P (t) when no measurement is performed: the short-time
Zeno region is followed by an approximately exponential decay with a natural decay rate
γ. When measurements are performed at time intervals τ , we get the effective decay rate
γeff(τ). The full lines represent the survival probabilities and the dotted lines their exponential
interpolations, according to (7.22). For τ1 < τ∗ < τ2 the effective decay rate γeff(τ1) [γeff(τ2)]
is smaller (QZE) [larger (IZE)] than the “natural” decay rate γ. When τ = τ∗ one recovers
the natural lifetime, according to (7.26).

We claim that a sufficient condition for the existence of a solution τ∗ of Eq. (7.26) is that

Z < 1. (7.29)

This is easily proved by graphical inspection. The case Z < 1 is shown in Fig. 7.3(a): P (t) and
e−γt must intersect, since according to (7.28) P (t) ∼ Ze−γt for large t, and a finite solution
τ∗ can always be found. The other case, Z > 1, is shown in Fig. 7.4: a solution may or may
not exist, depending on the features of the model investigated. We shall come back to the
Zeno-Heraclitus transition many times in the following. The occurrence of an inverse Zeno
effect has been discussed by several authors, in different contexts (Pascazio [1996]; Schulman
[1997]; Pascazio and Facchi [1999]; Kofman and Kurizki [1999]; Facchi and Pascazio [2000a];
Kofman and Kurizki [2000]; Facchi, Nakazato and Pascazio [2000]; Facchi and Pascazio [2001]).

There are situations (e.g., oscillatory systems, whose Poincaré time is finite) where γ and
Z cannot be defined. As we shall see, these cases require a different treatment, for the very
definition of Zeno effect becomes somewhat delicate. This will be discussed later.

7.2.4 Pitfalls: “repopulation” and conceptual difficulties

The quantum Zeno effect has become very popular during the last decade, mainly because of
an interesting idea due to Cook [1988], who proposed to test the QZE with a two-level system,
and the subsequent experiment performed by Itano, Heinzen, Bollinger and Wineland [1990].
This experiment provoked a very lively debate and was discussed by many authors (Petrosky,
Tasaki and Prigogine [1990]; Peres and Ron [1990]; Petrosky, Tasaki and Prigogine [1991];
Ballentine [1991]; Itano, Heinzen, Bollinger and Wineland [1991]; Frerichs and Schenzle [1992];
Inagaki, Namiki and Tajiri [1992]; Home and Whitaker [1992]; Home and Whitaker [1993];
Blanchard and Jadczyk [1993]; Pascazio, Namiki, Badurek and Rauch [1993]; Altenmuller and
Schenzle [1994]; Pascazio and Namiki [1994]; Schulman, Ranfagni and Mugnai [1994]; Berry
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Figure 7.4: Study of the case Z > 1. The full line is the survival probability, the dashed line
the renormalized exponential e−γt and the dotted line the asymptotic exponential Ze−γt. (a) If
P (t) and e−γt do not intersect, a finite solution τ∗ does not exist. (b) If P (t) and e−γt intersect,
a finite solution τ∗ exists. (In this case there are always at least two intersections.)

[1995]; Beige and Hegerfeldt [1996]; Schulman [1997]; Thun and Peřina [1998]). However,
we shall follow here a different route: rather than analyzing Cook’s proposal and the related
experiment, we shall consider a physically equivalent situation that suits better our discussion
and can be easily compared to the analysis of the following sections.

The central mathematical quantity considered by Misra and Sudarshan [1977] is “the prob-
ability P(0, T ; ρ0) that no decay is found throughout the interval ∆ = [0, T ] when the initial
state of the system was known to be ρ0.” (Italics in the original. Some symbols have been
changed.) In the notation of Sec. 7.2.1, this reads

P(0, T ; ρ0) ≡ lim
N→∞

P (N)(T ). (7.30)

Notice that the above-mentioned “survival probability” is the probability of finding the system
in its initial state ρ0 at every measurement, during the interval ∆. This is a subtle point, as
we shall see.

Consider a three-level (atomic) system, shined by an rf field of frequency Ω, that provokes
Rabi oscillations between levels |a〉 and |b〉. The two-level Hamiltonian (3.1), when ωa = ωb = 0,
reads

HI = Ωσ1 = Ω(|a〉〈b| + |b〉〈a|), (7.31)

with the Rabi frequency Ω = λ. The equations of motion (3.16)-(3.17), with initial condition
R(0) ≡ (0, 0, 1) (only level |a〉 is initially populated) yield

R(t) = (0, sin 2Ωt, cos 2Ωt). (7.32)

If the transition between the two levels is driven by an on-resonant π/2 pulse, of duration

T = π/2Ω, (7.33)

one gets R(T ) ≡ (0, 0,−1), so that only level |b〉 is populated at time T .
Perform a measurement at time τ = T/N = π/2NΩ, by shining on the system a very short

“measurement” pulse, that provokes transitions from level |b〉 to a third level |M〉, followed by
the rapid spontaneous emission of a photon. The measurement pulse “projects” the atom onto
level |b〉 or |a〉 and “kills” the off-diagonal terms ρab, ρba of the density matrix, while leaving
unaltered its diagonal terms ρaa, ρbb, so that, from Eq. (3.20),

R(π/2NΩ) =
(
0, sin

π

N
, cos

π

N

)
measurement−→

(
0, 0, cos

π

N

)
≡ R(1). (7.34)
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Then the evolution restarts, always governed by Eq. (3.16), but with the new initial condition
R(1). After N measurements, at time T = Nτ = π/2Ω,

R(T ) =
(
0, 0, cosN π

N

)
≡ R(N) (7.35)

and the probabilities that the atom is in level |a〉 or |b〉 read [see Eq. (3.19)]

P(N)
a (T ) =

1
2

(
1 + R

(N)
3

)
=

1
2

(
1 + cosN π

N

)
, (7.36)

P(N)
b (T ) =

1
2

(
1 − R

(N)
3

)
=

1
2

(
1 − cosN π

N

)
, (7.37)

respectively. Since P(N)
a (T ) → 1 and P(N)

b (T ) → 0 as N → ∞, this looks like a quantum
Zeno effect. However, it is not the quantum Zeno effect à la Misra and Sudarshan: equation
(7.36) [(7.37)] expresses only the probability that the atom is in level |a〉 [|b〉] at time T , after
N measurements, independently of its past history. In particular, Eqs. (7.36)-(7.37) take into
account the possibility that one level gets repopulated after the atom has made transitions to
the other level. In order to shed light on this rather subtle point, let us look explicitly at the
first two measurements.

After the first measurement, by Eq. (7.34),

R
(1)
3 = cos

π

N
= cos2

π

2N
− sin2 π

2N
= P(1)

a − P(1)
b , (7.38)

where P(1)
a and P(1)

b are the occupation probabilities of levels |a〉 and |b〉 at time τ = π/2NΩ,
after the first measurement pulse, respectively. After the second measurement, one obtains

R
(2)
3 = cos2

π

N
= P(2)

a − P(2)
b , (7.39)

where the occupation probabilities at time 2τ = π/NΩ read

P(2)
a =

1
2

(
1 + R

(2)
3

)
= cos4

π

2N
+ sin4 π

2N
. (7.40)

P(2)
b =

1
2

(
1 − R

(2)
3

)
= 2 sin2 π

2N
cos2

π

2N
, (7.41)

It is then obvious that P(2)
a , in Eq. (7.40), is not the survival probability of level |a〉, according

to definition (7.30). It is just the probability that level |a〉 is populated at time t = π/NΩ,
including the possibility that the transition |a〉 → |b〉 → |a〉 took place, with probability
sin2(π/2N) · sin2(π/2N) = sin4(π/2N). By contrast, the survival probability, namely the
probability that the atom is found in level |a〉 both at the first and second measurements, is
given by P(1,2)

a = cos2(π/2N) · cos2(π/2N) = cos4(π/2N). Figure 7.5 shows what happens
during the first two measurements.

After N measurements, the probability that level |a〉 is populated at time T , independently
of its “history”, is given by (7.36), and includes the possibility that transitions to level |b〉 took
place. As a matter of fact, it is not difficult to realize that (7.36)-(7.37) conceal a binomial
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Figure 7.5: Transition probabilities after the first two measurements for an oscillating system
[s = sin(π/2N) and c = cos(π/2N)] .

distribution:∑
n even

(
N
n

)
s2nc2(N−n) = c2N

∑
n even

(
N
n

)
(s/c)2n

=
c2N

2

N∑
n=0

[(
N
n

)(s

c

)2n
+
(

N
n

)
(−1)n

(s

c

)2n
]

=
c2N

2
[
(1 + (s/c)2)N + (1 − (s/c)2)N

]
=

1
2
[
1 + cosN (π/N)

]
= P(N)

a (T ), (7.42)

where
∑

n even is a sum over all even values of n between 0 and N , s = sin(π/2N) and c =
cos(π/2N). Clearly, Eq. (7.36) includes all possible transitions between levels |a〉 and |b〉 and is
conceptually very different from Misra and Sudarshan’s survival probability (7.30). The correct
formula for the survival probability, in the present case, is obtained by considering only the
n = 0 term in (7.42):

P (N)
a (T ) = cos2N π

2N
. (7.43)

This is a bona fide “survival probability”, namely the probability that level |a〉 is populated at
every measurement, at times nτ = nT/N (n = 1, . . . , N).

The conclusions drawn in this section are always valid when the temporal behavior of the
system under investigation is of the oscillatory type and no precautions are taken in order
to prevent repopulation of the initial state (Nakazato, Namiki, Pascazio and Rauch [1996]).
For instance, this problematic feature is present in the interesting proposal by Cook [1988]
and the beautiful experiment by Itano, Heinzen, Bollinger and Wineland [1990]. On the other
hand, no repopulation of the initial state takes place in other experiments involving neutron
spin (Pascazio, Namiki, Badurek and Rauch [1993]) or photon polarization (Kwiat, Weinfurter,
Herzog, Zeilinger and Kasevich [1995]).

We have seen that P
(N)
a (T ), in Eq. (7.43), is a bona fide survival probability, but P(N)

a (T ),
in Eq. (7.36) is not (at least not according to Misra and Sudarshan’s definition). However, both
quantities tend to the same limiting value 1 as N → ∞ and for large N the evolution is, in
fact, hindered. We are therefore led to wonder whether it would not be meaningful to extend
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Figure 7.6: The generalized spectral decomposition.

the notion of QZE beyond Misra and Sudarshan’s definition of survival probability. This will
be the subject of Sec. 7.6.

7.3 Dynamical quantum Zeno effect

In the usual formulation of QZE the measurement process is schematized by making use of
projection operators à la von Neumann (Copenhagen interpretation), without endeavoring to
shed light on the underlying dynamics. However, a quantum mechanical measurement is a very
complicated physical process, taking place in a finite time and involving complex (macroscopic)
physical systems.

It is possible to give a dynamical explanation of the Zeno effect (Pascazio and Namiki
[1994]; Pascazio [1997]), that involves only the Schrödinger equation and makes no use of
projection operators. Let us briefly sketch how this is accomplished by introducing the notion
of “generalized spectral decomposition” (GSD).

Consider again a two level system, prepared in a superposed state. A GSD is a dynamical
(Hamiltonian) process by which different states of the system become associated (entangled)
with different external “channels” (e.g., different degrees of freedom of a larger system). See
Fig. 7.6. One can think, for example, of a two-level atomic system getting entangled with
different photon states of the electromagnetic field. The notion of “spectral decomposition”
was introduced by Wigner [1963], who considered the Stern-Gerlach decomposition of an initial
spin state, where each component of the spin becomes associated with a different wave packet.
It is worth observing that the external channels the system gets entangled with need not be
“external:” for example, different wave packets of the system itself can act as “external” degrees
of freedom.

A GSD is realized by the following Hamiltonian

HGSD(t) = g(t) [|a〉〈a|σα + |b〉〈b|σβ ] σγ = g(t)H ′,
∫ t0

0
g(t)dt =

π

2
, (7.44)

where the interaction is switched on during the time interval [0, t0], g is a real function, σ†
µ = σµ

(the index µ = α, β, γ labels the channel in Fig. 7.6) and the effect of σµ is defined by

σµ|0µ〉 = |1µ〉, σµ|1µ〉 = |0µ〉, (7.45)

so that if there is a “particle” in channel µ the operator σµ destroys it, while if there is no
particle, σµ creates one. The effect of σµ (∀µ) is therefore identical to that of the first Pauli
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matrix. We set
[σµ, σν ] = 0. (7.46)

The action of the Hamiltonian HGSD is

HGSD (ca|a〉 + cb|b〉) ⊗ |1γ , 0α, 0β〉 ∝ (ca|a〉 ⊗ |0γ , 1α, 0β〉 + cb|b〉 ⊗ |0γ , 0α, 1β〉)

and consists in sending the |a〉 (|b〉) state of the system in the upper (lower) channel in Fig.
7.6, performing in this way a GSD.

In general, the only effect of a GSD is to set up a perfect correlation between the two
states of the system and different external channels (namely, a univocal and unambiguous
correspondence between different states of the system and different external channels). This is
easily accomplished: the evolution engendered by HGSD can be explicitly calculated (Pascazio
and Namiki [1994]) and the result is

e−i
∫ t0
0 HGSD(t′)dt′ (ca|a〉 + cb|b〉) ⊗ |1γ〉 = −i (ca|a〉 ⊗ |1α〉 + cb|b〉 ⊗ |1β〉) , (t > t0) (7.47)

where we suppressed all 0’s for simplicity.
A projection operator represents an instantaneous measurement. This is clearly a very ide-

alized situation that cannot correspond to a real physical process, taking place at a microscopic
level. The problem is therefore to understand how we can simulate such an instantaneous and
unphysical process in our analysis, that makes use only of unitary evolutions. We observe that,
in general, a GSD must take place in a very short time. Obviously, the term “very short time”
must be understood at a macroscopic level of description, because the time microscopically
required to efficaciously perform a GSD is very long. Therefore, if we restrict our analysis to
a macroscopic level of description, we can describe an (almost) instantaneous GSD by means
of the so-called impulse approximation∫ t0

0
g(t)dt = π/2, t0 → 0+ . (7.48)

which roughly amounts to setting g(t) → (π/2)δ(t) as t0 → 0, where δ is the Dirac function∫ t0
0 δ(t) = 1. This is our alternative description of a von Neumann-like instantaneous projection.

It is a good approximation of the physical situation whenever t0 is much shorter than the
characteristic time of the free evolution of the system under observation.

By making repeated use of GSDs it is very simple to get a quantum Zeno dynamics. A
general proof is given by Pascazio and Namiki [1994] (a somewhat simpler version can be found
in Pascazio [1997]), but here let us only sketch the main idea by looking at the example (7.31).
The initial state (3.4), that we rewrite by including the external channel (wave packet) in the
description

|Ψ0〉 = |a〉 ⊗ |1γ〉, (7.49)

evolves after a short time τ into (3.5):

|Ψτ 〉 = e−iHIτ |Ψ0〉 = [cos(Ωτ)|a〉 − i sin(Ωτ)|b〉] ⊗ |1γ〉. (7.50)

The GSD yields then (for t0 � Ω−1)

|Ψτ+t0〉 = e−i
∫ t0
0 HGSD(t′)dt′ |Ψτ 〉 ∝ cos(Ωτ)|a〉 ⊗ |1α〉 − i sin(Ωτ)|b〉 ⊗ |1β〉, (7.51)

apart from a phase factor. Observe that the quantum coherence is perfectly preserved, during
this evolution. At the next “step” of the evolution, channels α and β become new incoming
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channels and the system evolves again under the action of HI for a time τ and HGSD for a time
t0. After N steps the final wave function reads

|ΨN(τ+t0)〉 =
N∏

n=1

[
e−i

∫ t0
0 H

(n)
GSD(t′)dt′e−iHIτ

]
|Ψ0〉 ∝ cosN (Ωτ)|a〉 ⊗ |1(N)

α 〉 + O(N−1), (7.52)

where H
(n)
GSD is the Hamiltonian that performs a generalized spectral decomposition at the nth

step and |1(N)
α 〉 (all 0’s were suppressed) represent the wave packet traveling in channel α at

step N . Note that N(τ + t0) is kept finite.
The contribution of all the other channels is O(N−1): a QZE is obtained because the

particle, initially in state (7.49), ends up with probability

[1 − O(1/N2)]N ∼ 1 − O(1/N) (7.53)

in state |a〉 ⊗ |1(N)
α 〉. The “external” degrees of freedom are irrelevant and can be traced out

(or recombined with the initial one).
We would like to emphasize that the very dynamical mechanism leading to QZE is curious:

QZE is obtained via repeated use of generalized spectral decompositions HGSD’s, even though
the interaction Hamiltonian HI “attempts” to drive |a〉 into |b〉 for a finite time Nτ . This is
probably the reason why QZE is often considered a counterintuitive phenomenon.

7.4 Continuous observation

A projection à la von Neumann (von Neumann [1932]) is a handy way to “summarize” the
complicated physical processes that take place during a quantum measurement. A measurement
process is performed by an external (macroscopic) apparatus and involves dissipative effects,
that imply an exchange of energy with and often a flow of probability towards the environment.
The external system performing the observation need not be a bona fide detection system,
namely a system that “clicks” or is endowed with a pointer. It is enough that the information
on the state of the observed system be encoded in the state of the apparatus. For instance, a
spontaneous emission process is often a very effective measurement process, for it is irreversible
and leads to an entanglement of the state of the system (the emitting atom or molecule) with
the state of the apparatus (the electromagnetic field). The von Neumann rules arise when one
traces away the photonic state and is left with an incoherent superposition of atomic states.

We shall now introduce several alternative descriptions of a measurement process and dis-
cuss the notion of continuous measurement. This is to be contrasted with the idea of pulsed
measurements, discussed in Sec. 7.2. Both formulations lead to QZE.

7.4.1 Mimicking the projection with a non-Hermitian Hamiltonian

It is useful for our discussion on the QZE and probably interesting on general grounds to see
how the action of an external apparatus can be mimicked by a non Hermitian Hamiltonian.
Let us consider the following Hamiltonian

HI =
(

0 Ω
Ω −i2V

)
= −iV 1 + h · σ, h = (Ω, 0, iV )T , (7.54)

that yields Rabi oscillations of frequency Ω, but at the same time absorbs away the |b〉 compo-
nent of the Hilbert space, performing in this way a “measurement.” Due to the non Hermitian
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Figure 7.7: Survival probability for a system undergoing Rabi oscillations in presence of ab-
sorption (V = 0.4, 2, 10Ω). The gray line is the undisturbed evolution (V = 0).

features of this description, probabilities are not conserved: we are concentrating our attention
only on the |a〉 component.

An elementary SU(2) manipulation yields the following evolution operator

e−iHIt = e−V t

[
cosh(ht) − i

h · σ
h

sinh(ht)
]

, (7.55)

where h =
√

V 2 − Ω2 and we supposed V > Ω. Let the system be initially prepared in the
state |a〉: the survival amplitude reads

A(t) = 〈a|e−iHIt|a〉 = e−V t

[
cosh(

√
V 2 − Ω2t) +

V√
V 2 − Ω2

sinh(
√

V 2 − Ω2t)
]

=
1
2

(
1 +

V√
V 2 − Ω2

)
e−(V −√

V 2−Ω2)t +
1
2

(
1 − V√

V 2 − Ω2

)
e−(V +

√
V 2−Ω2)t. (7.56)

The above results are exact and display some interesting and very general aspects of the
quantum Zeno dynamics. The survival probability P (t) = |A(t)|2 is shown in Fig. 7.7 for
V = 0.4, 2, 10Ω. As expected, probability is (exponentially) absorbed away as t → ∞. However,
as V increases, by using Eq. (7.56), the survival probability reads

P (t) ∼
(

1 +
Ω2

2V

)
exp

(
−Ω2

V
t

)
, (7.57)

and the effective decay rate γeff(V ) = Ω2/V becomes smaller, eventually halting the “decay”
(absorption) of the initial state and yielding an interesting example of QZE: a larger V entails
a more “effective” measurement of the initial state. We emphasize that the expansion (7.57)
becomes valid very quickly, on a time scale of order V −1. Notice that this example is not
affected by the repopulation drawback described in Sec. 7.2.4 (once the probability is absorbed
away, it does not flow back to the initial state).
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7.4.2 Coupling with a flat continuum

We now show that the non Hermitian Hamiltonian (7.54) can be obtained by considering the
evolution engendered by a Hermitian Hamiltonian acting on a larger Hilbert space and then
restricting the attention to the subspace spanned by {|a〉, |b〉}. Consider the Hamiltonian

H = Ω(|a〉〈b| + |b〉〈a|) +
∫

dω ω|ω〉〈ω| +
√

Γ
2π

∫
dω (|b〉〈ω| + |ω〉〈b|), (7.58)

which describes a two level system coupled to the photon field in the rotating-wave approxi-
mation. The state of the system at time t can be written as

|ψt〉 = x(t)|a〉 + y(t)|b〉 +
∫

dω z(ω, t)|ω〉 (7.59)

and the Schrödinger equation reads

iẋ(t) = Ωy(t),

iẏ(t) = Ωx(t) +

√
Γ
2π

∫
dω z(ω, t), (7.60)

iż(ω, t) = ωz(ω, t) +

√
Γ
2π

y(t).

By using the initial condition x(0) = 1 and y(0) = z(ω, 0) = 0 one obtains

z(ω, t) = −i

√
Γ
2π

∫ t

0
dτ e−iω(t−τ)y(τ) (7.61)

and

iẏ(t) = Ωx(t) − i
Γ
2π

∫
dω

∫ t

0
dτ e−iω(t−τ)y(τ) = Ωx(t) − i

Γ
2

y(t). (7.62)

Therefore z(ω, t) disappears from the equations and we get two first order differential equation
for x and y. The only effect of the continuum is the appearance of the imaginary frequency
−iΓ/2. Incidentally, this is ascribable to the “flatness” of the continuum [there is no form
factor or frequency cutoff in the last term of Eq. (7.58)], which yields a purely exponential
(Markovian) decay of y(t).

In conclusion, the dynamics in the subspace spanned by |a〉 and |b〉 reads

iẋ(t) = Ωy(t),

iẏ(t) = −i
Γ
2

y + Ωx(t). (7.63)

Of course, this dynamics is not unitary, for probability flows out of the subspace, and is
generated by the non Hermitian Hamiltonian

H = Ω(|a〉〈b| + |b〉〈a|) − i
Γ
2
|b〉〈b|. (7.64)

This Hamiltonian is the same as (7.54) when one sets Γ = 4V . QZE is obtained by increasing
Γ: a larger coupling to the environment leads to a more effective “continuous” observation on
the system (quicker response of the apparatus), and as a consequence to a slower decay (QZE).

The processes described in this section and the previous one can therefore be viewed as
“continuous” measurements performed on the initial state. The non Hermitian term −2iV
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is proportional to the decay rate Γ of state |b〉, quantitatively Γ = 4V . Therefore, state |b〉
is continuously monitored with a response time 1/Γ: as soon as it becomes populated, it is
detected within a time 1/Γ. The “strength” Γ = 4V of the observation can be compared to
the frequency τ−1 = (t/N)−1 of measurements in the “pulsed” formulation. Indeed, for large
values of Γ one gets from Eq. (7.57)

γeff(Γ) ∼ 4Ω2

Γ
=

4
τ2
ZΓ

, for Γ → ∞, (7.65)

which, compared with Eq. (7.24), yields an interesting relation between continuous and pulsed
measurements (Schulman [1998])

Γ � 4/τ = 4N/t. (7.66)

7.4.3 Continuous Rabi observation

The two previous examples might lead the reader to think that absorption and/or probability
leakage to the environment (or in general to other degrees of freedom) are fundamental requi-
sites to obtain QZE. This expectation would be incorrect. Let us analyze a somewhat different
situation, by coupling one of the two levels of the system to a third one, that will play the role
of measuring apparatus. The (Hermitian) Hamiltonian is

HI = Ω(|a〉〈b| + |b〉〈a|) + K(|b〉〈M | + |M〉〈b|) =

0 Ω 0
Ω 0 K
0 K 0

 , (7.67)

where K ∈ R is the strength of the coupling to the new level M and

〈a| = (1, 0, 0), 〈b| = (0, 1, 0), 〈M | = (0, 0, 1). (7.68)

This is probably the simplest way to include an “external” apparatus in our description: as
soon as the system is in |b〉 it undergoes Rabi oscillations to |M〉. Similar examples were
considered by Peres [1980a] and Kraus [1981]. We expect level |M〉 to perform better as a
measuring apparatus when the strength K of the coupling becomes larger.

The above Hamiltonian is easily diagonalized. Its eigenvalues and eigenvectors are

λ0 = 0, |u0〉 =
1√

K2 + Ω2

 K
0
−Ω

 ,

λ± = ±
√

K2 + Ω2, |u±〉 =
1√

2(K2 + Ω2)

 Ω
±√

K2 + Ω2

K

 . (7.69)

Let the initial state be, as usual,

|a〉 =
1√

K2 + Ω2

(
K|u0〉 +

Ω√
2
|u−〉 +

Ω√
2
|u−〉

)
. (7.70)

The evolution is easily computed

|ψt〉 = e−iHIt|a〉 =
1√

K2 + Ω2

(
K|u0〉 +

Ω√
2
e−iλ+t|u−〉 +

Ω√
2
e−iλ−t|u−〉

)
(7.71)
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Figure 7.8: Survival probability for a continuous Rabi “measurement” with K = 1, 3, 9Ω:
quantum Zeno effect.

and the survival probability reads

P (t) =
1

(K2 + Ω2)2
[
K2 + Ω2 cos(

√
K2 + Ω2t)

]2
. (7.72)

This is shown in Fig. 7.8 for K = 1, 3, 9Ω. We notice that for large K the state of the system
does not change much: as K is increased, level |M〉 performs a better “observation” of the
state of the system, hindering transitions from |a〉 to |b〉. This can be viewed as a QZE due to
a “continuous,” yet Hermitian observation performed by level |M〉.

This simple example triggers also another remarkable observation. The Zeno time is easily
computed and turns out to be much longer than the Poincaré time (we are assuming K � Ω)

τZ = Ω−1 � TP = O(K−1). (7.73)

As a matter of fact, the Zeno time yields only the convexity of the survival probability in the
origin.

A few more comments are necessary. First of all, the example considered in this section is
not free from repopulation effects like those considered in Sec. 7.2.4. As a matter of facts, the
situation here is even worse: unlike the case studied in Sec. 7.2.4, where there was a probability
repopulation of the initial state, in the present case there is a (coherent) amplitude repopulation
phenomenon. However, even if these cases are at variance with Misra and Sudarshan’s definition
[see (7.30) and paragraph preceding it], they call, in our opinion, for a broader formulation of
QZE. This will be proposed in the following sections.

Let us see how “effective” the Rabi “measurement” is, compared to the case of pulsed
measurements. Notice that by performing pulsed observations on system (7.31) one gets from
Eq. (7.4)

P (N)(t) = P (t/N)N =
(

cos
Ωt

N

)2N

∼
(

1 − Ω2t2

N2

)N

∼ 1 − Ω2t2

N
, (7.74)

for large values of N . On the other hand, in the present case of continuous observation, for
large values of K, Eq (7.72) reads

P (K)(t) ∼
(

1 − 2
Ω2

K2

)(
1 + 2

Ω2

K2
cos(

√
K2 + Ω2t)

)
∼ 1 − 4

Ω2

K2
sin2

(√
K2 + Ω2

2
t

)
, (7.75)
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whence, by taking the average over a very short time of order 1/K,

P (K)(t) ∼ 1 − 2
Ω2

K2
. (7.76)

By comparing Eq. (7.74) and Eq. (7.76), one sees that the evolution is hindered (QZE) for

Ω2t2

N
� 2Ω2

K2
(� 1), (7.77)

namely

K �
√

2N

t
. (7.78)

This relation is similar to (7.66): strong coupling is equivalent to frequent measurements.
A final comment is in order. All the situations analyzed in Sec. 7.4 lead to QZE but never

to IZE. The reason for this is profound and lies in the absence of the form factors of the
interactions. The importance of form factors and the role they play in this context will be
discussed later.

7.5 A quantum Zeno theorem

We now prove a theorem, which is the exact analog of Misra and Sudarshan’s theorem valid
for a dynamical evolution.

Consider the Hamiltonian
HK = Hsys + KHmeas, (7.79)

where Hsys represents the Hamiltonian of the system under observation (which can include the
free Hamiltonian of the apparatus too) and Hmeas is the interaction Hamiltonian between the
system and the apparatus, K being the strength of the measurement. Let us look at the time
evolution operator in the Hmeas interaction picture

UK(t) = exp(iKHmeast) U(t) = exp(iKHmeast) exp(−iHKt). (7.80)

The theorem states that in the infinitely strong measurement limit (K → ∞) the evolution
operator becomes diagonal in the Hmeas representation, namely

lim
K→∞

UK(t) = exp(−iHdiag
sys t), (7.81)

where
Hdiag

sys =
∑

n

PnHsysPn (7.82)

is the diagonal part of the system Hamiltonian Hsys with respect to the interaction Hamiltonian
Hmeas

HmeasPn = ηnPn, (7.83)

Pn being the orthogonal projection onto the eigenspace of Hmeas belonging the the eigenvalue
ηn. Note that in Eqs. (7.82) and (7.83) one has to consider distinct eigenvalues, i.e., ηn �= ηm

for n �= m, whence the Pn are not necessarily unidimensional.
The physical implications of the theorem (7.81) are straightforward: in the K → ∞ limit,

the time evolution operator becomes diagonal with respect to Hmeas, namely

[U∞(t), Hmeas] = 0, (7.84)
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a superselection rule arises and the total Hilbert space is split into subspaces which are in-
variant under the evolution. These subspaces are simply defined by the Pn’s, i.e., they are
eigenspaces belonging to distinct eigenvalues ηn: in other words, eigenspaces that the appara-
tus can distinguish. As a consequence, if the initial state of the system belongs to a specific
sector, it will be forced to remain there forever (QZE).

Here is the proof. Rewrite the time evolution operator in the form

U(t) = exp(−iHKt) = exp(−iHλτ) (7.85)

where
λ = 1/K, τ = Kt = t/λ, Hλ = λHK = Hmeas + λHsys, (7.86)

and apply the perturbation theory to the Hamiltonian Hλ for small λ. To this end choose the
unperturbed degenerate projections Pnα

HmeasPnα = ηnPnα, (7.87)

whose degeneration α is resolved at some order in the coupling constant λ. This means that
by denoting with Ẽnα and P̃nα the eigenvalues and the orthogonal projections of the total
Hamiltonian Hλ

HλP̃nα = ẼnαP̃nα, (7.88)

they reduce to the unperturbed ones when the perturbation vanishes

P̃nα
λ→0−→ Pnα, Ẽnα

λ→0−→ ηn. (7.89)

Therefore, by applying the standard perturbation theory we get the eigenvectors

P̃nα = Pnα + λP (1)
nα + O(λ2)

= Pnα + λ

(
Qn

an
HsysPnα + PnαHsys

Qn

an

)
+ O(λ2) (7.90)

and the eigenvalues

Ẽnα = ηn + λE(1)
nα + λ2E(2)

nα + O(λ3)

= ηn + λ〈nα|Hsys|nα〉 + λ2〈nα|Hsys
Qn

an
Hsys|nα〉 + O(λ3), (7.91)

where

Pn =
∑
α

Pnα, Qn = 1 − Pn =
∑
m�=n

Pm,
Qn

an
=

Qn

ηn − Hmeas
=
∑
m�=n

Pm

ηn − ηm
(7.92)

and Pnα = |nα〉〈nα|. Write now the spectral decomposition of the evolution operator (7.85) in
terms of the projections P̃nα

U(t) = exp(−iHλτ)
∑
n,α

P̃nα =
∑
n,α

exp(−iẼnατ)P̃nα (7.93)

and plug in the perturbation expansions (7.90), to obtain

U(t) =
∑
n,α

e−iẼnατPnα + λ
∑
n,α

(
Qn

an
HsysPnαe−iẼnατ + e−iẼnατPnαHsys

Qn

an

)
+ O(λ2). (7.94)
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Let us define a new operator H̃λ as

H̃λ =
∑
n,α

ẼnαPnα

= Hmeas + λ
∑

n

PnHsysPn + λ2
∑

n

PnHsys
Qn

an
HsysPn + O(λ3), (7.95)

where Eq. (7.91) was used. By plugging Eq. (7.95) into Eq. (7.94) we finally obtain

U(t) = exp(−iH̃λτ) + λ
∑

n

(
Qn

an
HsysPne−iH̃λτ − e−iH̃λτ Qn

an
HsysPn

)
+ O(λ2). (7.96)

Multiplying Eq. (7.96) to the left by exp(iKHmeast) and by using the definition (7.86) we can
write the time evolution operator UK(t) as the sum of two terms

UK(t) = Uad(t) +
1
K

Una(t), (7.97)

where

Uad(t) = exp

[
−i

(∑
n

PnHsysPn +
1
K

∑
n

PnHsys
Qn

an
HsysPn + O

(
1

K2

))
t

]
+ O

(
1

K2

)
(7.98)

is a diagonal, “adiabatic” evolution and

Una(t) =

[
eiKHmeast

∑
n

Qn

an
HsysPn, e−iKHmeastUad(t)

]
+ O

(
1
K

)
(7.99)

is the nondiagonal, “nonadiabatic” correction. In the K → ∞ limit only the adiabatic term
survives and one obtains

lim
K→∞

UK(t) = Uad(t) = exp

(
−i
∑

n

PnHsysPn t

)
, (7.100)

which is formula (7.81). The proof is complete. As a byproduct we get the corrections to the
exact limit, valid for large, but finite, values of K.

7.6 Novel definition of quantum Zeno effect

The diverse examples considered in the previous sections and the theorem just proved motivate
us to look for a broader definition of Zeno effect, that includes “continuous” observations as
well as somewhat delicate situations in which repopulation effects (in amplitude or probability)
take place.

Let us consider a quantum system whose evolution is described by a Hamiltonian H. Let
the initial state be ρ0 (not necessarily a pure state) and the survival probability P (t). Consider
the evolution of the system under the effect of an additional interaction, so that the total
Hamiltonian reads

HK = H + Hmeas(K), (7.101)

where K is a set of parameters and Hmeas(K = 0) = 0. This Hamiltonian includes also as a
particular case the GSD described in Sec. 7.3; moreover, since a GSD is basically equivalent
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to a bona fide measurement, the above Hamiltonian includes, for all practical purposes, the
usual formulation of quantum Zeno effect in terms of projection operators. Notice that H is not
necessarily the free Hamiltonian; rather, one should think of H as a full Hamiltonian, containing
interaction terms, and Hmeas(K) should be viewed as an additional interaction Hamiltonian
performing the measurement. We have considered plenty of examples in our analysis: all of
them fit in the scheme (7.101).

We shall say that the system displays a QZE if there exists an interval I(K) = [t(K)
1 , t

(K)
2 ]

such that
P (K)(t) > P (t), ∀t ∈ I(K), (7.102)

where P (K)(t) and P (t) are the survival probabilities under the action of the Hamiltonians HK

and H, respectively. We shall say that the system displays an inverse QZE if there exists an
interval I(K) such that

P (K)(t) < P (t), ∀t ∈ I(K). (7.103)

The time interval I(K) must be evaluated case by case. However,

t
(K)
2 ≤ TP, (7.104)

where TP is the Poincaré time. Obviously, for the definition (7.102)-(7.103) to be meaningful
from a physical point of view, the length of the interval I(K) must be of order TP. The above
one is a very broad definition, for it includes a huge class of systems (even trivial cases like
time translations P (t) → P (t − t0) are included). We have not succeeded in finding a more
restrictive definition and we do not think it would be meaningful. This is in line with our
general philosophy: the Zeno effects are very common phenomena.

In order to elucidate the meaning of the above definition, let us look at some particular
cases considered in this paper. The situations considered in Figs. 7.7 and 7.8 are both QZEs,
according to this definition: one has t

(K)
1 = 0 and t

(K)
2 ≤ TP = π/Ω [and (t(K)

2 −t
(K)
1 ) = O(TP)].

The case outlined in Fig. 7.1 is also a QZE, with t
(K)
1 = 0 and t

(K)
2 ≤ TP (notice that TP may

even be infinite).
If we deal with an unstable system, the definition of Zeno effect can be made more stringent,

by simply generalizing the results of Sec. 7.2.3 to a broader class of measurements. Indeed, in
such a case, one need not refer to an interval I(K) and can consider the global behavior of the
survival probability. By introducing the lifetime γ, one can define the occurrence of a QZE or
an IZE if

γeff(K) <
> γ, (7.105)

respectively, where γeff(K) is the new (effective) lifetime under the action of HK . Notice that
this case is in agreement with the definitions (7.102)-(7.103). Moreover, t

(K)
2 → ∞ for IZE,

while t
(K)
2 ≤ tpow for QZE, where tpow is the time at which a transition from an exponential to

a power law takes place. [As we have seen in Chap. 6, such a time is of order log(1/λ).] The
definition (7.105) includes all the cases considered in Sec. 7.2.3. See for example Fig. 7.3(b).
Notice that when a Zeno effect is obtained by repeated use of projection operators (at equal
time intervals τ), one always gets an exponential behavior, with a well defined γeff(τ) (see Sec.
7.2.3). A problem arises with oscillating systems (or in general with systems whose Poincaré
time is finite), because of the impossibility of defining the “natural” decay rate γ (see, for
instance, Fig. 7.7). From this perspective, we cannot help feeling that the very concept of QZE
is somewhat less meaningful for purely oscillating systems, exhibiting no bona fide instability.

We shall adopt these new definitions of Zeno effects in the following (Facchi and Pascazio
[2001]). They work in all the cases considered in this work and also comprise, in a more
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general theoretical scheme, all the examples of Zeno effects considered in the literature. These
definitions should be kept in mind while considering the examples proposed in the following
chapters.



Chapter 8

Zeno effects in down-conversion
processes

8.1 Introduction

The differences and analogies between pulsed and continuous observations analyzed in the
previous chapter will now be discussed by considering a quantum optical example. A down-
conversion process in a nonlinear crystal can be thought of as the decay of a pump photon into
a pair of signal and idler photons of lower frequency. If the pumping is sufficiently strong and
there is phase matching, the energy of the spontaneously down-converted light monotonously in-
creases and that of the pump beam monotonously decreases. In this sense, the down-conversion
process may be looked at as the decay process of an unstable system.

Let us first discuss the case of “pulsed” observation. There are similar ideas in the lit-
erature (Pascazio, Namiki, Badurek and Rauch [1993]; Kwiat, Weinfurter, Herzog, Zeilinger
and Kasevich [1995]; Facchi, Klein, Pascazio and Schulman [1999]), but here we shall discuss
an interesting example first proposed by Luis and Peřina [1996]. A pump beam illuminates a
nonlinear crystal, that is transversely cut in N pieces which are then carefully aligned so that
the signal and pump photons leaving a given slice become the input signal and pump photons
for the next slice of the crystal, while the idler photons are taken out at each step (see Fig.
8.2 in the following). By increasing the number N of slices, the probability of emission of the
down-converted pair decreases: this is QZE. However, if the phase matching condition is not
fulfilled in the process of down-conversion (Luis and Sánchez–Soto [1998]; Thun and Peřina
[1998]), the observation may, on the contrary, enhance the emission for a properly chosen N :
this is an IZE.

We shall see that such a behaviour occurs also when, instead of cutting the crystal into
N pieces, the idler beam is coupled to an auxiliary mode (see Fig. 8.3 in the following). The
continuous interaction with the auxiliary mode is a sort of “steady gaze” at the system and
performs a continuous observation.

The Zeno–inverse Zeno interplay that takes place in this model can be easily understood
in the light of the theoretical scheme outlined in Sec. 7.2.3 and will be the object study of this
chapter.

8.2 The system

Consider a nonlinear crystal through which three modes, pump p, signal s and idler i propagate
in the same direction. The nonlinear waveguide is filled with a second-order nonlinear medium
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in which ultra–violet pump photons are down-converted into signal and idler photons of lower
frequency.

We will assume that all modes are monochromatic and their frequencies fixed, e.g. by placing
narrow interference filters in front of the detectors. Provided the amplitudes of the fields vary
little during an optical period (SVEA approximation), the effective Hamiltonian reads (� = 1)

H = ωpa
†
pap + ωsa

†
sas + ωia

†
iai + Γ

[
apa

†
sa

†
ie

i∆t + a†pasaie
−i∆t

]
, (8.1)

where ωα is the frequency of mode α, ∆ = (kp−ks−ki)z is the nonlinear phase mismatch and
the propagation variable z has been replaced with the evolution parameter t. The nonlinear
coupling constant Γ is proportional to the second order nonlinear susceptibility χ(2) (Hong and
Mandel [1985]). We suppose that the incident pump field is intense and that the pump mode
ap can be treated classically, as a field of complex amplitude ap = ξ exp(−iωpt), where ξ and
ωp denote the complex amplitude and the frequency of the classical pump wave, respectively.
In this approximation the Hamiltonian (8.1) has only two quantized field modes and reads

H = ωsa
†
sas + ωia

†
iai + Γ

[
a†sa

†
ie

−i(ωp−∆)t + asaie
i(ωp−∆)t

]
, (8.2)

where the amplitude ξ has been absorbed in the coupling constant Γ (taken real for simplicity).
Notice that the strong pump wave approximation will cease to be valid once appreciable deple-
tion of the pump field occurs. Therefore the solution of Eq. (8.2) properly describes the process
of parametric down-conversion under the restriction 〈ns,i(t)〉 � |ξ|2, where n is the number
operator, i.e., for sufficiently strong pumping and sufficiently weak nonlinear interaction.

By introducing the slowly varying operators

a′s = ei(ωs−∆/2)tas, a′i = ei(ωi−∆/2)tai, (8.3)

which obey the same commutation rules as the a’s, the Heisenberg equations of motions take
the form

ȧ′s = −i[a′s, H
′], ȧ′i = −i[a′i, H

′], (8.4)

with the time-independent Hamiltonian

H ′ =
∆
2

a′†s a′s +
∆
2

a′†i a′i + Γ
[
a′†s a′†i + a′sa

′
i

]
, (8.5)

where the frequency matching condition ωp = ωs + ωi was used.
The state of the field at time t = 0 is taken to be the vacuum for the signal and idler

modes
|ψ0〉 = |0s, 0i〉. (8.6)

Under the action of the Hamiltonian (8.5) this state is unstable and spontaneously decays,
continuously generating photon pairs. For example, when ∆ = 0 the average number of signal
and idler photons originating in the crystal of length t,

〈a†s(t)as(t)〉 ≡ 〈ψ0|a†s(t)as(t)|ψ0〉 = 〈ψ0|a†i (t)ai(t)|ψ0〉 = sinh2(Γt), (8.7)

is an exponentially increasing function of t. In Eq. (8.7) and henceforth all (slowly varying)
operators are written without primes to simplify the notation.

Our interest is focused on the survival amplitude of the vacuum state under the action
of the Hamiltonian (8.5). It is somewhat more convenient to consider the evolution of the
following linear combinations

a =
ai + as√

2
, b =

ai − as√
2

. (8.8)
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In terms of these two modes the Hamiltonian (8.5) reads

H =
∆
2

a†a +
Γ
2

[
a†2 + a2

]
+

∆
2

b†b − Γ
2

[
b†2 + b2

]
(8.9)

and the modes a and b are completely decoupled.
It is now straightforward to evaluate the time evolution of |ψ0〉 by considering the properties

of the generalized two-photon coherent states (Mandel and Wolf [1995]). Remember that by
letting U(µ, ν) be a unitary transformation that generates the pseudo-annihilation operator

A(µ, ν) = U(µ, ν) a U †(µ, ν) = µa + νa†, with |µ|2 − |ν|2 = 1, (8.10)

for two complex numbers µ, ν, the generalized two-photon coherent state |[µ, ν; v]〉 is defined
by operating U(µ, ν) on the coherent state |v〉, i.e.

|[µ, ν; v]〉 = U(µ, ν)|v〉. (8.11)

The scalar product between this state and a coherent state has the following form

〈v|[µ, ν; w]〉 =
1√
µ

exp
[
−1

2
|v|2 − 1

2
|w|2 − 1

2
ν

µ
v∗2 +

w

µ
v∗ +

1
2

ν∗

µ
w2

]
, (8.12)

and the most general unitary transformation that has the property (8.10) is

U(µ, ν) = exp[−i(Ka†a + ka2 + k∗a†2)], (8.13)

where K is real and k a constant. The complex numbers µ and ν are related to the parameters
K and k by the relation{

µ = cosh(	k) + i K
�k sinh(	k)

ν = i 2k
�k sinh(	k)

, with 	k =
√

4k2 − K2, (8.14)

where we considered, for simplicity, k real.
Let us look at the survival amplitude of the vacuum state under the action of the quadratic

Hamiltonian (8.9), corresponding to a two-photon interaction with a classical pump for the two
independent modes a and b. By using Eq. (8.12) this reads

A(t) = 〈0a, 0b|e−iHt|0a, 0b〉 = 〈0a, 0b|[µa(t), νa(t); 0a], [µb(t), νb(t); 0b]〉 =
1√

µa(t)µb(t)
. (8.15)

In our case

µa(t) = µb(t) = cosh(	Γt) + i
∆

2	Γ
sinh(	Γt), with 	Γ =

√
Γ2 − ∆2

4
, (8.16)

whence one gets the survival probability

P (t) = |A(t)|2 =
1

|µa(t)|2 =
[
cosh2(	Γt) +

∆2

4	Γ2
sinh2(	Γt)

]−1

. (8.17)

We can now look at the features of this system.
At short times

P (t) ∼ 1 −	Γ2t2 − ∆2

4
t2 = 1 − Γ2t2, (8.18)
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Figure 8.1: Survival probability of the initial (vacuum) state. (a) ∆ =
√

2Γ(<
√

3Γ) and Z = 2;
the full line is the survival probability (8.17), the dotted line the asymptotic exponential (8.21)
and the dashed line the renormalized exponential exp(−γt). P (t) and exp(−γt) do not intersect,
τ∗ does not exist and only a QZE is possible. (b) ∆ =

√
7/2Γ (

√
3Γ < ∆ < 2Γ) and Z = .5;

the full line is the survival probability (8.17), the dotted line the asymptotic exponential (8.21)
and the dashed line the renormalized exponential exp(−γt). P (t) and exp(−γt) intersect, τ∗

exists and a Zeno–inverse Zeno transition is possible. The gray line is the survival probability
(8.22) for ∆ = 3Γ(> 2Γ): in this case one gets an oscillatory behavior and Z cannot be defined.

so that the Zeno time reads

τ−2
Z = 〈H2〉 =

Γ2

4
〈0a, 0b|(a2a†2 + b2b†2)|0a, 0b〉 = Γ2. (8.19)

The long-time behavior depends on the value of 	Γ2 in (8.16): if ∆ < 2Γ, at long times,

P (t) ∼
[
1
4
e2�Γt +

∆2

16	Γ2
e2�Γt

]−1

=
4	Γ2

Γ2
e−2�Γt (8.20)

so that

P (t) ∼ Ze−γt, where γ =
√

4Γ2 − ∆2 and Z =
4Γ2 − ∆2

Γ2
. (8.21)

This formula, as already emphasized in Sec. 7.2.3, is an excellent approximation at long times
and enables us to discuss the Zeno–inverse Zeno transition. Notice also that in this model the
Hamiltonian (8.9) is not lower bounded and indeed the asymptotic behavior at large times is
exactly exponential, with no inverse power law tails. The condition Z < 1 reads ∆ >

√
3Γ. In

Fig. 8.1 the vacuum survival probability (8.17) is shown for different values of the parameters.
As we have seen, when ∆ < 2Γ the survival probability decreases exponentially; on the

other hand, when ∆ > 2Γ the behavior is oscillatory

P (t) = |A(t)|2 =
1

|µa(t)|2 =
[
cos2(|	Γ|t) +

∆2

4|	Γ|2 sin2(|	Γ|t)
]−1

, (8.22)

with 4|	Γ|2/∆2 < P (t) < 1. In this case a decay rate γ and, as a consequence, Z cannot be
defined. We note that the vacuum state never decays completely. We can now discuss pulsed
and continuous observation.
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Figure 8.2: Outline of a “sliced” parametric down-conversion scheme. The down-converter is
cut into N crystals of length L/N . After each slice, the output idler beams a

(k)
i are removed

by means of mirrors inserted in the idler path and replaced by different input idler fields aik in
vacuum.

8.3 Pulsed observation

Let us first consider pulsed observations performed at time intervals τ = t/N (Luis and Peřina
[1996]). The nonlinear crystal is divided into N equal parts of length L/N , corresponding to
an interaction time τ = t/N , as shown in Fig. 8.2. Assume that the signal beams at each
slice are perfectly superimposed and aligned and that reflection at each step is made negligible,
for instance by embedding the N pieces in a linear medium with exactly the same refractive
index. On the other hand, the idler path is interrupted after each slice, for instance by means of
mirrors. At each step the output idler beam is completely removed and replaced by a new input
idler beam in the vacuum state. With this modification it is possible to detect the emission of
the idler photons, for instance, by means of N photodetectors.

By using the definition (8.8) and the evolution law (8.10) or, alternatively, by directly
solving the Heisenberg equations (8.4) for the Hamiltonian (8.5) one gets for a single slice{

as(τ) = µ(τ)as + ν(τ)a†i
ai(τ) = µ(τ)ai + ν(τ)a†s

, (8.23)

where µ(t) = µa(t) is defined by Eq. (8.16) and ν(t) = νa(t) = iΓ sinh(	Γt)/	Γ. Remember
that unitarity requires |µ(t)|2 − |ν(t)|2 = 1.

We study how the survival probability of the vacuum state is modified by frequent inter-
ruptions of the idler path. To this end we will look at the modified evolution of the signal
mode, following Luis and Peřina [1996]; Luis and Sánchez–Soto [1998] and Thun and Peřina
[1998]. By using (8.23) we can express the signal annihilation operator after the Nth slice a

(N)
s

in terms of the annihilation (creation) operator of the signal (idler) mode before it

a(N)
s = µ(τ)a(N−1)

s + ν(τ)a†iN , (8.24)

where we used the fact that a different vacuum mode aik, k = 1, . . . , N , is at the idler input of
each of the N crystals. By iterating Eq. (8.24) we obtain

a(N)
s = µNas + ν

N∑
k=1

µN−ka†ik. (8.25)
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The mean value of the number of signal photons reads

〈a(N)†
s a(N)

s 〉 = |ν|2
N∑

k=1

|µ|2(N−k) = |ν|2 |µ|
2N − 1

|µ|2 − 1
= |µ|2N − 1, (8.26)

where the unitarity condition was used. For large values of N , by making use of Eq. (8.17) we
get

〈a(N)†
s a(N)

s 〉 = |µ(t/N)|2N − 1 = P (t/N)−N − 1 ∼ 1 − P (t/N)N = 1 − P (N)(t) (8.27)

and the mean number of photons coincides with the probability of emitting one signal photon
(for the probability of emission of more than one photon is negligible), i.e. with the (modified)
decay probability of the vacuum state.

By using the short times expansion of the survival probability (8.18) we get

P (N)(t) ∼ exp(−Γ2τt), (8.28)

i.e. an effective decay rate
γeff(τ) = Γ2τ , (8.29)

which is in accord with Eq. (7.24), because τZ = 1/Γ [as shown by Eq. (8.19)]. In the N → ∞
limit the effective decay rate approaches zero and the decay is completely frozen, i.e. no photons
are emitted (QZE).

If, in (8.21),
Z > 1 ⇔ ∆ <

√
3Γ, (8.30)

we are in the situation outlined in Figs. 7.4(a) and 8.1(a) and according to the analysis of
Section 7.2.3 only a QZE can occur. On the other hand, if

Z < 1, (8.31)

then, according to the analysis of Sec. 7.2.3 (See figures 7.3 and 7.4), a transition time τ∗ exists
and by decreasing the frequency of measurements one observes the transition from a Zeno to
an inverse Zeno (Heraclitus) regime. By using Eq. (8.21), the condition (8.31) reads

∆ >
√

3Γ. (8.32)

In particular, if the phase mismatch ∆ is close to the value ∆ = 2Γ, the linear approximation
(8.29) is valid up to τ∗, because γ in Eq. (8.21) approaches zero, and we get

τ∗ =
t

N∗ � γ

Γ2
=

√
4Γ2 − ∆2

Γ2
=

2	Γ
Γ2

, (8.33)

whence for N∗ < Γ2t/2	Γ the photon production is enhanced (IZE).
So far, we supposed ∆ < 2Γ. The effect becomes more spectacular for ∆ > 2Γ [see Eqs.

(8.22)]. Indeed, in this case the phase mismatch is so large that the down conversion process
is no longer exponential, but has an oscillatory behavior

〈a†s(t)as(t)〉 = |µ(t)|2 − 1 = cos2(|	Γ|t) +
∆2

4|	Γ|2 sin2(|	Γ|t) − 1 =
Γ2

|	Γ|2 sin2(|	Γ|t),(8.34)

which is bounded by

〈a†s(t)as(t)〉MAX =
Γ2

|	Γ|2 . (8.35)
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Figure 8.3: Outline of the nonlinear coupler

On the other hand, by cutting the crystal and removing the idler path, one gets

〈a(N)†
s a(N)

s 〉 =
(

1 +
Γ2t2

N2

)N

− 1 ∼ exp(Γ2τt) − 1, (8.36)

and an explosive exponential behavior is recovered (IZE). It is easy to check that τ∗ = 0, a
quite remarkable situation: Independently of the frequency of measurements N , one always
obtains an IZE: see Fig. 8.1(b) (a QZE is recovered only in the N → ∞ limit). Remember also
that Z cannot be defined, in this case. We will rigorously justify this interpretation in Chap.
10, by considering complete and incomplete Rabi oscillations as the limiting case of a truly
unstable system with a finite-width form factor.

We notice that the process described is always unitary and it actually makes no difference
whether any measurements on the idler modes are actually carried out or not. It is sufficient
that such measurements could in principle be made, as stressed in Sec. 7.3. We also emphasize
that the situation just analyzed is affected by (probability) repopulation effects like those
described in Sec. 7.2.4.

8.4 The nonlinear coupler: continuous observation

We now modify the system considered in the previous subsections and discuss continuous
observation. Consider a nonlinear coupler made up of two waveguides, through which four
modes, pump p, signal s, idler i, and auxiliary mode b propagate in the same direction, see Fig.
8.3. The nonlinear waveguide is again filled with a second-order nonlinear medium in which
ultra–violet pump photons are down-converted to signal and idler photons of lower frequency,
but in addition, the idler mode is allowed to exchange energy, e.g. by means of evanescent
waves, with the auxiliary mode b propagating through a linear medium (Řeháček, Peřina,
Facchi, Pascazio, and Mǐsta [2000]).

We assume again the validity of the SVEA approximation and we consider the linear cou-
pling weak enough so that it can be described by the coupled modes theory (Born approxi-
mation) (Stich and Bass [1985], Chap. 4; Yariv and Yeh [1984]; Saleh and Teich [1991], Sec.
7.4.B). With the help of the strong pump wave approximation the Hamiltonian of our problem
is simplified as follows

Hκ = H + Hmeas(κ), with Hmeas(κ) = κ(a†ib + aib
†) + ωbb

†b, (8.37)

where H is the down-converter Hamiltonian (8.2) and κ the linear coupling constant. By
introducing the slowly varying operators (with a slightly different choice for a′s and a′i, which
is somewhat more convenient for the following discussion)

a′s = eiωstas, a′i = ei(ωi−∆)tai, b′ = ei(ωb−∆)tb, (8.38)
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we get, instead of (8.5), the new time-independent Hamiltonian

Hκ = ∆a†iai + Γ(a†sa
†
i + asai) + ∆b†b + κ(a†ib + aib

†), (8.39)

where we assumed again that the frequency matching conditions, ωp−ωs−ωi = 0 and ωb = ωi,
hold and we suppressed all primes.

The dynamics of the nonlinear coupler (8.39) reduces to the dynamics of the spontaneous
down-conversion process (8.5) provided that κ = 0. In the case of phase matching ∆ = 0, the
average number of signal and idler photons originating in the crystal of length t, Eq. (8.7), is
an exponentially increasing function of t.

The behaviour of the down-conversion process changes completely when one of the two
down-converted modes (say, the idler mode) is coupled to an auxiliary mode via the linear
interaction, performing the continuous observation. The Hamiltonian (8.39) yields, when ∆ = 0
(phase matching),

ȧs = −iΓa†i ,
ȧi = −iΓa†s − iκb, (∆ = 0)
ḃ = −iκai (8.40)

and we are interested in the regime of weak nonlinearity, expressed by the condition κ > Γ.
Notice that two opposite tendencies compete in Eqs. (8.40): an elliptic structure, leading to
oscillatory behavior, governed by the coupling parameter κ,

äi = −κ2ai, b̈ = −κ2b (8.41)

and a hyperbolic structure, yielding exponential behavior, governed by the nonlinear parameter
Γ,

äs = Γ2as, äi = Γ2ai. (8.42)

The threshold between these two regimes occurs for Γ � κ.
The system of equations (8.40) is easily solved and the number of output signal photons,

which is the same as the number of pump photons decays, reads

〈a†s(t)as(t)〉 =
Γ2

χ2
sin2 χt +

κ2Γ2

χ4
(1 − cos χt)2, (8.43)

where χ=
√

κ2 − Γ2. Unlike the case of phase matched down-conversion (8.7), the exchange
of energy between all modes now becomes periodical when κ > Γ. As the linear coupling
becomes stronger, the period of the oscillations gets shorter and the amplitude of the oscillations
decreases as κ−2, namely

〈a†s(t)as(t)〉 ∼ Γ2

κ2
sin2 κt +

Γ2

κ2
(1 − cos κt)2 =

4Γ2

κ2
sin2 κt

2
(κ � Γ). (8.44)

For strong coupling the down-conversion process is completely frozen, the medium becomes
effectively linear and the pump photons propagate through it without “decay.” (In the regime
of very large κ, however, the coupled modes theory breaks down and some other experimental
realization of the Hamiltonian (8.39) should be found.) Notice that in this situation, even if
t is increased, the number of down-converted photons is bounded [compare with the opposite
case (8.7)]. This is QZE in the following sense: by increasing the coupling with the auxiliary
mode, a better “observation” of the idler mode (and therefore of the decay of the pump) is
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performed and the evolution is hindered. There is an intuitive explanation of this behavior:
since the linear coupling changes the phases of the amplitudes of the interacting modes, the
constructive interference yielding exponential increase of the converted energy (8.7) is destroyed
and down-conversion is frozen (see Sec. 8.4.2 in the following).

In agreement with the final part of Sec. 7.4.3, by comparing Eq. (8.44) with Eqs. (8.27)-
(8.29), we find that the linear coupling is effective as the square root of the number of pulsed
measurements, namely

κ =
√

2N

t
. (8.45)

Consider now the Hamiltonian (8.39) when κ = 0, describing down-conversion with phase
mismatch ∆. It is apparent that the coupling and the phase mismatch influence the down-
conversion process in the same way. Indeed for large values of the phase mismatch ∆ it is easy
to find from Eq. (8.34) that

〈a†s(t)as(t)〉 ∼ 4Γ2

∆2
sin2 ∆t

2
(∆ � Γ), (8.46)

which is to be compared with Eq. (8.44). The interesting interplay between coupling κ and
mismatch ∆ will be investigated in the following subsection.

8.4.1 Competition between the coupling and the mismatch

In the previous section we saw that the nonlinear interaction was affected by both linear
coupling and phase mismatch in the same way: the effectiveness of the nonlinear process drops
down under their action. In this section we show that when both disturbing elements are
present in the dynamics of the down-conversion process, the linear coupling can compensate
for the phase mismatch and vice versa, so that the probability of emission of the signal and
idler photons can almost return back to its undisturbed value.

We start from the equations of motion generated by the full interaction Hamiltonian (8.39)

ȧs = −iΓa†i ,
ȧi = −i∆ai − iΓa†s − iκb, (∆ �= 0, κ �= 0)
ḃ = −i∆b − iκai. (8.47)

Although it is easy to write down the explicit solution of the system (8.47), we shall provide
only a qualitative discussion of the solution. The main features are then best demonstrated
with the help of a figure. Eliminating idler and auxiliary mode variables from Eq. (8.47) we
get a differential equation of the third order for the annihilation operator of the signal mode.
Its characteristic polynomial (upon substitution as(t)=ξ exp(−iλt))

λ3 + 2∆λ2 + (∆2 − κ2 + Γ2)λ + Γ2∆, κ �= 0 (8.48)

is a cubic polynomial in λ with real coefficients. An oscillatory behaviour of the signal mode
occurs only provided the polynomial (8.48) has three real roots (causus irreducibilis), i.e. if its
determinant D obeys the condition D < 0. Expanding the determinant in the small nonlinear
coupling parameter Γ and keeping terms up to the second order in Γ we obtain

D ∼ −κ2

27
[
(κ2 − ∆2)2 − (5∆2 + 3κ2)Γ2

]
, Γ � ∆, κ. (8.49)

It is seen that a mismatched down-conversion behaves in either an oscillatory or a hyperbolic
way, depending on the strength of the coupling with the auxiliary mode. The values of κ lying
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Figure 8.4: (a) Mean number of signal photons 〈ns〉 behind the nonlinear medium as a function
of interaction length t and strength κ of the linear coupling. The nonlinear mismatch is ∆=10Γ.
(b) Interplay between linear coupling and phase mismatch. The mean number of signal photons
〈ns〉 behind the nonlinear medium of length Γt = 1.5 is shown vs the strength κ of the linear
coupling and the nonlinear mismatch ∆. A significant production of signal photons, viewed as
a “decay” of the initial state (vacuum), is a clear manifestation of an inverse Zeno effect.

at the boundary between these two types of dynamics are determined by solving the equation
D = 0. The only two nontrivial solutions are

κ1,2 =

√
∆2 +

3
2
Γ2 ±

√
8∆Γ. (8.50)

The case ∆ � Γ is of main interest here. Hence we can, eventually, drop Γ2 in Eq. (8.50). The
resulting intervals are

hyperbolic behaviour: κ ∈ 〈∆ −√
2Γ, ∆ +

√
2Γ〉

oscillatory behaviour: κ ∈ 〈0, ∆ −√
2Γ) ∪ (∆ +

√
2Γ,∞).

(8.51)

The behaviour of the mismatched down-conversion process is shown in Fig. 8.4(a) for a
particular choice of ∆. In absence of linear coupling the down-converted light shows oscillations
and the overall effectiveness of the nonlinear process is small due to the presence of phase
mismatch ∆. However, as we switch on the coupling between the idler and auxiliary mode, the
situation changes. By increasing the strength κ of the coupling the period of the oscillations
gets longer and their amplitude larger. When κ becomes larger than ∆−√

2Γ the oscillations
are no longer seen and the intensity of the signal beam starts to grow monotonously. We can
say that in this regime the initial nonlinear mismatch has been compensated by the coupling.

The interplay between nonlinear mismatch and linear coupling is illustrated in Fig. 8.4(b).
A significant production of signal photons is a clear manifestation of IZE. In accord with the
observations of Luis and Sánchez–Soto [1998] and Thun and Peřina [1998], such an IZE occurs
only provided a substantial phase mismatch is introduced in the process of down-conversion.
This is the condition (8.32) for having Z < 1 in the decay of the vacuum state. It is worth
comparing the interesting behavior seen in Fig. 8.4(b) with the Zeno and inverse Zeno effects
in a sliced nonlinear crystal discussed in Section 8.4. The coupling parameter κ here plays a
role similar to the number of slices N , so that one can state again that κ ∼ √

N in the sense
of Section 7.4.
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Figure 8.5: Energy scheme of a mismatched down-conversion process subject to linear coupling.
The bottom solid lines denote a resonant process.

8.4.2 Dressed modes

We now look for the modes dressed by the interaction κ. This will provide an alternative
interpretation and a more rigorous explanation of the result obtained above. Let us diagonalize
the Hamiltonian (8.39) with respect to the linear coupling. It is easy to see that in terms of
the dressed modes

c = (ai + b)/
√

2,

d = (ai − b)/
√

2, (8.52)

the Hamiltonian (8.39) reads

Hκ = ωcc
†c + ωdd

†d +
Γ√
2
(a†sc

† + asc) +
Γ√
2
(a†sd

† + asd), (8.53)

where the dressed energies are

ωc = ∆ + κ,

ωd = ∆ − κ. (8.54)

The coupling of the idler mode ai with the auxiliary mode b yields two dressed modes c
and d the pump photon can decay to. They are completely decoupled and due to their energy
shift (8.54), exhibit a phase mismatch ∆±κ. Since the phase mismatch effectively shortens the
time during which a fixed phase relation holds between the interacting beams, the amount of
converted energy is smaller than in the ideal case of perfectly phase matched interaction, ∆ = 0.
A strong linear coupling then makes the subsequent emissions of converted photons interfere
destructively and the nonlinear interaction is frozen. In this respect the disturbances caused
by the coupling and by frequently repeated measurements are similar and we can interpret
the phenomenon as a QZE. The energy scheme implied by the Hamiltonian (8.53) is shown
in Fig. 8.5. Under the influence of the coupling with the auxiliary mode b the mismatched
down-conversion splits into two dressed energy–shifted interactions. It is apparent that when
κ = ±∆ one of the two interactions becomes resonant. The other one is “counter-rotating” and
acquires a phase mismatch 2∆, yielding oscillations. Also, the amplitude of such oscillations
decreases as ∆−2 and the mode output becomes negligible compared to the other one. The use
of the rotating wave approximation in Eq. (8.53) is fully justified in this case and the system
is easily solved. The output signal intensity reads
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〈a†s(t)as(t)〉 = sinh2

(
Γ√
2
t

)
, (κ = ±∆) (∆t � 1) (8.55)

[compare with Eq. (8.7)]. The linear coupling to an auxiliary mode compensates for the phase
mismatch up to a change in the effective nonlinear coupling strength Γ → Γ/

√
2.

As a matter of fact, the condition κ = ±∆ can also be interpreted as a condition for achiev-
ing the so–called quasi–phase–matching in the nonlinear process. A quasi–phase–matched
regime of generation (Armstrong, Bloembergen, Ducuing and Pershan [1962]; Fejer, Magel,
Jundt and Byer [1992]; Chirkin and Volkov [1998]) is usually forced by creating an artifi-
cial lattice inside a nonlinear medium, e.g. by periodic modulation of the nonlinear coupling
coefficient. A periodic change of sign of Γ (rectangular modulation) yields the effective cou-
pling strength Γ → 2Γ/π, where, as before, Γ is the coupling strength of the phase–matched
interaction. Thus the continuous observation of the idler mode even gives a slightly better
enhancement of the decay rate than the most common quasi–phase–matching technique.

To summarize, the statement “the down-conversion process is mismatched” means that the
nonlinear process is out of resonance in the sense that the momentum of the decay products
(signal and idler photons) differs from the momentum carried by the pump photon before the
decay took place. When the linear interaction is switched on the system gets dressed and the
energy spectrum changes. A careful adjustment of the coupling strength κ makes then possible
to tune the nonlinear interaction back to resonance. In this way the probability of pump photon
decay can be greatly enhanced. This occurs when κ � ±∆ and explains why the inverse Zeno
effect takes place along the lines κ = ±∆ in Fig. 8.4(b).

In some sense, on very general grounds, the Zeno effect is a consequence of the new dynam-
ical features introduced by the coupling with an external agent that (through its interaction)
“looks closely” at the system. When this interaction can be effectively described as a projection
operator à la von Neumann, we obtain the usual formulation of the quantum Zeno effect in the
limit of very frequent measurements. In general, the description in terms of projection opera-
tors may not apply, but the dynamics can be modified in such a way that an interpretation in
terms of Zeno or inverse Zeno effect is appealing and intuitive. This is the main reason why
we think that examples of the type analyzed in this work call for a broader definition of Zeno
effects.



Chapter 9

Classical stabilization and quantum
Zeno effect

9.1 Introduction

An inverted pendulum is an ordinary classical pendulum initially prepared in the vertical up-
right position (Stephenson [1908]; Kapitza [1965], Vol. 2, p. 714; Arnold [1989], p. 121; Arnold
[1992], p. 263; Fenn, Bayne and Sinclair [1998], and references therein). This is normally an
unstable system, but can be made stable by imposing a vertical oscillatory motion to the pivot.
In a few words, when the pivot is accelerated upwards the motion is unstable, while when it
is accelerated downwards the motion can be stable: the periodic switch between these two
situations can be globally stable or unstable depending on the values of some physical param-
eters. In particular, when the frequency of the oscillation is higher than a certain threshold,
the system becomes stable. This result is a bit surprising at first sight, but can be given an
interesting explanation in terms of the so-called parametric resonance (Arnold [1989], p. 121;
Arnold [1992], p. 263).

In this chapter we shall study a system (Facchi, Nakazato, Pascazio, Peřina and Řeháček
[2000]) that can be viewed as a quantum version of the inverted pendulum. The system
to be considered makes use of down-conversion processes interspersed with zones where a
linear coupling takes place between the down-converted photon modes. It is similar to the
examples analyzed in the previous chapter and, in a certain sense, it combines the pulsed
measurement scheme of Sec. 8.3 with the scheme analyzed in Sec. 8.4, by letting a mode of
the field perform the “measurement” on another mode. When the coupling between the two
modes is large enough, the measurement becomes more effective and the dynamics gets stable:
this is just a manifestation of the quantum Zeno effect, which consists in the hindrance of the
quantum evolution caused by measurements. The very method of stabilization of the quantum
system analyzed here is one of its most interesting features and the configuration we discuss
is experimentally realizable in an optical laboratory. It is therefore of interest both for the
investigation of the stable/unstable borderline for classical and quantum mechanical systems
and their links with the quantum Zeno effect.

9.2 The system

We consider a laser field (pump) of frequency ωp, propagating through a nonlinear coupler.
The field is considered to be classical and the signal and idler modes are denoted by a and b,
respectively. As in the previous chapter, we will assume that all modes are monochromatic
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Figure 9.1: The system

and the amplitudes of the fields inside the coupler vary little during an optical period (SVEA
approximation). The effective (time-dependent) Hamiltonian reads (�=1)

H(t) = ωaa
†a + ωbb

†b + Hint(t), (9.1)

where the interaction Hamiltonian is given by

Hint(t) =
{

Γ(a†b†e−iωpt + abeiωpt) if 0 < t < τ1,
Ω(a†b + ab†) if τ1 < t < τ1 + τ2

(9.2)

and Hint(t + nT ) = Hint(t), with a period T = τ1 + τ2. The nonlinear coupling constant Γ
is proportional to the second-order nonlinear susceptibility of the medium χ(2) (Hong and
Mandel [1985]), Ω to the overlap between the two modes (Stich and Bass [1985], Chapter 4;
Saleh and Teich [1991], Section 7.4.B) and n = 0, 1, · · · , N is an integer.

We require the matching conditions ωp = ωa + ωb and ωa = ωb
1. The above Hamiltonian

describes phase-matched down-conversion processes, for nT < t < nT + τ1, interspersed with
linear interactions between signal and idler modes, for nT + τ1 < t < (n + 1)T . Since time is
equivalent, within our approximations, to propagation length, our system can be thought of
as a nonlinear crystal cut into N pieces, in each of which a, b photons are created in a down-
conversion process. Between these pieces, no new photons are created by the laser beam, but
the idler and signal modes (linearly) interact with each other, for instance via evanescent waves.
See Fig. 9.1. By introducing the slowly varying operators a′ = eiωata, b′ = eiωbtb, the free part
of the Hamiltonian (9.1) is transformed away and the Hamiltonian becomes (suppressing all
primes for simplicity)

H(t) =
{

Hu ≡ Γ(a†b† + ab) if 0 < t < τ1,
Hs ≡ Ω(a†b + ab†) if τ1 < t < τ1 + τ2,

(9.3)

with H(t + nT ) = H(t), yielding the equations of motion

ȧ = −i[a, H], ḃ = −i[b, H]. (9.4)

9.3 Quantum and classical maps

In terms of the variables

x± =
1
2
[(a + a†) ∓ (b + b†)], p± = − i

2
[(a − a†) ∓ (b − b†)], (9.5)

1The latter matching condition can be relaxed at the cost of introducing a second classical pump wave of
frequency ω′

p = ωa − ωb and the Hamiltonian Ω(a†be−iω′
pt + ab†eiω′

pt), for τ1 < t < τ1 + τ2, in (9.2). Physically,
this corresponds to replacing the linear exchange between modes a and b with the nonlinear process of difference
frequency generation.
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which satisfy the equal-time commutation relations [x+, p+] = [x−, p−] = i, others = 0, the
Hamiltonians become

Hu =
Γ
2

[(p2
+ − x2

+) − (p2
− − x2

−)], Hs =
Ω
2

[(p2
+ + x2

+) − (p2
− + x2

−)]. (9.6)

They describe two uncoupled oscillators, whose equations of motion are{
ẋ± = −i[x±, Hu] = ±Γp±
ṗ± = −i[p±, Hu] = ±Γx±

⇐⇒
{

ẍ± − Γ2x± = 0
p̈± − Γ2p± = 0

,

{
ẋ± = −i[x±, Hs] = ±Ωp±
ṗ± = −i[p±, Hs] = ∓Ωx±

⇐⇒
{

ẍ± + Ω2x± = 0
p̈± + Ω2p± = 0

. (9.7)

The first set of equations describes an unstable motion, the second set a stable one, around the
equilibrium point x = p = 0. Notice that the motion of (x−, p−) is the time-reversed version
of that of (x+, p+). This is due to the fact that the two motions are governed by Hamiltonians
with opposite sign in Eq. (9.6). Henceforth, we shall concentrate on the variables (x+, p+) [the
stability condition for (x−, p−) is identical]. The solutions are(

x+(τ1)
p+(τ1)

)
= Au

(
x+(0)
p+(0)

)
, Au ≡

(
cosh(Γτ1) sinh(Γτ1)
sinh(Γτ1) cosh(Γτ1)

)
, (9.8)

for the period governed by Hu and(
x+(τ2)
p+(τ2)

)
= As

(
x+(0)
p+(0)

)
, As ≡

(
cos(Ωτ2) sin(Ωτ2)
− sin(Ωτ2) cos(Ωτ2)

)
, (9.9)

for that governed by Hs. Remember that T = τ1 + τ2 is the period of the Hamiltonian H(t) in
(9.3).

The dynamics engendered by (9.3) at time t = NT (remember that n = 1, . . . , N) yields
therefore (

x+(NT )
p+(NT )

)
= AN

(
x+(0)
p+(0)

)
, A ≡ AsAu. (9.10)

These equations of motion have the same structure of a classical inverted pendulum with a
vertically oscillating point of suspension (Arnold [1989], p. 121; Arnold [1992], p. 263), whose
classical map is given by the product of two matrices Acl ≡ A2A1, with

A1 ≡
(

cosh(k1τ) k−1
1 sinh(k1τ)

k1 sinh(k1τ) cosh(k1τ)

)
, A2 ≡

(
cos(k2τ) k−1

2 sin(k2τ)
−k2 sin(k2τ) cos(k2τ)

)
, (9.11)

where the parameters k1 and k2 are subject to the physical condition k1 > k2 > 0. Observe
that our system has more freedoms: τ1 and τ2 are in general different and the parameters Ω
and Γ do not have to obey any additional constraint.

9.4 Stability vs Zeno

The global motion is stable or unstable, according to the value of |TrA| � 2 (Arnold [1989], p.
121; Arnold [1992], p. 263). The stability condition |TrA| < 2 reads

|TrA|/2 = | cos(Ωτ2) cosh(Γτ1)| < 1. (9.12)
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Figure 9.2: Stability condition (9.12) in parameter space. a) |TrA|/2 vs Ωτ2 and Γτ1; b)
Stability (Zeno) region.

This relation is of general validity and holds for any value of the parameters Ω, Γ and τi. The
value of |TrA|/2 is shown in Fig. 9.2a). A small-τ expansion (the physically relevant regime:
see final discussion) yields

1 − (Ω2τ2
2 − Γ2τ2

1 )/2 + O(τ4) < 1, (9.13)

so that the system is stable for Ωτ2 > Γτ1 when τ2 → 0.
It is interesting to discuss the stability condition just obtained for the (x, p) variables in

terms of the number of down-converted photons. To this end, let us look at some limiting cases.
[Needless to say, the analysis could be done from the outset in terms of na and nb and would
yield an identical stability condition (9.12).] When Ω = 0 in (9.3) and following equations, only
the down-conversion process takes place and both na = a†a and nb = b†b grow exponentially
with time. There is an exponential energy transfer from the pump to the a, b modes. On the
other hand, if Γ = 0 and the system is prepared in any initial state (except vacuum, whose
evolution is trivial), na and nb oscillate in such a way that their sum is conserved (this is
due to the property [na + nb, Hs] = 0). If both Ω and Γ are nonvanishing, these two opposite
tendencies (exponential photon production and bounded oscillations) compete in an interesting
way. When Γτ1 > Ωτ2, in the limit τ1 → 0, the exponential photon production dominates and
there is no way of halting (or even hindering) this process: the (external) pump transmits
energy to the a, b modes. In terms of the (x, p) variables, the stability condition (9.13) cannot
be fulfilled and the oscillator variables move exponentially away from the origin. The opposite
situation Ωτ2 > Γτ1 is very interesting and displays some quite nontrivial aspects: The motion
becomes stable and the pump does not transmit energy to the a, b modes anymore (the two
modes oscillate).

For arbitrary values of all parameters, the action of Hs can be framed in our theoretical
scheme as a measurement, in the following sense2: the a mode performs an observation on
the b mode and vice versa, the photonic states get entangled and information on one mode is
encoded in the state of the other one. For example, the condition Ωτ2 = π/2 yields an “ideal
measurement” of one mode on the other one, for in such a case the states |1a, 0b〉 ↔ |0a, 1b〉
evolve into each other. From this viewpoint, the stabilization regime just investigated is a

2It is interesting to notice that for infinitesimal τ1, τ2 the effective Hamiltonian of the system becomes just the
sum of the unstable and stable Hamiltonians (9.3). Such Hamiltonians are well known in the field of quantum
nondemolition measurements: (Milburn, Lane and Walls [1983]).
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manifestation of QZE, in that the measurements essentially affect and change the original
dynamics. In fact, if one considers Ωτ2 as the “strength” of the measurement, by increasing
(at fixed Ωτ2) the frequency of measurements, i.e. by letting τ1 → 0, the system moves
down along a vertical line in Fig. 9.2b) and enters a region of stability (Zeno region) from a
region of instability. (Notice that it is not necessary to consider the τ1 = 0 limit (“continuous
measurement”) in order to stabilize the dynamics; there is a threshold, given by the curve
in Fig. 9.2 b), at which stability and instability interchange.) Analogously, at fixed Γτ1, by
moving along a horizontal line Ωτ2 → π/2 the system enters a region of stability because the
measurement becomes more “effective:” indeed, as emphasized before, Ωτ2 = π/2 is a π-pulse
condition and leads to a very effective measurement of one mode on the other one. It is worth
stressing that even an instantaneous measurement (projection) can be obtained by letting
τ2 → 0, while keeping Ωτ2 finite (the so-called impulse approximation in quantum mechanics),
and in this case our system yields the standard formulation of QZE.

A final comment is in order. Notice that, as we have seen in the previous chapter, a quantum
Zeno effect is obtained when the down-conversion behavior is still explosive and is manifested
in the reduction of the down-conversion rate. On the other hand, when the coupling with the
measuring apparatus is increased enough, it can happen that the dynamics becomes oscillatory,
and this strictly corresponds to the classical stabilization we found here. In other words, the
real Zeno region of the system is larger and contains the region shown in Fig. 9.2 b). Therefore
we can say that, rather surprisingly, the core of the Zeno region consists of a region of operator
stability with a purely classical origin. It would be very interesting to understand how general
is this surprising property.

9.5 Single-mode version

It is interesting (and convenient from an experimental perspective) to consider a single-mode
version of the Hamiltonian (9.3), in which the down-conversion process is replaced by a sub-
harmonic generation process (degenerated parametric down conversion). The single-mode ef-
fective Hamiltonian reads

H(t) = ωa†a + Hint(t), (9.14)

where the interaction Hamiltonians describing the unstable and stable part of the device are

Hint =
{

(Γ/2)(a†2e−2iωt + a2e2iωt) if 0 < t < τ1,
(Ω/2)(a†a + aa†) if τ1 < t < τ1 + τ2,

(9.15)

respectively and Hint(t+nT ) = Hint(t). By introducing the slowly varying operator a′ = eiωata,
the free part of the Hamiltonian (9.14) is transformed away and the Hamiltonian becomes
(suppressing again all primes)

H(t) =
{

Hu ≡ (Γ/2)(a†2 + a2) if 0 < t < τ1,
Hs ≡ (Ω/2)(a†a + aa†) if τ1 < t < τ1 + τ2,

(9.16)

under which the equation of motion ȧ = −i[a, H] follows.
In terms of the variables x = (a + a†)/

√
2, p = −i(a − a†)/

√
2 the Hamiltonians read

Hu =
Γ
2

(x2 − p2), Hs =
Ω
2

(x2 + p2). (9.17)

These Hamiltonians are identical to the two-mode versions (9.6) describing the decoupled mode
(x+, p+), apart from the substitution Γ → −Γ. Hence, the stability condition is given again
by Eq. (9.12), which is even in Γ. Also in this case one can talk of quantum Zeno, but the
“measurement” is performed by the single mode on itself.
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Figure 9.3: Experimental setup. (a) Possible experimental realization of the Hamiltonian
(9.1)-(9.2). NL, nonlinear crystal; Mi, (i = 1, 2), semitransparent mirrors; Di, detectors; PBS,
polarizing beamsplitter. (b) Possible experimental realization of the Hamiltonian (9.14)-(9.15).
NLi(i = 1, . . . , N), nonlinear crystals; PSi, phase shifters; D3, detector. The dotted lines
indicate which elements are computer controllable.

9.6 Experimental setup

It is interesting to discuss a possible experimental realization of the two situations considered in
this Letter. The experimental arrangement sketched in Fig. 9.3(a) corresponds to the two-mode
(nondegenerate) case, whereas that sketched in Fig. 9.3(b) to the single-mode (degenerate)
case. In Fig. 9.3(a) a type II down-conversion process generates two orthogonally polarized
beams of down-converted light of the same frequency. The two beams are mixed using a
polarizing beamsplitter PBS. The stable part of the evolution of the system is realized by two
successive passes of the beams through the beamsplitter. Its reflection coefficient, and hence
Ωτ2, is adjusted by rotating it. Mirrors and semitransparent mirrors keep sending the beams
through the crystal many times. A successful stabilization of the unstable system is manifested
in the decrease of the rate of photon registrations at detectors D1, D2 at a certain position
of the beamsplitter PBS. A different setup is sketched in Fig. 9.3(b), where N processes of
subharmonic generation take place in N nonlinear crystals with controlled phase shifters in
between them. For appropriately chosen phase shifts θi = (Ωτ2 + Ci) mod 2π, where Ci are
N−1 phase shifts intrinsic to the actual experimental arrangement (given by distances between
crystals, etc.), the generation of the subharmonic wave is suppressed.

In order to give a reasonable estimate of the value of the coupling constant Γ, consider that,
due to the correspondence principle, the gain of classical and quantum parametric amplifiers
must be the same; therefore one can use the well-known classical formula for the nonlinear
coupling parameter Γc governing the space evolution inside the nonlinear medium, which in
MKS units reads

Γ2
c =

η3

2
χ(2)2ωaωbIp. (9.18)

Here η is the impedance of the medium, χ(2) is the second-order susceptibility, ωa and ωb are
the frequencies of modes a and b, respectively, and Ip is the intensity of the pump beam. The
following numerical values could be typical for a performed experiment: η ≈ 220Ω, χ(2) ≈
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2 × 10−23 CV−2, ωa = ωb ≈ 3 × 1015s−1 and Ip ≈ 105Wm−2. Hence the nonlinear coupling
parameter is of the order of Γc ≈ 0.1m−1. Reasonable lengths of nonlinear crystals are of the
order of l ≈ 10−2m, so that the dimensionless product of interest can be estimated to be about

Γτ1 = Γcl ≈ 0.001. (9.19)

This means that the down-converted beam(s) ought to pass the nonlinear region many times
in order to show an explosive increase of its (their) intensity(ies). This could be achieved by
placing the nonlinear crystal in a resonator as shown in Fig. 9.3(a). However, in order to
observe a significant change of the dynamics of the process in question due to the performed
stabilization, a few passes might already turn out to be sufficient.

In conclusion, we have discussed a striking quantum-optical analogue of a well-known clas-
sical unstable system. By interspersing the nonlinear regions with regions of suitably chosen
linear evolution, the global dynamics of our system can become stable and the generation of
down-converted light can be strongly suppressed. This is a manifestation of the quantum Zeno
effect: by increasing the strength of the observation performed by the a mode on the b mode
and vice versa the evolution is frozen and the system tends to remain in its initial state. As
all Zeno effects, this phenomenon is somewhat counterintuitive: in the setups in Fig. 9.3, even
though the beams are forced to go through the crystal many times, no exponential photon
production takes place. The experiment seems feasible and its realization would illustrate an
interesting aspect related to the stabilization of a seemingly explosive behavior. Moreover,
from the theoretical point of view, we found that, at the least in this particular model, the core
of the quantum Zeno region in parameter space is of purely classical origin. This is another
unexpected feature of the Zeno effects.





Chapter 10

The role of the form factor

10.1 Introduction

We consider the QZE and IZE for bona fide unstable systems. This is a more complicated
problem, because it requires the use of quantum field theoretical techniques. The study of a
solvable (but significant) example will enable us to better understand the role played by the
Weisskopf-Wigner approximation introduced in Sec. 4.6.3. Moreover, we shall see that for an
unstable system the form factors of the interaction play a fundamental role and determine
the occurrence of a Zeno or an inverse Zeno regime, depending of the physical parameters
describing the system. We finally investigate the intriguing possibility that the lifetime of an
unstable quantum system be modified by the presence of a very intense electromagnetic field.
We shall look at the temporal behavior of a three-level system (such as an atom or a molecule)
shined by an intense laser field (Pascazio and Facchi [1999]; Facchi and Pascazio [2000a]) and
see that, for physically sensible values of the intensity of the laser, the decay can be enhanced.
This will be interpreted as an inverse quantum Zeno effect.

10.2 Zeno–inverse Zeno transition

We will now study the Zeno–inverse Zeno transition in greater detail, by making use of a
quantum field theoretical framework, and discuss the primary role played by the form factors
of the interaction. The reader should refer to the discussion of Sec. 7.2.3, where we introduced
the effective decay rate

γeff(τ) ≡ −1
τ

log P (τ) = −2
τ

log |A(τ)| = −2
τ
Re
[
logA(τ)

]
, (10.1)

which is a linear function of τ for sufficiently small values of τ (inside the Zeno region)

γeff(τ) ∼ τ

τ2
Z

, for τ � 1/Λ, (10.2)

with τ−2
Z ≡ 〈a|H2

int|a〉, and becomes, with good approximation, a constant equal to the natural
decay rate at intermediate times

γeff(τ) � γ for τ � 1/Λ. (10.3)

The transition between Zeno and inverse Zeno occurs at the geometrical intersection τ∗ between
the curves P (t) and e−γt, solution of the equation

γeff(τ∗) = γ , (10.4)
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Figure 10.1: Effective decay rate γeff(τ) for the two-pole model (10.5), for λ = 0.1 and different
values of the ratio |ωa|/Λ (indicated). The horizontal line shows the “natural” decay rate γ:
its intersection with γeff(τ) yields the solution τ∗ of Eq. (10.4). The asymptotic value of all
curves is γ, as expected. A Zeno (inverse Zeno) effect is obtained for τ < τ∗ (τ > τ∗). Notice
the presence of a linear region for small values of τ and observe that τ∗ does not belong to such
linear region as the ratio |ωa|/Λ decreases. Above a certain threshold, given by Eq. (10.7) in
the weak coupling limit of the model (and in general by the condition Z = 1), Eq. (10.4) has
no finite solutions: only a Zeno effect is realizable in such a case.

as shown in Fig. 7.3.
Consider for example the two-pole model studied in detail in Sec. 5.3, whose survival am-

plitude is given by Eq. (5.19)

A(t) =
ωa + ∆ + i(Λ − γ/2)
ωa + 2∆ + i(Λ − γ)

e−i(ωa+∆)te−γt/2 +
∆ − iγ/2

ωa + 2∆ + i(Λ − γ)
ei∆te−(Λ−γ/2)t, (10.5)

with ∆ and γ given by Eq. (5.17). By plugging (10.5) into (10.1) one obtains the effective
decay rate, whose behavior is displayed in Fig. 10.1 for different values of the ratio |ωa|/Λ.
These curves show that for large values of |ωa| (in units Λ) there is indeed a transition from a
Zeno to an inverse Zeno (Heraclitus) behavior: such a transition occurs at τ = τ∗, solution of
Eq. (10.4). However, for small values of |ωa|, such a solution ceases to exist.

The determination of the critical value of |ωa| for which the Zeno–inverse Zeno transition
ceases to take place discloses an interesting aspect of this issue. The problem can be discussed in
general, but for the sake of simplicity we consider the weak coupling limit (small λ) considered
in Eqs. (5.24)-(5.25). According to the geometrical theorem proved in Sec. 7.2.3, a sufficient
condition for the system to exhibit an Zeno–inverse Zeno transition is Z < 1, with Z the wave
function renormalization. In our case, by making use of Eq. (5.25), this condition reads

Z = |1−R|2 = 1−2
λ2

ω2
a + Λ2

Re
[
ω0 − iΛ
ωa + iΛ

]
+O(λ4) = 1−2

λ2

ω2
a + Λ2

ω2
a − Λ2

ω2
a + Λ2

+O(λ4) < 1, (10.6)

namely
ω2

a > Λ2 + O(λ2). (10.7)

The meaning of this relation is the following: a sufficient condition to obtain a Zeno–inverse
Zeno transition is that the energy of the decaying state be placed asymetrically with respect
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to the peak of the form factor (bandwidth) (see Fig. 5.1). If, on the other hand, ωa � 0 (center
of the bandwidth), no transition time τ∗ exists (see Fig. 10.1) and only a QZE is possible: this
is the case analyzed in Fig. 7.4(a).

There is more: Equation (10.5) yields a time scale. Indeed, from the definitions of the
quantities in (5.17) one gets γ/2 < Λ − γ/2, so that the second exponential in (10.5) vanishes
more quickly than the first one 1. If the coupling is weak, since γ = O(λ2), the second term
is very rapidly damped so that, after a short initial quadratic region of duration Λ−1, the
decay becomes purely exponential with decay rate γ. For τ � 1/Λ (which is, by definition, the
extension of the quadratic Zeno region), we can use the linear approximation (10.2). When it
applies up to the intersection (i.e., |ωa| � Λ) one gets

τ∗ � γτ2
Z. (10.8)

When ωa gets closer to the peak of the form factor, the linear approximation does not hold and
the r.h.s. of the above expression yields a lower bound to the transition time τ∗. In this case
the solution τ∗ of the equation (10.4) becomes larger than the approximation (10.8), eventually
going to infinity when the condition (10.7) is no longer valid. In such a case, only a QZE is
possible. The quantity γτ2

Z is also relevant in different contexts and has been called “jump
time” by Schulman [1998].

The conclusions obtained for the two-pole model (10.5) are of general validity. In general,
in the Lee Hamiltonian (5.9), for any g(ω), we assume that ωa > ωg, in order to get an
unstable system. The matrix elements of the interaction Hamiltonian depend of course on
the physical model considered. However, for physically relevant situations, the interaction
smoothly vanishes for small values of ω − ωg and quickly drops to zero for ω > Λ, a frequency
cutoff related to the size of the decaying system and the characteristics of the environment.
This is true both for cavities, as well as for typical EM decay processes in vacuum, where the
bandwidth Λ � 1014 − 1018s−1 is given by an inverse characteristic length (say, of the order of
Bohr radius) and is much larger than the natural decay rate γ � 107 − 109s−1, as we have seen
in Sec. 5.5. (See also Fig. 5.2.)

For roughly bell-shaped form factors all the conclusions drawn for the Lorentzian model
remain valid. The main role is played by the ratio ωag/Λ, with ωag = ωa − ωg the available
energy. In general, the asymmetry condition ωag < Λ is satisfied if the energy ωa of the unstable
state is sufficiently close to the threshold. In fact, from the definition of the Zeno time τZ one
has

1
τ2
Z

=
∫

dω g2(ω) = g2(ω̄)Λ, (10.9)

where ω̄ is defined by this relation and is of order ωmax, the energy at which g(ω) takes the
maximum value. For ωa sufficiently close to the threshold ωg one has g(ω̄) � g(ωa), the time
scale γτ2

Z is well within the short-time regime, namely

γτ2
Z =

2πg2(ωa)
g2(ω̄)Λ

� 1
Λ

, (10.10)

where the Fermi golden rule γ = 2πg2(ωa) has been used, and therefore the estimate (10.8) is
valid.

On the other hand, for a system such that ωag � Λ (or, better, ωa � center of the band-
width), τ∗ does not necessarily exist and usually only a Zeno effect can occur. In this context,
it is useful and interesting to remember that the Lorentzian form factor (5.13) yields, in the

1 The two time scales become comparable only in the strong coupling regime: γ → Λ as λ → ∞ .
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limit g2(ω) = λ2δ(ω − ωa), the physics of a two level system. This is also true in the general
case, for a roughly symmetric form factor, when the bandwidth Λ → 0. In such a case, if
ωa = 0 (initial state energy at the center of the form factor), the survival probability oscillates
between 1 and 0 and only a QZE is possible. On the other hand, if ωa �= 0 (initial state energy
strongly asymmetric with respect to the form factor of “width” Λ = 0) the initial state never
decays completely. By measuring the system, the survival probability will vanish exponentially,
independently of the strength of observation, whence only an IZE is possible. This is what we
found for a down-conversion process with a sufficiently large phase mismatch at the end of Sec.
8.3.

If one consider the large bandwidth limit of the two-pole model, which is equivalent to
a Weisskopf-Wigner approximation, the propagator (5.27) has only a simple pole and the
survival probability (5.28) is purely exponential. Therefore measurements cannot modify the
free behavior. Indeed, the conditions for occurrence of a Zeno effect are always ascribable to
the presence of an initial non-exponential behavior of the survival probability, which is caused
by a propagator exhibiting a richer structure than a simple pole in the complex energy plane.

Some final comments are in order. The present analysis has been performed in terms of
instantaneous measurements, according to the Copenhagen prescription. Our starting point
was indeed Eq. (7.22). We can consider, instead, a continuous measurement process. This is
accomplished, for instance, by adding to (5.9) the following Hamiltonian

Hmeas(Γ) =

√
Γ
2π

∫
dωdω′ (|ω〉〈ω, ω′| + |ω, ω′〉〈ω|) +

∫
dω′ |ω′〉〈ω′| : (10.11)

as soon as a photon is emitted, it is coupled to another boson of frequency ω′ (notice that the
coupling has no form factor). By following a reasoning identical to that of Section 7.4.2, one
can show that the dynamics of the Hamitonian (5.9) and (10.11), in the relevant subspace, is
generated by

H = ωa|a〉〈a| +
∫

dω (ω − iΓ/2)|ω〉〈ω| +
∫

dω g(ω)(|a〉〈ω| + |ω〉〈a|), (10.12)

and an effective continuous observation on the system is obtained by increasing Γ. Indeed it
is easy to see that the only effect due to Γ in Eq. (10.12) is the substitution of Σa(E) with
Σa(E + iΓ/2) in Eq. (5.6), namely,

Ga(E) =
1

E − ωa − Σa(E + iΓ/2)
. (10.13)

For large values of Γ, i.e., for very quick response of the apparatus, the self-energy function
(5.11) has the asymptotic behavior

Σa

(
E + i

Γ
2

)
∼ −i

2
Γ

∫
dω g2(ω) = −i

2
Γτ2

Z

, for Γ → ∞. (10.14)

[Notice that Γ → ∞ in (10.14) means Γ � Λ, the frequency cutoff of the form factor.] In this
case the propagator (10.13) reads

Ga(E) ∼ 1
E − ωa + iγeff(Γ)/2

, for Γ → ∞ (10.15)

and the survival probability decays with the effective exponential rate (valid for Γ � Λ)

γeff(Γ) =
4

τ2
ZΓ

. (10.16)
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The effective rate (10.16) is the same result (7.65) we found for the particular model considered
in Sec. 7.4.2. We see that it is a general result. The equivalence (7.66) is therefore of general
validity. More to this, we have here a scale for the validity of the linear approximation (10.2)
for γeff : the linear term in the asymptotic expansion (10.14) approximates well the self-energy
function only for values of Γ that are larger than the bandwidth Λ. For smaller values of Γ one
has to take into account the nonlinearities arising from the successive terms in the expansion.

Note that the flat-band case (5.27), yielding a purely exponential decay, is unaffected also
by the continuous measurement. Indeed in that case Σa(E) = −iγ/2 is a constant independent
of E, whence Σa(E + iΓ/2) = Σa(E) is independent of Γ. The same happens if one considers
the Weisskopf-Wigner approximation (4.84): in this case one neglects the whole structure of
the propagator in the complex energy plane and retains only the dominant pole near the real
axis. This yields, as we have seen, a self-energy function which does not depends on energy
and a purely exponential decay (without any deviations), that cannot be modified by any
observations.

Notice that the very existence of a QZE is related to the existence of an initial quadratic
behavior of the survival probability, i.e. to a finite value of τZ. As Eq. (5.38) shows, this is
related to the convergence of the integral of the form factor. In general, in a quantum field
theoretical framework, the Zeno time τZ (the inverse of the second moment of the Hamiltonian)
cannot be defined, because it vanishes for pointlike particles. It becomes necessary to introduce
form factors and cutoffs and use more sophisticated techniques. These problems will not be
discussed here. See Bernardini, Maiani and Testa [1993]; Facchi and Pascazio [1998]; Joichi,
Matsumoto and Yoshimura [1998]; Maiani and Testa [1998]; Alvarez-Estrada and Sánchez-
Gómez [1999] and Facchi and Pascazio [1999b].

10.3 Three-level system in a laser field

We shall now investigate a realistic situation in which a continuous observation performed by a
laser field leads to an inverse Zeno effect, in a way very similar to that outlined in Sec. 7.4. We
shall look at the temporal behavior of a three-level system (such as an atom or a molecule),
where level |1〉 is the ground state and levels |2〉, |3〉 are two excited states. (See fig. 10.2.)
The system is initially prepared in level |2〉 and if it follows its natural evolution, it will decay
to level |1〉. The decay will be (approximately) exponential and characterized by a certain
lifetime, that can be calculated from the Fermi Golden Rule. But if one shines on the system
an intense laser field, tuned at the transition frequency 3-1, the evolution can be different.
This problem was investigated by Mihokova, Pascazio and Schulman [1997], who found that
the lifetime of the initial state depends on the intensity of the laser field. We shall see that
for physically sensible values of the intensity of the laser, the decay is enhanced. This can be
viewed as an inverse quantum Zeno effect (Facchi and Pascazio [2000a]; Pascazio and Facchi
[1999]). An important role will be played by the form factor of the interaction Hamiltonian.

10.3.1 The system

We consider the Hamiltonian (� = c = 1)

H = H0 + Hint

= ω0|2〉〈2| + Ω0|3〉〈3| +
∑
k,λ

ωka
†
kλakλ

+
∑
k,λ

(
φkλa†kλ|1〉〈2| + φ∗

kλakλ|2〉〈1|
)

+
∑
k,λ

(
Φkλa†kλ|1〉〈3| + Φ∗

kλakλ|3〉〈1|
)

,(10.17)
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Figure 10.2: Level configuration

where the first two terms are the free Hamiltonian of the 3-level atom (whose states |i〉 (i =
1, 2, 3) have energies E1 = 0, ω0 = E2 − E1 > 0, Ω0 = E3 − E1 > 0), the third term is the free
Hamiltonian of the EM field and the last two terms describe the 1 ↔ 2 and 1 ↔ 3 transitions
in the rotating wave approximation, respectively. (See Fig. 10.2.) States |2〉 and |3〉 are chosen
so that no transition between them is possible (e.g., because of selection rules). The matrix
elements of the interaction Hamiltonian read

φkλ =
e√

2ε0V ω

∫
d3x e−ik·xε∗kλ · j12(x), Φkλ =

e√
2ε0V ω

∫
d3x e−ik·xε∗kλ · j13(x),(10.18)

where −e is the electron charge, ε0 the vacuum permittivity, V the volume of the box, ω = |k|,
εkλ the photon polarization and jfi the transition current of the radiating system. For example,
in the case of an electron in an external field, we have jfi = ψ†

f αψi where ψi and ψf are the
wavefunctions of the initial and final state, respectively, and α is the vector of Dirac matrices.
For the sake of generality we are using relativistic matrix elements, but our analysis can also
be performed with nonrelativistic ones jfi = ψ∗

f pψi/me, where p/me is the electron velocity.
We shall concentrate our attention on a 3-level system bathed in a continuous laser beam,

whose photons have momentum k0 (|k0| = Ω0) and polarization λ0, and assume, throughout
this paper, that

φk0λ0 = 0, (10.19)

i.e., the laser does not interact with state |2〉. The laser is in a coherent state |α0〉 with a very
large average number N̄0 = |α0|2 of k0-photons in volume V [we will eventually consider the
thermodynamical limit; see Eq. (10.37)]. In the picture defined by the unitary operator

T (t) = exp
(
α∗

0e
iΩ0tak0λ0 − α0e

−iΩ0ta†k0λ0

)
, (10.20)

the k0 mode is initially in the vacuum state (Mollow [1975]; Cohen-Tannoudji, Dupont-Roc
and Grynberg [1998]) and the Hamiltonian becomes (N̄0 � 1)

H � ω0|2〉〈2| + Ω0|3〉〈3| +
∑
k,λ

ωka
†
kλakλ +

∑
k,λ

′ (
φkλa†kλ|1〉〈2| + φ∗

kλakλ|2〉〈1|
)

+
(
Φk0λ0α

∗
0e

iΩ0t|1〉〈3| + Φ∗
k0λ0

α0e
−iΩ0t|3〉〈1|) , (10.21)

where a prime means that the summation does not include (k0, λ0) [due to hypothesis (10.19)].
In the above equations and henceforth, the vector |i; nkλ〉 represents a state in which the atom
is in state |i〉 and the electromagnetic field in a state with nkλ (k, λ)-photons. We shall analyze



10.3 Three-level system in a laser field 121

the behavior of the system under the action of a continuous laser beam of high intensity. Under
these conditions, level configurations similar to that of Fig. 10.2 give rise to the phenomenon of
induced transparency (Tewari and Agarwal [1986]; Harris, Field and Imamoğlu [1990]; Boller,
Imamoğlu and Harris [1991]; Field, Hahn and Harris [1991]; Zhu, Narducci and Scully [1995];
Zhu and Scully [1996]; Huang, Zhu, Zubairy and Scully [1996]), for laser beams of sufficiently
high intensities. Our interest, however, will be focused on unstable initial states: we shall study
the temporal behavior of level |2〉 when the system is shined by a continuous laser of intensity
comparable to those used to obtain induced transparency.

Note that the excitation number operator

N = |2〉〈2| +
∑
k,λ

′
a†kλakλ, (10.22)

commutes with the Hamiltonian
[H,N ] = 0. (10.23)

As we have seen Sec. 5.5.2, the Hilbert space splits into Tamm-Dancoff sectors that are invariant
under the action of the Hamiltonian: in our case, the system evolves in the subspace labeled
by the eigenvalue N = 1 and the analysis can be restricted to this sector.

10.3.2 Schrödinger equation and temporal evolution

We will study the temporal evolution by solving the time-dependent Schrödinger equation

i
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉, (10.24)

where the states of the total system in the sector N = 1 read

|ψ(t)〉 = A(t)|2; 0〉 +
∑
k,λ

′
ykλ(t)|1; 1kλ〉 +

∑
k,λ

′
zkλ(t)e−iΩ0t|3; 1kλ〉 (10.25)

and are normalized:

〈ψ(t)|ψ(t)〉 = |A(t)|2 +
∑
k,λ

′|yk,λ(t)|2 +
∑
k,λ

′|zk,λ(t)|2 = 1. (∀t) (10.26)

By inserting (10.25) in (10.24) one obtains the equations of motion

i Ȧ(t) = ω0A(t) +
∑
k,λ

′
φ∗

kλykλ(t),

i ẏkλ(t) = φkλA(t) + ωkykλ(t) + α∗
0Φk0λ0zkλ(t),

i żkλ(t) = α0Φ∗
k0λ0

ykλ(t) + ωkzkλ(t), (10.27)

where a dot denotes time derivative. At time t = 0 we prepare our system in the state

|ψ(0)〉 = |2; 0〉 ⇔ A(0) = 1, ykλ(0) = 0, zkλ(0) = 0. (10.28)

By Fourier-Laplace transforming the system of differential equations (10.27) and incorpo-
rating the initial conditions (10.28) the solution reads

Ga(E) = Ã(E) =
1

E − ω0 − Σ(B, E)
, (10.29)

ỹkλ(E) =
φkλ(E − ωk)

(E − ωk)2 − B2
Ga(E), (10.30)

z̃kλ(E) =

√
N̄0Φ∗

k0λ0
φkλ

(E − ωk)2 − B2
Ga(E), (10.31)
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with
Σ(B, E) =

∑
k,λ

|φkλ|2 E − ωk

(E − ωk)2 − B2
(10.32)

and where
B2 = N̄0 |Φk0λ0 |2 (10.33)

is proportional to the intensity of the laser field and can be viewed as the strength of the
observation performed by the laser beam on level |2〉 (in the sense of Sec. 7.4). Note that the
coupling B is related to the Rabi frequency by the simple relation B = ΩRabi/2.

In the continuum limit (V → ∞), the matrix elements scale as follows

lim
V →∞

V ω2

(2π)3
∑

λ

∫
dΩ|φkλ|2 ≡ g2ω0χ

2(ω), (10.34)

where Ω is the solid angle. The (dimensionless) function χ(ω) and coupling constant g have
the following general properties (Facchi and Pascazio [2000a])

χ2(ω) ∝
{

ω2j∓1 if ω � Λ
ω−β if ω � Λ

, (10.35)

g2 = α(ω0/Λ)2j+1∓1, (10.36)

where j is the total angular momentum of the photon emitted in the 2 → 1 transition, ∓ rep-
resent electric and magnetic transitions, respectively, β(> 1) is a constant, α the fine structure
constant and Λ a natural cutoff (of the order of the inverse size of the emitting system, e.g.
the Bohr radius for an atom), that can be explicitly evaluated and determines the range of the
atomic or molecular form factor (Berestetskii, Lifshits and Pitaevskii [1982]; Moses [1972a];
Moses [1972b]; Moses [1973]; Seke [1994a]; Seke [1994b]).

In order to scale the quantity B, we take the limit of very large cavity, by keeping the
density of Ω0-photons in the cavity constant:

V → ∞, N̄0 → ∞, with
N̄0

V
= n0 = const (10.37)

and obtain from (10.33)

B2 = n0V |Φk0λ0 |2 = (2π)3n0|ϕλ0(k0)|2, (10.38)

where ϕ ≡ ΦV 1/2/(2π)3/2 is the scaled matrix element of the 1-3 transition. If the 1-3 transition
is of the dipole type, the above formula reads

B2 = 2παΩ0|ε∗k0λ0
· x13|2n0, (10.39)

where x13 is the dipole matrix element.
In terms of laser power P and laser spot area A, Eq. (10.39) reads

B2 =
P

cA

λ3
L

16π2
(�Γ13) = 132

Pλ3
L

A
(�Γ13) eV2, (10.40)

where P is expressed in Watt, λL (laser wavelength) in µm, A in µm2 and �Γ in eV. In Eq.
(10.40) the quantity B is expressed in suitable units and can be easily compared to ω0 [the
ratio B/ω0 being the relevant quantity, as we shall see]. For laser intensities that are routinely
used in the study of electromagnetic induced transparency, the inverse quantum Zeno effect
should be experimentally observable. For a quick comparison remember that B is just half the
Rabi frequency of the resonant transition 1 − 3.
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Figure 10.3: Cut and pole in the E-plane (B = 0) and convergence circle for the expansion of
Σ(E) around E = ω0. I and II are the first and second Riemann sheets, respectively. The pole
is on the second Riemann sheet, at a distance O(g2) from ω0.

10.3.3 Laser off

Let us first look at the case B = 0. The laser is off and we expect to recover the well-known
physics of the spontaneous emission a two-level system prepared in an excited state and coupled
to the vacuum of the radiation field, studied in Sec. 5.5. In this case the self-energy function
Σ(0, E) reads, in the continuum limit, [see Eq. (5.11)]

Σ(E) ≡ g2ω0q(E) ≡ g2ω0

∫ ∞

0
dω

χ2(ω)
E − ω

, (10.41)

where χ is defined in (10.34). The propagator Ga(E) in Eq. (10.29) (with B = 0) has a
logarithmic branch cut, extending from 0 to +∞, and no singularities on the first Riemann
sheet (physical sheet). On the other hand, it has a simple pole on the second Riemann sheet,
that is the solution of the equation

E − ω0 − g2ω0qII(E) = 0, (10.42)

where
qII(E) = q(Ee−2πi) = q(E) − 2πiχ2(E) (10.43)

is the determination of q(E) on the second Riemann sheet. We note that g2q(E) is O(g2),
so that the pole can be found perturbatively, with the procedure outlined in Sec. 4.6.2: by
expanding qII(E) around ω0 we get a power series, whose radius of convergence is Rc = ω0

because of the branch point at the origin. The circle of convergence lies half on the first
Riemann sheet and half on the second sheet (Fig. 10.3). The pole is well inside the convergence
circle and by setting

Epole = ω0 + ∆ − i
γ

2
, (10.44)

one perturbatively obtains from Eq. (10.41) the Fermi Golden Rule and the second order
correction to the energy of level |2〉

γ = 2πg2ω0χ
2(ω0) + O(g4), ∆ = g2ω0P

∫ ∞

0
dω

χ2(ω)
ω0 − ω

+ O(g4) (10.45)
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[see Eqs. (4.73)-(4.74)].
The Weisskopf-Wigner approximation (4.84) consists in neglecting all branch cut contribu-

tions and approximating the self-energy function with a constant (its value in the pole), that
is

GWW
a (E) =

1
E − ω0 − ΣII(Epole)

=
1

E − Epole
. (10.46)

10.3.4 Laser on

We turn now our attention to the situation with the laser switched on (B �= 0) and tuned at
the 1-3 transition frequency Ω0. The self-energy function Σ(B, E) in (10.32) depends on B and
can be written in terms of the self-energy function Σ(E) in absence of laser field [Eq. (10.41)],
by making use of the following remarkable property:

Σ(B, E) =
1
2

∑
k,λ

|φkλ|2
(

1
E − ωk − B

+
1

E − ωk + B

)
=

1
2

[Σ(E − B) + Σ(E + B)] .(10.47)

Notice, incidentally, that in the continuum limit (V → ∞), due to the above formula, Σ(B, E)
scales just like Σ(E). The position of the pole Epole (and as a consequence the decay rate
γ = −2ImEpole) depends on the value of B. There are now two branch cuts in the complex
E plane, due to the two terms in (10.47). They lie over the real axis, along [−B,+∞) and
[+B,+∞).

The pole satisfies the equation

E − ω0 − Σ(B, E) = 0, (10.48)

where Σ(B, E) is of order g2, as before, and can again be expanded in power series around
E = ω0, in order to find the pole perturbatively. However, this time one has to choose the
right determination of the function Σ(B, E). Two cases are possible: a) The branch point +B
is situated at the left of ω0, so that ω0 lies on both cuts. See Fig. 10.4(a); b) The branch
point +B is situated at the right of ω0, so that ω0 lies only on the upper branch cut. See Fig.
10.4(b). We notice that in the latter case (B > ω0) a number of additional effects should be
considered: multi-photon processes would take place, the other atomic levels would start to play
an important role and our approach (3-level atom in the rotating wave approximation) would
no longer be completely justified. Notice also that our approximation still apply for values
of B that are of the same order of magnitude as those utilized in electromagnetic induced
transparency: in this case the influence of the other atomic levels can be taken into account
and does not modify the main conclusions (Facchi and Pascazio [2000a]).

In case a), i.e. for B < ω0, the pole is on the third Riemann sheet (under both cuts) and the
power series converges in a circle lying half on the first and half on the third Riemann sheet,
within a convergence radius Rc = ω0 − B, which decreases as B increases [Fig. 10.4(a)]. On
the other hand, in case b), i.e. for B > ω0, the pole is on the second Riemann sheet (under the
upper cut only) and the power series converges in a circle lying half on the first and half on
the second Riemann sheet, within a convergence radius Rc = B − ω0, which increases with B
[Fig. 10.4(b)].

In either cases we obtain, for |Epole − ω0| < Rc = |B − ω0|,

Epole = ω0 +
1
2
[
Σ(ω0 + B + i0+) + Σ(ω0 − B + i0+)

]
+ O(g4)

= ω0 +
1
2
g2ω0

[
q(ω0 + B + i0+) + q(ω0 − B + i0+)

]
+ O(g4).

(10.49)
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Figure 10.4: Cuts and pole in the E-plane (B �= 0) and convergence circle for the expansion
of Σ(B, E) around E = ω0. I , II and III are the first, second and third Riemann sheets,
respectively. (a) B < ω0. (b) B > ω0. In both cases, the pole is at a distance O(g2) from ω0.

We write, as in (10.44),

Epole = ω0 + ∆(B) − i
γeff(B)

2
. (10.50)

Substituting (10.41) into (10.49) and taking the imaginary part, one obtains the following
expression for the decay rate

γeff(B) = πg2ω0

[
χ2(ω0 + B) + χ2(ω0 − B)θ(ω0 − B)

]
+ O(g4), (10.51)

which yields, by (10.45),

γeff(B) = γ
χ2(ω0 + B) + χ2(ω0 − B)θ(ω0 − B)

2χ2(ω0)
+ O(g4). (10.52)

Equation (10.52) expresses the “new” decay rate γeff(B), when the system is bathed in an
intense laser field B, in terms of the “natural” decay rate γ, when there is no laser field. By
taking into account the general behavior (10.35) of the matrix elements χ2(ω) and substituting
into (10.52), one gets to O(g4)

γeff(B) � γ

2

[(
1 +

B

ω0

)2j∓1

+
(

1 − B

ω0

)2j∓1

θ(ω0 − B)

]
, (B � Λ) (10.53)

where ∓ refers to 1-2 transitions of electric and magnetic type, respectively. Observe that, since
Λ � inverse Bohr radius, the case B < ω0 � Λ is the physically most relevant one. The decay
rate is profoundly modified by the presence of the laser field. Its behavior is shown in Fig. 10.5
for a few values of j. In general, for j > 1 (1-2 transitions of electric quadrupole, magnetic dipole
or higher), the decay rate γeff(B) increases with B, so that the lifetime γeff(B)−1 decreases as
B is increased. Since B is the strength of the observation performed by the laser beam on level
|2〉, this is an IZE, for decay is enhanced by observation.
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Figure 10.5: The decay rate γeff(B) vs B, for electric transitions with j = 1, 2, 3; γeff(B) is in
units γ and B in units ω0. Notice the different scales on the vertical axis.

As already emphasized, Eq. (10.53) is valid for B � Λ. In the opposite case B � Λ, by
(10.35) and (10.52), one gets to O(g4)

γeff(B) � γ

2
χ2(B)
χ2(ω0)

∝ (B/Λ)−β . (B � Λ) (10.54)

This result is similar to that obtained by Mihokova, Pascazio and Schulman [1997]. If such
high values of B were experimentally obtainable, the decay would be considerably hindered
(QZE).

A final remark is now in order. If one would use the Weisskopf-Wigner approximation
(10.46) in Eq. (10.47), in order to evaluate the new lifetime, by setting Σ(E) = Σ(Epole) =
const, one would obtain Σ(B, E) = Σ(E) = Σ(Epole), i.e. no B-dependence. Therefore, the
effect we are discussing is ultimately due to the nonexponential contributions arising from the
cut. In particular, viewed from the perspective of the time domain, this effect is ascribable to
the quadratic short-time behavior of the |2〉 → |1〉 decay.

10.3.5 Photon spectrum, dressed states and induced transparency

It is interesting to look at the spectrum of the emitted photons. It is easy to check that, in
the Weisskopf-Wigner approximation, the survival probability |A(t)|2 decreases exponentially
with time. In this approximation, for any value of B, the spectrum of the emitted photons
is Lorentzian. The proof is straightforward and is given by Facchi and Pascazio [2000a]. One
finds that, for B = 0, the probability to emit a photon in the range (ω, ω + dω) reads

dPB=0 = g2ω0χ
2(ω)fL(ω − ω̄0; γ)dω, (10.55)

where ω̄0 = ω0 + ∆(B) and

fL(ω; γ) =
1

ω2 + γ2/4
. (10.56)

On the other hand, when B �= 0 one gets:

dPB = g2ω0χ
2(ω)

1
2

[fL(ω − ω̄0 − B; γeff(B)) + fL(ω − ω̄0 + B; γeff(B))] dω. (10.57)
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Figure 10.6: The spectrum (10.57) of the emitted photons. The height of the Lorentzians
is proportional to the matrix element χ2(ω) (dashed line). We chose an electric quadrupole
transition, with j = 2 and γ = 10−1ω̄0, and used arbitrary units on the vertical axis. a) B=0;
b) B = ω̄0/5; note that from (10.53) γeff(B) = (28/25)γ.

The emission probability is given by the sum of two Lorentzians, centered in ω̄0 ± B. We see
that the emission probability of a photon of frequency ω̄0 + B (ω̄0 − B) increases (decreases)
with B (Fig. 10.6). The linewidths are modified according to Eq. (10.53). When B reaches the
“threshold” value ω̄0, only the photon of higher frequency (ω̄0 +B) is emitted (with increasing
probability vs B).

Photons of different frequencies are therefore emitted at different rates. In order to under-
stand better the features of the emission, let us look at the dressed states of the system. For
simplicity, since the average number N̄0 of k0-photons in the total volume V can be consid-
ered very large, we consider number (rather than coherent) states of the electromagnetic field.
Henceforth, the vector |i; nkλ, M0〉 represents an atom in state |i〉, with nkλ (k, λ)-photons and
M0 laser photons.

The Hamiltonian (10.17) becomes

H � ω0|2〉〈2| + Ω0|3〉〈3| +
∑
k,λ

ωka
†
kλakλ +

∑
k,λ

′ (
φkλa†kλ|1〉〈2| + φ∗

kλakλ|2〉〈1|
)

+
(
Φk0λ0a

†
k0λ0

|1〉〈3| + Φ∗
k0λ0

ak0λ0 |3〉〈1|
)

, (10.58)

where a prime means that the summation does not include (k0, λ0) [due to hypothesis (10.19)].
Besides (10.22), there is now another conserved quantity: indeed the operator

N0 = |3〉〈3| + a†k0λ0
ak0λ0 (10.59)

satisfies
[H,N0] = [N0,N ] = 0. (10.60)

In this case, the system evolves in the subspace labeled by the two eigenvalues N = 1 and
N0 = N0, whose states read

|ψ(t)〉 = A(t)|2; 0, N0〉 +
∑
k,λ

′
ykλ(t)|1; 1kλ, N0〉 +

∑
k,λ

′
zkλ(t)|3; 1kλ, N0 − 1〉. (10.61)
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By using the Hamiltonian (10.58) and the states (10.61) and identifying N0 with N̄0 = |α0|2
of Sec. 10.3.1, the Schrödinger equation yields again the equations of motion (10.27), obtained
by assuming a coherent state for the laser mode. Our analysis is therefore independent of the
statistics of the driving field, provided it is sufficiently intense, and the (convenient) use of
number states is completely justified.

Energy conservation implies that if there are two emitted photons with different energies
[see (10.57)], there are two levels of different energies to which the atom can decay. This
can be seen by considering the laser-dressed atomic states (Cohen-Tannoudji and Reynaud
[1977a]; Cohen-Tannoudji and Reynaud [1977b]; Cohen-Tannoudji and Reynaud [1977c]; Yoo
and Eberly [1985]). The shift of the dressed states can be obtained directly from the Hamilto-
nian (10.58). In the sector N0 = N0, the operator N0 is proportional to the unit operator, the
constant of proportionality being its eigenvalue. Hence one can write the Hamiltonian in the
following form

H = H − Ω0N0 + Ω0N0, (10.62)

which, by the setting E1 + N0Ω0 = 0, reads

H = H0 + Hint

= ω0|2〉〈2| +
∑
k,λ

′
ωka

†
kλakλ +

∑
k,λ

′ (
φkλa†kλ|1〉〈2| + φ∗

kλakλ|2〉〈1|
)

+
(
Φk0λ0a

†
k0λ0

|1〉〈3| + Φ∗
k0λ0

ak0λ0 |3〉〈1|
)

. (10.63)

On the other hand, in the sector HNN0 with N = 1 and N0 = N0, the last term becomes(
Φk0λ0a

†
k0λ0

|1〉〈3| + Φ∗
k0λ0

ak0λ0 |3〉〈1|
)

=
(
Φk0λ0

√
N0|1〉〈3| + Φ∗

k0λ0

√
N0|3〉〈1|

)
. (10.64)

This operator is easily diagonalized in terms of the (orthonormal) non-interacting states

|±〉 =
1√
2

(|1〉 + |3〉) (10.65)

[this is the simplest choice (Facchi and Pascazio [2000a])]. A simple manipulation yields

H = H ′
0 + H ′

int, (10.66)

where the primed free and interaction Hamiltonians read respectively

H ′
0 = ω0|2〉〈2| + B|+〉〈+| − B|−〉〈−| +

∑
k,λ

′
ωka

†
kλakλ,

H ′
int =

∑
k,λ

′
[(

φkλ√
2

a†kλ|+〉〈2| + φ∗
kλ√
2

akλ|2〉〈+|
)

+
(

φkλ√
2

a†kλ|−〉〈2| + φ∗
kλ√
2

akλ|2〉〈−|
)]

(10.67)

and B2 = |Φk0λ0 |2N0. The dressed states |+〉 and |−〉 have energies +B and −B and interact
with state |2〉 with a coupling φkλ/

√
2. Since 2B = ΩRabi this is the well-known Autler-Townes

doublet (Autler and Townes [1955]; Townes and Schawlow [1975]).
Therefore, by applying the Fermi golden rule, the decay rates into the dressed states read

γ+ = 2πg2ω0
χ2(ω0 − B)

2
γ− = 2πg2ω0

χ2(ω0 + B)
2

(10.68)
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Figure 10.7: Shift of the dressed states |+〉 and |−〉 vs B. (a) For B < ω0 there are two decay
channels, with γ− > γ+. (b) For B > ω0 level |+〉 is above level |2〉 and only the γ− decay
channel remains.

and the total decay rate of state |2〉 is given by their sum

γeff(B) = γ+ + γ−, (10.69)

which yields (10.51). One sees why there is a threshold at B = ω0: For B < ω0, the energies
of both dressed states |±〉 is lower than that of the initial state |2〉 [Fig. 10.7(a)]. The decay
rate γ− increases with B, whereas γ+ decreases with B; their sum γ increases with B. These
two decays (and their lifetimes) could be easily distinguished by selecting the frequencies of
the emitted photons, e.g. by means of filters. On the other hand, when B > ω0, the energy of
the dressed state |+〉 is larger than that of state |2〉 and this decay channel disappears [Fig.
10.7(b)].

Finally, let us emphasize that if state |2〉 were below state |1〉, our system would become
a three-level system in a ladder configuration, and the shift of the dressed states would give
rise to electromagnetically induced transparency (Tewari and Agarwal [1986]; Harris, Field and
Imamoğlu [1990]; Boller, Imamoğlu and Harris [1991]; Field, Hahn and Harris [1991]). The
situation we consider and the laser power required to bring these effects to light are therefore
similar to those used in induced transparency.

Summarizing, for physically sensible values of the intensity of the laser field, the decay of
level |2〉 is faster when the laser is present. Equations (10.52)-(10.53) (valid to 4th order in
the coupling constant) express the new lifetime as a function of the natural one and other
parameters characterizing the physical system. The initial state decays to the laser-dressed
states with different lifetimes, yielding an IZE.





Chapter 11

Measurement-induced quantum
chaos

11.1 Introduction

The “kicked” rotator is a pendulum that evolves under the action of a gravitational field
that is “switched on” at periodic time intervals. It is a very useful system, that enables
one to elucidate many different features between the classical and the quantum case. In the
classical case, when the coupling constant exceeds some critical value, there appear regions of
stochasticity in the phase space, yielding a diffusive behavior of the action variable (Lichtenberg
and Lieberman [1992]). On the other hand, in the quantum version, a peculiar phenomenon
takes place, essentially ascribable to quantum coherence. The evolution of the wave function is
more regular than the complicated evolution of classical trajectories and indeed, as shown in
the seminal paper by Casati, Chirikov, Shepelyansky and Guarneri [1987], the wave function
exhibits quantum localization in momentum space and a consequent quantum suppression of
the chaotic behavior after a sufficiently long time.

We show in this chapter that these coherence effects are completely destroyed and diffusion is
restored if the momentum variable is measured after each kick. We call this phenomenon, which
is a clear manifestation of an inverse quantum Zeno effect, “measurement-induced quantum
chaos” (Facchi, Pascazio and Scardicchio [1999a]). This is a model in which IZE is manifested in
the modified large-time behavior of the wave function and has some relevance in the “problem”
of quantum chaos. Indeed, we find a diffusive behavior for a large class of Hamiltonians,
even when the dynamics of the classical counterpart is not chaotic. Moreover, this results in a
completely randomized classical map in the semiclassical limit (Facchi, Pascazio and Scardicchio
[1999b]).

11.2 The kicked system

We consider the Hamiltonian
H = H0(p) + λV (x)δT (t), (11.1)

where p and x ∈ [−π, π] are the action and angle variable, respectively, and

δT (t) =
∞∑

k=−∞
δ(t − kT ), (11.2)
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T being the period of the perturbation. We impose periodic boundary conditions on the inter-
action V (x). This Hamiltonian gives rise to the so-called radial twisting map, that describes
the local behavior of a perturbed integrable map near resonance (Arnold and Avez [1968];
Lichtenberg and Lieberman [1992]). The free Hamiltonian H0 has a discrete spectrum and a
countable complete set of eigenstates {|m〉}:

〈x|m〉 =
1√
2π

exp (imx) , m = 0,±1,±2, . . . . (11.3)

The classical and quantum dynamics of these systems under the action of periodic “kicks”
are in general very different. Classical systems can follow very complicated trajectories in
phase space, while the evolution of the wave function in the quantum case is more regular. In
the classical case, in those regions of the phase space that are stochastic, the evolution of the
system can be well described in terms of the action variable alone and one of the most distinctive
features of an underlying chaotic behavior is just the diffusion of the action variable in phase
space. On the other hand, in the quantum case, such a diffusion is always suppressed after
a sufficiently long time (Casati, Chirikov, Ford and Izrailev [1979]; Berry, Balazs, Tabor and
Voros [1979]). This phenomenon, known as the quantum mechanical suppression of classical
chaos, can be framed in a proper context in terms of the semiclassical approximation � → 0
(Casati, Chirikov, Shepelyansky and Guarneri [1987]; Izrailev [1990]; Berry and Balazs [1979];
Tabor [1989]; Haake [1991]).

In particular, the “kicked” rotator is a pendulum that evolves under the action of a grav-
itational field that is “switched on” at periodic time intervals. In this case the Hamiltonian
(11.1) is specialized to

H0(p) =
p2

2
, V (x) = cos x. (11.4)

This is a very useful system, able to elucidate many different features between the classical and
the quantum case and was studied by Casati, Chirikov, Ford and Izrailev [1979] in their seminal
work on quantum chaos. Rather recently, by studying this model, Kaulakys and Gontis [1997]
showed that a diffusive behavior of the action variable takes place even in the quantum case,
yielding an IZE, if a quantum measurement is performed after every kick.

11.3 Kicks interspersed with quantum measurements

We investigate in some detail the dynamics of a measured kicked system and prove that
quantum mechanical measurements of the action variable provoke diffusion in a very large
class of kicked systems, even when the corresponding classical dynamics is regular. Con-
sider the evolution engendered by the Hamiltonian (11.1) interspersed with quantum measure-
ments, in the following sense: the system evolves under the action of the free Hamiltonian for
(N − 1)T + τ < t < NT (0 < τ < T ), undergoes a “kick” at t = NT , evolves again freely
and then undergoes a “measurement” of p at t = NT + τ . The evolution of the system is best
described in terms of the density matrix: between successive measurements one has

ρNT+τ = Ufree(τ)UkickUfree(T − τ)ρ(N−1)T+τU
†
free(T − τ)U †

kickU
†
free(τ), (11.5)

Ukick = exp (−iλV/�) , Ufree(t) = exp (−iH0t/�) . (11.6)

At each measurement, the wave function is “projected” onto the nth eigenstate of p with
probability Pn(NT + τ) = Tr(|n〉〈n|ρNT+τ ) and the off-diagonal terms of the density matrix
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disappear. The occupation probabilities Pn(t) change discontinuously at times NT and their
evolution is governed by the master equation

Pn(N) =
∑
m

WnmPm(N − 1), (11.7)

where
Wnm ≡ |〈n|Ufree(τ)UkickUfree(T − τ)|m〉|2 = |〈n|Ukick|m〉|2 (11.8)

are the transition probabilities and we defined, with a little abuse of notation,

Pn(N) ≡ Pn(NT + τ). (11.9)

The map (11.7) depends on λ, V, H0 in a complicated way. However, interestingly, very general
conclusions can be drawn about the average value of a generic regular function of momentum
g(p) (Facchi, Pascazio and Scardicchio [1999a]). Let

〈g(p)〉t ≡ Tr(g(p)ρ(t)) =
∑

n

g(pn)Pn(t), (11.10)

where p|n〉 = pn|n〉 (pn = n�), and consider the average value of g after N kicks

〈g(p)〉N ≡ 〈g(p)〉NT+τ =
∑

n

g(pn)Pn(N) =
∑
n,m

g(pn)WnmPm(N − 1). (11.11)

Substituting Wnm from (11.8) one obtains

〈g(p)〉N =
∑
n,m

g(pn)〈m|U †
kick|n〉〈n|Ukick|m〉Pm(N − 1)

=
∑
m

〈m|U †
kickg(p)Ukick|m〉Pm(N − 1), (11.12)

where we used g(p)|n〉 = g(pn)|n〉. We are mostly interested in the evolution of the quantities
p and p2 (momentum and kinetic energy). By the Baker-Hausdorff lemma

U †
kickg(p)Ukick = g(p) + i

λ

�
[V, g(p)] +

1
2!

(
iλ

�

)2

[V, [V, g(p)]] + ..., (11.13)

we obtain the exact expressions

U †
kickpUkick = p + i

λ

�
[V, p], (11.14)

U †
kickp

2Ukick = p2 + i
λ

�
[V, p2] + λ2

(
V ′)2 , (11.15)

where prime denotes derivative. We observe, incidentally, that in general, for polynomial g(p),
the highest order of λ appearing in (11.13) is the degree of the polynomium.

Substituting (11.14) and (11.15) in (11.12) and then iterating on the number of kicks we
obtain

〈p〉N = 〈p〉N−1 = 〈p〉0, (11.16)
〈p2〉N = 〈p2〉N−1 + λ2〈f2〉 = 〈p2〉0 + λ2〈f2〉N, (11.17)
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where f = −V ′(x) is the force and

〈f2〉 = Tr
(
f2ρNT+τ

)
=
∑

n

〈n|f2|n〉Pn(N) =
1
2π

∫ π

−π
dx f2(x) (11.18)

is a constant that does not depend on N : Indeed 〈n|f2|n〉 is independent of the state |n〉 [see
(11.3)] and

∑
Pn = 1. In particular, the kynetic energy K = p2/2m grows at a constant rate:

〈K〉N = 〈K〉0 + λ2〈f2〉N/2m. By using (11.16)-(11.17) we obtain the friction (F ) and the
diffusion (D) coefficients

F =
〈p〉N − 〈p〉0

NT
= 0, (11.19)

D =
〈∆p2〉N − 〈∆p2〉0

NT
=

λ2〈f2〉
T

, (11.20)

where 〈∆p2〉N = 〈p2〉N − 〈p〉2N . We stress that the above results are exact: their derivation
involves no approximation. This shows that Hamiltonian systems of the type (11.1) (radial
twisting maps), in the quantum case, if measured after every kick, have a constant diffusion
rate in momentum with no friction, for any perturbation V = V (x). In particular, the seminal
kicked-rotator model H0 = p2/2I, V = cos x has the diffusion coefficient

D =
λ2

2T
, (11.21)

which is nothing but the result obtained in the classical case (Casati, Chirikov, Ford and Izrailev
[1979]; Kaulakys and Gontis [1997]).

The above results are somewhat puzzling, essentially because one finds that in the quantum
case, when repeated measurements of momentum (action variable) are performed on the system,
a chaotic behavior is obtained for every value of λ and for any potential V (x). On the other
hand, in the classical case, diffusion occurs only for some V (x), when λ exceeds some critical
value λcrit. (For instance, the kicked rotator displays diffusion for λ ≥ λcrit � 0.972 (Casati,
Chirikov, Ford and Izrailev [1979]; Lichtenberg and Lieberman [1992]).) It appears, therefore,
that quantum measurements not only yield a chaotic behavior in a quantum context, they
even produce chaos when the classical motion is regular. This is a clear manifestation of the
“effectiveness” of the inverse quantum Zeno effect. In order to bring to light the causes of this
peculiar situation, one has to look at the classical case. The classical map for the Hamiltonian
(11.1) reads

xN = xN−1 + H ′
0(pN−1)T,

pN = pN−1 − λV ′(xN ). (11.22)

A quantum measurement of p yields an exact determination of momentum p and, as a conse-
quence, makes position x completely undetermined (uncertainty principle). This situation has
no classical analog: it is inherently quantal. However, the classical “map” that best mymics
this physical picture is obtained by assuming that position xN at time τ after each kick (i.e.
when the quantum counterpart undergoes a measurement) behaves like a random variable ξN

uniformly distributed over [−π, π]:

xN = ξN ,

pN = pN−1 − λV ′(xN ). (11.23)
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Introducing the ensemble average 〈〈· · · 〉〉 over the stochastic process (i.e. over the set of inde-
pendent random variables {ξk}k≤N ), we obtain

〈〈pN 〉〉 = 〈〈pN−1〉〉 − λ〈V ′(ξN )〉, (11.24)

where

〈g(ξ)〉 ≡ 1
2π

∫ π

−π
g(ξ)dξ (11.25)

is the average over the single random variable ξ [this coincides with the quantum average: see
for instance the last term of (11.18)]. The average of V ′(ξN ) in (11.24) vanishes due to the
periodic boundary conditions on V , so that

〈〈pN 〉〉 = 〈〈pN−1〉〉, (11.26)

which is the same as Eq. (11.16). Moreover, using (11.23) and (11.26) we get

〈〈∆p2
N 〉〉 = 〈〈p2

N 〉〉 − 〈〈pN 〉〉2 = 〈〈∆p2
N−1〉〉 + λ2〈V ′(ξN )2〉 − 2λ〈〈pN−1〉〉〈V ′(ξN )〉. (11.27)

In writing (11.27), the average of V ′(ξN )pN−1 has been factorized because pN−1 depends only
on {ξk}k≤N−1, as can be evinced from (11.23). Using again the periodic boundary condition
on V , one finally gets

〈〈∆p2
N 〉〉 = 〈〈∆p2

N−1〉〉 + λ2〈f2〉 (11.28)

and the momentum diffuses at the rate (11.20), as in the quantum case with measurements.
We obtain in this case a diffusion taking place in the whole phase space, without effects due to
the presence of adiabatic islands.

It is interesting to compare the different cases analyzed: (A) a classical system, under the
action of a suitable kicked perturbation, displays a diffusive behavior if the coupling constant
exceeds a certain threshold (KAM theorem); (B) on the other hand, in its quantum counter-
part, this diffusion is always suppressed. (C) The introduction of measurements between kicks
encompasses this limitation, yielding diffusion in the quantum case. More so, diffusion takes
place for any potential and all values of the coupling constant (namely, even when the classical
motion is regular). (D) The same behavior is displayed by a “randomized classical map,” in
the sense explained above. These conclusions are sketched in Table 1.

Table 1: Classical vs quantum diffusion

A classical diffusion for λ > λcrit

B quantum no diffusion
C quantum + measurements diffusion ∀λ

D classical + random diffusion ∀λ

11.4 Semiclassical limit

As we have seen, the effect of quantum measurements is basically equivalent to a complete
randomization of the classical angle variable x, at least if one’s attention is limited to the
calculation of the diffusion coefficient in the chaotic regime. One might therefore naively think
that the randomized classical map (11.23) and the quantum map with measurements (11.7),
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(11.16)-(11.20) are identical. This expectation would be wrong: there are in fact corrections in
�. It is indeed straightforward, using Eqs. (11.12)-(11.13), to obtain in the quantum case

〈p3〉N = 〈p3〉N−1 + 3λ2〈f2〉〈p〉N−1 + λ3〈f3〉,
〈p4〉N = 〈p4〉N−1 + 6λ2〈f2〉〈p2〉N−1 + 4λ3〈f3〉〈p〉N−1 + λ4〈f4〉 + λ2

�
2〈(f ′)2〉.

(11.29)

On the other hand, using (11.23) and the periodic boundary conditions, one gets for the
randomized classical map

〈〈p3
N 〉〉 = 〈〈p3

N−1〉〉 + 3λ2〈f2〉〈〈pN−1〉〉 + λ3〈f3〉,
〈〈p4

N 〉〉 = 〈〈p4
N−1〉〉 + 6λ2〈f2〉〈〈p2

N−1〉〉 + 4λ3〈f3〉〈〈pN−1〉〉 + λ4〈f4〉. (11.30)

Hence the two maps have equal moments up to third order, while the fourth moment displays
a difference of order O(�2):

〈p4〉N − 〈p4〉N−1 = 〈〈p4
N 〉〉 − 〈〈p4

N−1〉〉 + λ2
�

2〈(f ′)2〉. (11.31)

In order to understand better the similarities and differences between the two maps, as well
as the quantum mechanical corrections, we focus our attention on the particular case of the
kicked rotator H0 = p2/2, V (x) = cos x, which gives rise to the so-called standard map

xN = xN−1 + pN−1T,

pN = pN−1 + λ sin xN . (11.32)

The conditional probability density Wcl that an initial state (p′, x′) evolves after one step into
the final state (p, x) is, from (11.32),

Wcl(p, x|p′, x′) = δ(p − p′ − λ sinx) δ(x − x′ − p′T )
= δ(p − p′ − λ sin[x′ + p′T ]) δ(x − x′ − p′T ). (11.33)

This is a completely deterministic evolution. On the other hand, if one randomizes the standard
map, as in (11.23),

xN = ξN ,

pN = pN−1 + λ sin xN , (11.34)

the conditional probability density becomes

Wcl(p, x|p′, x′) = Wcl(p, x|p′) = P (x) δ(p − p′ − λ sinx) =
1
2π

δ(p − p′ − λ sinx) (11.35)

and is independent of the initial position x′. It is therefore possible to describe the dynamics
by considering only the momentum distribution

Wcl(p|p′) =
1
2π

∫ π

−π
dx δ(p − p′ − λ sin x) =

1
λπ

∫ +1

−1

dy√
1 − y2

δ

(
y − p − p′

λ

)
=

1
π

1√
λ2 − (p − p′)2

θ(λ − |p − p′|). (11.36)

Notice that Wcl(p|p′) is a function of the momentum transfer |∆p| = |p − p′| and vanishes for
|∆p| > λ.



11.4 Semiclassical limit 137

Consider now the kicked quantum rotator with measurements. From Eq. (11.8), the tran-
sition probability reads

Wq(p = �n|p′ = �n′) =
1
�
Wnn′ =

1
�

∣∣∣〈n|e−iλ cos x/�|n′〉
∣∣∣2 (11.37)

and by using the definition (11.3) one obtains

〈n|e−iλ cos x/�|n′〉 =
∫ π

−π
dx〈n|x〉e−iλ cos x/�〈x|n′〉

=
1
2π

∫ π

−π
dx e−i(n−n′)xe−iλ cos x/� = in−n′

Jn−n′

(
λ

�

)
, (11.38)

where Jm(z) is the Bessel function of order m. Therefore, in the quantum case, from (11.37)
and (11.38), we can write

Wq(p = �n|p′ = �n′) =
1
�
Jν

(
λ

�

)2

(∆p = p − p′ = �ν; ν ≡ n − n′). (11.39)

There are two important differences between the classical case (11.36) and its quantum coun-
terpart (11.39): i) the quantum mechanical transition probability Wq admits only quantized
values of momentum �n, while the classical one Wcl is defined on the real line; ii) momentum
can change by any value in the quantum case (notice however that this occurs with very small
probability for |∆p| = �|ν| � λ (Casati, Chirikov, Ford and Izrailev [1979])), while in the clas-
sical case this change is strictly constrained by |∆p| ≤ λ. These features have an interesting
physical meaning: see Fig. 11.1. The transition probability of classical momentum appears
as an “average” of its quantum counterpart, which explains the strong analogy discussed in
Section 11.3. At the same time, the quantum mechanical transition probability has a small
nonvanishing tail for |∆p| = �|ν| > λ: this is at the origin of the difference (11.31).

Finally, let us show how one recovers the transition probability Wcl starting from Wq, in
the semiclassical limit. We look at the limit � → 0, while keeping ∆p = �ν finite:

� → 0, ν → ∞ with ∆p = �ν = const. (11.40)

In this limit, the argument and the order of the Bessel function in (11.39) are infinities of the
same order. For |∆p| ≤ λ, setting ∆p/λ ≡ cos β, one gets

λ

�
=

λ

∆p

∆p

�
= ν sec β. (11.41)

Hence, by using the asymptotic limit of the Bessel function (Gradshteyn and Ryzhik [1994],
§8.45)

Jν(ν sec β)
ν large∼

√
2

νπ tan β

[
cos

(
ν tan β − νβ − π

4

)
+ O(ν−1)

]
, (11.42)

Eq. (11.39) becomes, in the limit (11.40),

Wq(p|p′) =
1
�
J∆p

�

(
λ

�

)2

=
1
�
Jν (ν sec β)2

∼ 1
�

2
∆p
�

π
√

λ2

∆p2 − 1

[
cos2

(
∆p

�

√
λ2

∆p2
− 1 − ∆p

�
arccos

∆p

λ
− π

4

)
+ O

(
�

∆p

)]

∼ Wcl(p|p′)
[
1 + sin

(
2
√

λ2 − ∆p2

�
− 2∆p

�
arccos

∆p

λ

)
+ O

(
�

∆p

)]
,

(|∆p| ≤ λ) (11.43)
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Figure 11.1: Momentum transition probabilities for the kicked rotator (λ = 100� and the
momentum transfer p − p′ is expressed in units �). The thick line is the classical expression
(11.36): it diverges for p−p′ = λ and vanishes for p−p′ > λ. The quantum mechanical transition
probability (11.39) is defined only for integer values of p − p′ (dots). The interpolating line
(obtained by treating the order of the Bessel function as a continuos variable) oscillates around
its classical counterpart and is nonvanishing (although very small) outside the classical range,
i.e. for p − p′ > λ.

that, due to Riemann-Lebesgue lemma, tends to Wcl in the sense of distributions.
On the other hand, for |∆p| > λ, setting ∆p/λ ≡ cosh α and using the asymptotic formula

(Gradshteyn and Ryzhik [1994], §8.45)

Jν

( ν

cosh α

)
ν large∼ exp(ν tanhα − να)√

2νπ tan β

[
1 + O(ν−1)

]
, (11.44)

we get

Wq(p|p′) ∼ 1

2π
√

∆p2 − λ2
exp

−2∆p

�

arccos
∆p

λ
−
√

1 −
(

λ

∆p

)2


[
1 + O

(
�

∆p

)]
,

(|∆p| > λ) (11.45)

which vanishes exponentially with ∆p (remember that tanhα < α). Equations (11.43) and
(11.45) corroborate the results of Section 11.3 and enable us to conclude that the “randomized”
classical kicked rotator is just the semiclassical limit of the “measured” quantum kicked rotator.

11.5 Dynamical model of measurement

Needless to say, the very same results can be obtained by making only use of a purely unitary
evolution (albeit, as we will see, of a larger system). To this end, we must give a model for
measurement, by looking more closely at the physics of such a process. This is easily accom-
plished by following a strategy analogous to that outlined in Sec. 7.3 and using a generalized
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spectral decomposition. Let us add the following decomposition Hamiltonian to (11.1)

Hdec =
π

2

∑
n,k

|n〉〈n| ⊗ σ(n,k)δ(t − kT − τ), (11.46)

where |n〉 is an eigenstate of p and σ(n,k) ∀(n, k) is the first Pauli matrix, whose action is given
by

σ(n,k)|±〉(n,k) = |∓〉(n,k), (11.47)

where |+〉(n,k), |−〉(n,k) denote spin up, down, respectively, in “channel” (n, k). This Hamilto-
nian “measures” each p-eigenstate by entangling it with a spin state. Let us prepare the total
(rotator + spins) system in the initial (t = 0+) state

|Ψin〉 =
∑
m

cm|m〉
⊗
k,n

|−〉(n,k) (11.48)

(all “spins” down). For the sake of simplicity, we shall concentrate our attention on the first
two kicks. In the same notation as in (11.9), the evolution of the state |Ψ(N)〉 ≡ |Ψ(NT +τ+)〉
reads

|Ψ(0)〉 = −i
∑
m

c′m|m〉 ⊗ |+〉(m,0)

⊗
k≥1,n

|−〉(n,k) , (11.49)

|Ψ(1)〉 = (−i)2
∑
�,m

|�〉 ⊗ |+〉(�,1) ⊗ A�mc′m|+〉(m,0)

⊗
k≥2,n

|−〉(n,k) , (11.50)

|Ψ(2)〉 = (−i)3
∑
j,�,m

|j〉 ⊗ |+〉(j,2) ⊗ Aj�|+〉(�,1) ⊗ A�mc′m|+〉(m,0)

⊗
k≥3,n

|−〉(n,k) , (11.51)

where c′m = cm exp[−iH0(pm)τ ] and

A�m ≡ 〈�|Ufree(τ)UkickUfree(T − τ)|m〉 (11.52)

is the transition amplitude ( the transition probability beeing W�m = |A�m|2). We see that at
time τ after the kth kick, the nth eigenstate of the system becomes associated with spin up
in channel (n, k). By using (11.50)-(11.51) one readily shows that the occupation probabilities
evolve according to

Pn(2) ≡ 〈Ψ(2)|
(
|n〉〈n| ⊗ 1spins

)
|Ψ(2)〉 =

∑
m

WnmPm(1). (11.53)

The generalization to N kicks is straightforward and it is very easy to obtain the same master
equation (11.7). The observables of the quantum particle evolve therefore like in (11.11): in
particular, the average value of the quantum observable p̃ = p ⊗ 1spins displays diffusion with
coefficients (11.19)-(11.20). This shows that the unitary dynamics engendered by (11.1) and
(11.46) yields the same quantal diffusive behavior that is obtained by making use of projections.
We notice indeed that, although the combined system (rotator + spins) evolves unitarily, if
one chooses to “look” only at the rotator, by tracing away the spin degrees of freedom, the
resulting dynamics (11.53) is non-unitary.

Note that the conclusion drawn in the previous section for the kicked rotator can be gen-
eralized to an arbitrary radial twisting map. The calculation and the techniques utilized are
more involved and will not be considered here. There are also a number of related problems
that deserve attention and a careful investigation. Among these, we just mention the case of
imperfect quantum measurements, yielding a partial loss of quantum mechanical coherence,
the relation to disordered systems, the Anderson localization (Flores [1999]) and finally the
extension to a different class of Hamiltonians (Casati, Guarneri and Mantica [1994]; Frasca
[1997]; Gardiner, Cirac and Zoller [1997]).





Chapter 12

Berry phase from a quantum Zeno
effect

12.1 Introduction

In all the previous chapters we dealt with what might be called the “static” version of the
quantum Zeno effect. However, the most striking action of the observer is not only to stop
time evolution (e.g., by repeatedly checking if a system has decayed), but to guide it. In this
last chapter we will be concerned with a “dynamical” version of the phenomenon: we will show
how guiding a system through a closed loop in its state space (projective Hilbert space) leads
to a geometrical phase (Pancharatnam [1956]; Berry [1984]; Berry [1985]; Shapere and Wilczek
[1989]; Wagh, Rakhecha, Summhammer, Badurek, Weinfurter, Allman, Kaiser, Hamacher,
Jacobson and Werner [1997]). This was predicted on general grounds (Aharonov and Anandan
[1987]; Anandan and Aharonov [1988]), but here we use a specific implementation on a spin
system (Facchi, Klein, Pascazio and Schulman [1999]) and propose a particular experimental
context in which to see this effect. To this end we study the case of neutron spin, examine
the practical aspects of realizing the “projections,” and estimate the difference between the
idealized projections and the experimental implementation. It is remarkable that the Berry
phase that is discussed below is due to measurements only: no Hamiltonian is needed.

12.2 Forcing the pot to boil

We summarize again the main features of the quantum Zeno effect. Prepare a quantum system
in some initial state ψ(0). In time dt, by the Schrödinger equation, its phase changes by O(dt)
while the absolute value of its scalar product with the initial state changes by O(dt2). See Fig.
7.2.

The dynamical quantum Zeno effect exploits the above features and forces the evolution in
an arbitrary direction by a series of repeated measurements: Let ψ evolve with the Hamiltonian
H, so that in the absence of observations its evolution would be ψ(T ) = exp(−iHT )ψ(0) (we
take � = 1 throughout). Let there be a family of states φk, k = 0, 1, . . . , N , such that φ0 = ψ(0),
and such that successive states differ little from one another (i.e., |〈φk+1|φk〉| is nearly 1). Now
let δT = T/N and at Tk = kδT project the evolving wave function on φk. Then for sufficiently
large N , ψ(T ) ≈ φN . [The usual QZE is the special case φk = φ0(= ψ(0)) ∀ k.]

In the following we consider an experiment involving a neutron spin. It should be clear,
however, that our proposal is valid for any system with the same two-level structure.
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12.2.1 Evolution with no Hamiltonian

Assume first that there is no Hamiltonian acting on the system: one can think, for instance,
of a neutron crossing a region where no magnetic field is present. The time-evolution is due to
measurement only.

The system starts with spin up along the z-axis and is projected on the family of states

φk ≡ exp(−iθkσ · n)
(

1
0

)
with θk ≡ ak

N
, k = 0, . . . , N , (12.1)

where σ is the vector of the Pauli matrices and n = (nx, ny, nz) a unit vector (independent of
k).

We assume that the system evolves for a time T with projections at times Tk = kδT
(k = 1, . . . , N and δT = T/N). The final state is

[
φ0 =

(
1
0

)]
|ψ(T )〉 = |φN 〉〈φN |φN−1〉 · · · 〈φ2|φ1〉〈φ1|φ0〉

= |φN 〉
(
cos

a

N
+ inz sin

a

N

)N

= cosN
( a

N

)(
1 + inz tan

a

N

)N |φN 〉
N→∞−→ exp(ianz)|φN 〉

= exp(ianz) exp(−iaσ · n)|φ0〉. (12.2)

Therefore, as N → ∞, ψ(T ) is an eigenfunction of the final projection operator PN , with unit
norm. If cos Θ ≡ nz and a = π,

ψ(T ) = exp(iπ cos Θ)(−1)φ0 = exp[−iπ(1 − cos Θ)]φ0 = exp(−iΩ/2)φ0, (12.3)

where Ω is the solid angle subtended by the curve traced by the spin during its evolution. The
factor exp(−iΩ/2) is a Berry phase (Berry [1984]) and it is due only to measurements (the
Hamiltonian is zero). Notice that no Berry phase appears in the usual quantum Zeno context,
namely when φk ∝ φ0 ∀ k, because in that case a = 0 in (12.2).

To provide experimental implementation of the mathematical process just described, one
could (in principle) let a neutron spin evolve in a field-free region of space. With no further
tinkering, the spin state would not change. However, suppose we place spin filters sequentially
projecting the neutron spin onto the states of (12.1), for k = 0, . . . , N . Thus the neutron
spin is forced to follow another trajectory in spin space. The essence of the mathematical
demonstration just provided is that while N measurements are performed, the norm of wave
function that is absorbed by the filters is N ·O(1/N2) =O(1/N). For N → ∞, this loss is
negligible. Meanwhile, as a result of these projections, the trajectory of the spin (in its space)
is a cone whose symmetry axis is n. By suitably matching the parameters, the spin state can
be forced back to its initial state after time T (Schulman [1998]; Facchi, Klein, Pascazio and
Schulman [1999]).

It is interesting to look at the process (12.2) for N finite. The spin goes back to its initial
state after describing a regular polygon on the Poincaré sphere, as in Fig. 12.2.1a. After
N(< ∞) projections the final state is

|ψ(T )〉 =
(
cos

a

N
+ inz sin

a

N

)N
exp(−iaσ · n)|φ0〉. (12.4)
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Figure 12.1: a) Spin evolution due to N = 5 measurements. b) Solid angles.

For a = π the spin describes a closed path and

|ψ(T )〉 =
(
cos

π

N
+ inz sin

π

N

)N
exp(−iπ)|φ0〉

=
(
cos2

π

N
+ n2

z sin2 π

N

)N
2 exp

(
iN arctan

(
nz tan

π

N

))
exp(−iπ)|φ0〉.

(12.5)

The first factor in the far r.h.s. accounts for the probability loss (N is finite and there is no
QZE). We can rewrite (12.5) in the following form

|ψ(T )〉 = ρN exp(−iβN )|φ0〉, (12.6)

where

ρN =
(
cos2

π

N
+ n2

z sin2 π

N

)N
2

, (12.7)

βN = π − N arctan
(
cos Θ tan

π

N

)
. (12.8)

In the “continuous measurement” limit (QZE), we have

ρ = lim
N→∞

ρN = 1,

β = lim
N→∞

βN = π(1 − cosΘ) =
Ω
2

, (12.9)

where Ω is the solid angle subtended by the circular path, viewed at an angle Θ (see Fig.
12.2.1a). We recover therefore the result (12.3).

The relation between the solid angle and the geometrical phase is valid also with a finite
number of polarizers N . Indeed, it is straightforward to show that the solid angle subtended
by an isosceles triangle with vertex angle equal to 2α (Fig. 12.2.1b) has the value

Ω2α = 2α − 2 arctan(cos Θ tanα). (12.10)
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Hence if the polarizers are equally rotated of an angle 2π/N , the spin describes a regular
N -sided polygon, whose solid angle is

Ω(N) = NΩ2π/N = 2π − 2N arctan
(
cos Θ tan

π

N

)
= 2βN , (12.11)

where we used the definition (12.8). This result is of course in agreement with other analyses
(Bhandari and Samuel [1988]; Samuel and R. Bhandari [1988]; Mukunda and Simon [1993])
based on the Pancharatnam connection (Pancharatnam [1956]).

The above conclusion can be further generalized to the general case of an arbitrary (not
necessarily regular) polygon. Indeed, if the polarizers are rotated at (relative) angles αn with
n = 0, . . . , N , so that

N∑
n=1

2αn = 2π, (12.12)

the solid angle is

Ω′
(N) =

N∑
n=1

Ω2αn = 2π − 2
N∑

n=1

arctan(cos Θ tan αn). (12.13)

This is also twice the Berry phase. Notice that if all αn → 0 as N → ∞ one again obtains the
limit (12.3):

Ω′ = lim
N→∞

Ω′
N = 2π − 2 lim

N→∞

N∑
n=1

αn cos Θ = Ω. (12.14)

We emphasize that these predictions for the N < ∞ case are not trivial from the physical
point of view. The above phases are computed by assuming that, during a “projection” à la
von Neumann, the spin follows a geodesics on the Poincaré sphere. The mathematics of the
projection has no such assumptions. The “postulate’s” only job is to relate all this projection
formalism to measurements.

12.2.2 Evolution with a non-zero Hamiltonian

Let us now consider the effect of a non-zero Hamiltonian

H = µσ · b, (12.15)

where b = (bx, by, bz) is a unit vector, in general different from n. One can think of a neutron
spin in a magnetic field. See Fig. 12.2.2.

If the system starts with spin up it would have the following—undisturbed—evolution:

ψ(t) = exp(−iµtσ · b)
(

1
0

)
. (12.16)

Now let the system evolve for a time T with projections at times Tk = kδT (k = 1, . . . , N and

δT = T/N) and Hamiltonian evolution in between. Defining P0 ≡ |φ0〉〈φ0| =
(

1 0
0 0

)
, the

2 × 2 projection operator at stage-k is

Pk = |φk〉〈φk| = exp(−iθkσ · n)P0 exp(iθkσ · n) (12.17)

and the state evolves to

ψ(T ) =

[
N∏

k=1

[Pk exp(−iµδTσ · b)]

](
1
0

)
, (12.18)
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Figure 12.2: Spin evolution with measurements and non-zero Hamiltonian.

where here and in subsequent expressions a time-ordered product is understood [with earlier
times (lower k) to the right]. Using P 2

0 = P0, Eq. (12.18) can be rewritten

ψ(T ) = exp(−iaσ · n)

[
N∏

k=1

Bk

](
1
0

)
, (12.19)

with

Bk ≡ P0 exp(iθkσ · n) exp(−iµδTσ · b) exp(−iθk−1σ · n)P0 (12.20)

(θ0 ≡ 0). The computation of Bk requires a bit of SU(2) manipulation. One gets

exp(iθσ · n)σ · b exp(−iθσ · n) = σ · b̃, (12.21)

with

b̃(θ) ≡ b cos 2θ + n(b · n)(1 − cos 2θ) + b × n sin 2θ, (12.22)

which is the vector b rotated by 2θ about the n-axis. The calculation of Bk is now straight-
forward:

Bk = P0 exp(iδθσ · n) exp(−iµδTσ · b̃(θk−1))P0

= P0

(
1 + iδθσ · n − iµδTσ · b̃(θk)

)
P0 + O(1/N2), (12.23)

where δθ = θk+1 − θk is k-independent. Second order terms in 1/N drop out when the product
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(12.19) is computed for N → ∞, so that

N∏
k=1

Bk =
N∏

k=1

P0(1 + iδθσ · n − iµδTσ · b̃(θk))P0

=
N∏

k=1

{
P0 + iP0(δθσ · n − µδTσ · b̃(θk))P0

}

=
N∏

k=1

P0

{
1 + i[δθnz − µδT b̃z(θk)]

}

= P0 exp

{
i

N∑
k=1

(
δθnz − µδT b̃z(θk)

)}
(12.24)

where we have used P0σxP0 = P0σyP0 = 0 and P0σzP0 = P0. The continuum limit can be
computed by letting the summations in (12.24) become integrals in dT and dθ. Moreover,
dT
dθ = T

a , which enables one to change integration variable and get for the “(1,1)” component
of
∏N

k=1 Bk (all other components being zero)

exp
(

inz

∫ a

0
dθ − iµ

T

a

∫ a

0
[bz cos 2θ + (b · n)nz(1 − cos 2θ) + (b × n)z sin 2θ] dθ

)
= exp

(
inza − iµ

T

a

[
bz

sin 2a

2
+ (b · n)nz

(
a − sin 2a

2

)
+ (b × n)z

1 − cos 2a

2

])
, (12.25)

The final state is an eigenstate of PN with unit norm, independent of the Hamiltonian H:

ψ(T ) = exp
(
−iµ

T

a

[
bz

sin 2a

2
+ (b · n)nz

(
a − sin 2a

2

)
+ (b × n)z

1 − cos 2a

2

])
× exp (ianz − iaσ · n)

(
1
0

)
. (12.26)

The first factor in (12.26) is obviously the “dynamical phase.” Note that up to a phase, ψ(t)
is just φk, with k = tN/T . Therefore∫ T

0
〈ψ(t)|H|ψ(t)〉dt =

T

a

∫ a

0
〈φ0| exp(iθσ · n)µσ · b exp(−iθσ · n)|φ0〉dθ

= µT

[
bz

sin 2a

2a
+ (b · n)nz

(
1 − sin 2a

2a

)
+ (b × n)z

1 − cos 2a

2a

]
,

(12.27)

because the phases drop out in the above sandwich. It follows that the remaining phase in
(12.26), when the spin goes back to its initial state, is the geometrical phase. When a = π

ψ(T ) = exp (−iΩ/2) exp (−iµT (b · n)nz)
(

1
0

)
, (12.28)

where Ω is the solid angle subtended by the curve traced out by the spin, as in (12.3), and
µT (b·n)nz yields the dynamical phase, as can also be seen by direct computation of (12.27). We
remark that if time ordered products are looked upon as path integrals (Hamilton and Schulman
[1971]; Schulman [1981]; Kuratsuji [1988]), then our above demonstration is effectively a path
integral derivation of the geometrical phase.
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A practical implementation of the process just described would involve an experimental
setup similar to the one described after (12.3), but with a magnetic field whose action on the
spin is described by the Hamiltonian (12.15). If the neutron were to evolve only under the
action of the Hamiltonian, its spin would precess around the magnetic field. However, the
sequence of spin filters, which project the neutron spin onto the states (12.1), compel the spin
to follow the same trajectory as in the previous case [Eq. (12.2)], i.e. a cone whose symmetry
axis is n. As above, the spin acquires a geometrical phase, but now there is a dynamical phase
as well.

12.2.3 A particular case

It is instructive to look at a particular case of (12.26)-(12.28). We first note that if µ = 0 in
(12.26) we recover (12.2). Now let b = n. In this situation the projectors and the Hamiltonian
yield the same trajectory in spin space (although, as will be seen, at different rates). If µ = 0
(so that H = 0), the spin evolution is only due to the projectors and the final result was
computed in (12.3)

ψ(T ) = exp(−iΩ/2)φ0. (12.29)

If, on the other hand, there is a nonvanishing Hamiltonian (12.15), but no projectors are
present, a cyclic evolution of the spin is obtained for µT = π. The calculation is elementary
and yields

ψ(T ) = exp(−iπ)φ0. (12.30)

Observe that the dynamical phase in this case is [µT = π, b = n and a = π in Eq. (12.27)]∫ T

0
〈ψ(t)|H|ψ(t)〉dt = πnz = π[1 − (1 − nz)] = π − Ω/2. (12.31)

Therefore, the “π” phase in (12.30) can be viewed, à la Aharonov and Anandan (Aharonov
and Anandan [1987]; Anandan and Aharonov [1988]), as the sum of a geometrical (Ω/2) and
a dynamical (π − Ω/2) contribution.

Now let both the Hamiltonian and the projectors be present. From Eq. (12.28), one gets

ψ(T ) = exp (−iΩ/2) exp (−iµTnz)
(

1
0

)
, (12.32)

Notice that the value of µ is now arbitrary, so that µT is not necessarily equal to π (the cyclic
evolution of the spin is due to the projectors, not to the Hamiltonian). When µT < π, the
projections are too “fast” and do not yield (12.30). On the other hand, when µT > π, the
projections are too slow and supply less phase, in comparison with Eq. (12.30). Only in the
case µT = π do the projections yield the right phase in (12.30). Their presence is superfluous
in this case: one would obtain exactly the same vector and the same phase without them.
Our conclusions are summarized in Table 1. In some sense, one may say that the Hamiltonian
dynamics provides a “natural clock” for the phase of the wave function.

Table 1: Phases for cyclic spin evolutions

H = 0 H = µσ · b H = µσ · b
and projections no projections and projections

φgeom Ω/2 Ω/2 Ω/2
φdyn 0 π − Ω/2 µTnz

φtot = φgeom + φdyn Ω/2 π(= µT ) Ω/2 + µTnz

cyclic evolution cyclic evolution cyclic evolution
due to projections due to field due to projections



148 Berry phase from a quantum Zeno effect

12.3 A Gedanken Experiment

An experimental implementation with neutrons would be difficult because it would involve
putting a QZE set-up inside an interferometer in order to measure phase. We therefore restrict
ourselves to a gedanken experiment (Facchi, Klein, Pascazio and Schulman [1999]) based on
the use of 3He as a neutron polarization filter (Heil, Andersen, Hofmann, Humblot, Kulda,
Lelievre-Berna, Schärpf and Tasset [1998]). It is well known (Passel and Schermer [1966]) that
Helium 3 is “black” to neutrons but polarized 3He only absorbs one spin state of a neutron
beam—hence acts as a 50% absorber of a beam; the rest of it emerges fully polarized. In
practice an external magnetic field is used to maintain the polarization axis of the 3He. If
this external bias field were to be given a slow twist along a longitudinal axis, the state of
polarization of the 3He should follow the direction of the twist. A neutron beam propagating
through a cell of high-pressure polarized 3He along an axis aligned with the direction of twist
will become fully polarized and should develop a Berry phase according to the argument of the
previous section.

From an experimental perspective a significant problem is that we so far lack a notion of
slowness (as when we speak of “slow twist” of the B field). In the previous calculation, it is
implicitly assumed that θ changes more slowly than t (time): in other words, the relaxation
processes in the 3He are given enough time (are fast enough) to function as a polarizer. A full
treatment of this problem should therefore describe the physics of the projection process. We
now tackle this issue and see that the notion of slowness can be given quantitative meaning in
terms of a condition for adiabaticity.

In practice, the absorption of the non-selected spin state occurs over a finite distance, of
the order of one or two centimeters. This situation can be modeled via the following family
of effective (nonhermitian) Hamiltonians [which are the straightforward generalization of the
“static” Hamiltonian (7.54)]:

Hk = −iV |φ⊥
k 〉〈φ⊥

k |, (12.33)

where V is a real constant and

φ⊥
k ≡ exp(−iθkσ · n)

(
0
1

)
with θk ≡ ak

N
, k = 0, . . . , N . (12.34)

Note that 〈φk|φ⊥
k 〉 = 0 [see Eq. (12.1)]. We first assume, for simplicity, that no external (3He

aligning) magnetic field is present. We define

P⊥
k ≡ |φ⊥

k 〉〈φ⊥
k | = exp(−iθkσ · n)P⊥

0 exp(iθkσ · n) (P⊥
0 = |φ⊥

0 〉〈φ⊥
0 |) . (12.35)

Obviously P⊥
k = 1 − Pk, where Pk was defined in (12.17). The evolution engendered by the

above Hamiltonian reads

e−iHkτ = Pk + εP⊥
k = exp(−iθkσ · n)

(
1 0
0 ε

)
exp(iθkσ · n) ≡ P ′

k, (12.36)

where (inserting �)
ε ≡ e−V τ/� (12.37)

is a parameter yielding an estimate of the efficiency of the polarizer. One can estimate a
minimal value for V : for a thermal neutron (speed v � 2000m/s) and an absorption length �
on the order of 1 cm for the wrong-spin component, one gets τ = �/v � 5µs and one obtains a
good polarizer for V > �/τ � 10−29 J � 10−7 meV.
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The evolution can be computed by using the technique of Section 12.2 (
√

P ′
0 = P0 +

ε1/2P⊥
0 ):

ψ′(T ) = exp(−iaσ · n)
√

P ′
0

[
N∏

k=1

B′
k

](
1
0

)
, (12.38)

with T = Nτ and
N∏

k=1

B′
k =

N∏
k=1

√
P ′

0(1 + iδθσ · n)
√

P ′
0 =

N∏
k=1

P ′
0 + i

√
P ′

0(δθσ · n)
√

P ′
0

=
(

1 + iδθnz iδθε1/2n−
iδθε1/2n+ ε(1 − iδθnz)

)N

, (12.39)

where n± ≡ nx ± iny. The evaluation of the above matrix product when N → ∞ is lengthy
but straightforward and is given in Appendix A. One gets

ψ′(T ) = exp(−iaσ · n)Mφ0, (12.40)

where

M =
e−ab

∆

(
∆ ch(a∆) + (b + inz) sh(a∆) in− sh(a∆)

in+ sh(a∆) ∆ ch(a∆) − (b + inz) sh(a∆)

)
, (12.41)

with
b =

V T

2a�
, ∆ =

√
b2 + 2ibnz − 1. (12.42)

We are interested in the limit of large b = V T/2a�. Indeed, larger values of b correspond to
more ideal polarizers. In fact γ = V/� represents the absorption rate of the wrong component
of the spin, while ω = 2a/T is the angular velocity of precession (the spin describes an angle
of 2a in time T ). The parameter b = γ/ω is the ratio of these two quantities. Large values of
b imply

γ � ω, (12.43)

i.e., an absorption rate much larger than the velocity of precession. In other words, the spin
rotation must be sufficiently slow to allow the absorption of the wrong component of the spin.
By introducing the neutron speed v, one can define the absorption length � = v/γ = v�/V and
the length covered by the neutron while rotating for 1 rad, L = v/ω = vT/2a. Hence (12.43)
reads

L � �. (12.44)

These are all conditions of adiabaticity.
In the large b limit, using the definition (12.42), (12.41) becomes

M =
ea(∆−b)

2∆

(
∆ + b + inz in−

in+ ∆ − b − inz

)
+ O(e−2ab)

= exp(ianz)

(
1 − a1−n2

z
2b in−

2b
in+

2b 0

)
+ O

(
1
b2

)
. (12.45)

Remembering the definition of b in (12.42), one gets

M = exp(ianz)

(
1 + �a2(n2

z−1)
V T i�an−

V T

i�an+

V T 0

)
+ O

((
2a�

V T

)2
)

−→ exp(ianz)P0, when
V T

2a�
→ ∞. (12.46)
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The above formula yields the first corrections to an ideal, purely adiabatic evolution. Basically,
the system is projected on slightly different directions, thereby rotating in spin space. But if
the system “on its own” (i.e., through its dynamics) manages to rotate significantly between
projections, then more will be absorbed on the next projection and it will not follow the rotating
field, at least not without loss of probability (or intensity).

It is interesting to note that the same result can be obtained by considering a continuous
version of the effective Hamiltonian (12.33)

H(t) = −iV P⊥(t) = −iV U †(t)P⊥
0 U(t), (12.47)

where
U(t) = exp

(
i
a

T
t σ · n

)
(12.48)

is a unitary operator (rotation). The state vector ψ(t) satisfies the Schrödinger equation

i∂tψ(t) = H(t)ψ(t). (12.49)

Consider now the following rotated vector

ψ̃(t) = U(t)ψ(t). (12.50)

It is easy to prove that it satisfies the equation

i∂tψ̃(t) = H̃ψ̃(t), (12.51)

where
H̃ = iU̇(t)U †(t) + U(t)H(t)U †(t) = − a

T
σ · n − iV P⊥

0 (12.52)

is independent of t. One then gets

ψ(t) = U †(t)ψ̃(t) = exp
(
−i

a

T
t σ · n

)
exp(−iH̃t)ψ(0), (12.53)

where

H̃T = −aσ · n − iV TP⊥
0 = −aM, M =

(
nz n−
n+ −nz + i2b

)
, (12.54)

b being defined in (12.42). Hence one obtains

exp(−iH̃T ) = exp(iaM) = M (12.55)

and (12.53) yields (12.40). Observe that

H̃ = −ω
σ · n

2
− iγP⊥

0 , (12.56)

from which it is apparent the previous interpretation of the coefficients ω and γ.
The above calculation was performed by assuming that no external field is present. However,

we do need an external B field, in order to align 3He. Its effect can be readily taken into account
by noticing that, when the neutron crosses the region containing polarized 3He, if the conditions
for adiabaticity are satisfied, the neutron spin will always be (almost) parallel to the direction
of 3He and therefore to the direction of the magnetic field. The resulting dynamical phase
is therefore trivial to compute and reads φdyn � µBT/�. In order to obtain the geometric
phase in a realistic experiment, such a dynamical phase should be subtracted from the total
phase acquired by the neutron during its interaction with 3He. Incidentally, notice that this
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is experimentally feasible: one can take into account the contribution of a large dynamical
phase due to the magnetic field and neatly extract a small Berry phase (Bitter and Dubbers
[1987]; Wagh, Rakhecha, Fischer and Ioffe [1998]). The novelty of our proposal consists in the
introduction of polarizing 3He to force the neutron spin to follow a given trajectory in spin
space.

An alternative realization relies on a set of discrete 3He polarization filters with progressively
tilted polarization axes, as a finite-difference approximation to the system discussed above.
Such a system would be a neutron analog of a set of polaroid filters with progressively tilted
axes through which a photon beam propagates with little or no loss (in the limit of small angles)
as proposed by Peres [1980a]. However, in the case discussed above, the axes of the neutron
polarizers need not belong to a single plane and the neutron can acquire a Berry phase as well
as change in polarization direction.

The extension of this last property to photons, by making use of polarizers and mirrors, is
not straightforward, because of “cancellation” effects (Facchi and Pascazio [1999a]), ultimately
due to the transversality of photon polarization, and indeed would deserve to be studied in
greater detail.





Conclusions and outlook

In this thesis we have discussed the features of quantum time evolution, concentrating our
attention on the form factor of the interaction and the analytical properties of the propagator
in the complex energy plane. We have seen that the exponential decay is given by a simple
pole on the second Riemann sheet and that all corrections at short and long times are given
by the contribution of other singularities in the energy plane.

Moreover, we have seen that all interesting effects are ultimately ascribable to this richer
analytical structure of the propagator. The whole collection of phenomena known as quantum
Zeno effects is only due to the presence of such a structure. A simple pole propagator, yielding
a purely exponential decay, would be completely “transparent” to Zeno effects.

We have extended the traditional formulation in terms of projections to a more general
framework, which include the latter as a particular case. According to this theoretical scheme,
these effects are obtained if the (Hamiltonian) dynamics is such that the interaction takes a
sort of “close look” at the system. When such an interaction can be effectively described as a
projection operator à la von Neumann, we obtain the usual formulation of the quantum Zeno
effect in the limit of very frequent measurements. Otherwise, if the description in terms of
projection operators does not apply, but one can still properly think in terms of a “continuous
gaze” at the system, an intuitive explanation in terms of Zeno can still be very appealing and
intuitive.

We believe that this approach is prolific. Not only it often yields a simple intuitive picture
of the dynamical features of the system, it also enables one to look at these dynamical features
from a different, new perspective: the very concept of inverse Zeno effect is a good example.

Somewhat surprisingly, we have seen that quantum Zeno effects are not an exotic prop-
erty of quantum theory, manifesting itself in rather peculiar situations. By contrast, they are
very common phenomena! We have found links with instability (Chap. 9), chaos (Chap. 11)
and geometrical phases (Chap. 12). Further possible links with new neutron interferometric
experiments (Facchi, Mariano and Pascazio [1999]; Facchi, Mariano and Pascazio [2000a]; Fac-
chi, Mariano and Pascazio [2000b]), decoherence (Namiki, Pascazio and Nakazato [1997]) and
mesoscopic physics (Facchi and Pascazio [2000b]) have not been considered here, but deserve
a further investigation. The very fact that these links may not always be obvious is in itself a
motivation to pursue the investigation in this direction.

There is another open problem to be investigated in the future. It is the description of
unstable particles in relativistic quantum field theory (Schwinger [1960]). In particle physics,
from the perspective outlined in this work, there are two “kinds” of unstable particle: elemen-
tary particles such as µ and τ leptons, which decay through weak interaction, and composite
particles such as all hadronic resonances and neutrons (and maybe protons). The latter ones
are particles with a finite size, i.e. with a finite form factor. Therefore, according to our analy-
sis, they exhibit an initial quadratic Zeno region. On the other hand, the first ones are pointlike
particles with a constant form factor and the Zeno region seems to be absent. Therefore their
decay law seems to be very different, from the theoretical point of view (Bernardini, Maiani
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and Testa [1993]; Facchi and Pascazio [1998]; Joichi, Matsumoto and Yoshimura [1998]; Facchi
and Pascazio [1999b]). Furthermore, this property could be used to distinguish between these
two classes. The resolution of this problem could have unexpected byproducts: indeed the
decay of finite-size particles could be modified in sufficiently strong fields, arising in particular
situations such as the early universe, yielding relevant cosmological effects. There is probably
more to come, in the context of the quantum Zeno effects: maybe, additional surprises will
show up in the next future.



Appendix A

We compute here the matrix product (12.39) and its N → ∞ limit (12.41).
Let τ = T/N in (12.37). For large values of N

ε = exp
(
−V T

N

)
= 1 − V T

N
+ O

(
1

N2

)
. (A.1)

Notice that ε → 1 when N → ∞.
For an infinitesimal time interval the matrix in (12.39) reads

A ≡
(

1 + iδθnz iδθε1/2n−
iδθε1/2n+ ε(1 − iδθnz)

)
=

(
1 + ianz

N ian−
N

ian+

N 1 − ianz
N − V T

N

)
+ O

(
1

N2

)
= 1 + i

a

N
M + O

(
1

N2

)
, (A.2)

where we have defined

M =
(

nz n−
n+ −nz + i2b

)
, b =

V T

2a
. (A.3)

We are interested in the N → ∞ limit

M = lim
N→∞

√
P ′

0A
N lim

N→∞
AN = lim

N→∞

(
1 + i

a

N
M
)N

= exp(iaM), (A.4)

where one gets
ψ′(T ) = exp(−iaσ · n)Mφ0. (A.5)

We need to compute the matrix M. To this purpose we have to diagonalize M . The eigenvalue
equation, det(M − λI) = 0, reads

λ2 − i2bλ + i2bnz − 1 = 0 (A.6)

and has the solutions

λ1/2 = i(b ∓ ∆), ∆ =
√

b2 + 2ibnz − 1. (A.7)

The matrix that diagonalizes M is

S =
(

n− n−
−nz + ib − i∆ −nz + ib + i∆

)
(A.8)

and its inverse is

S−1 =
1

2in−∆

(−nz + ib + i∆ −n−
−nz + ib − i∆ n−

)
. (A.9)
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Hence we have

S−1MS = D =
(

λ1 0
0 λ2

)
= i

(
b − ∆ 0

0 b + ∆

)
, (A.10)

and finally

M = exp(iaM) = S exp(iaD)S−1 = Se−ab

(
ea∆ 0
0 e−a∆

)
S−1. (A.11)

Evaluating the matrix product (A.11), after some algebra, one obtains

M =
e−ab

∆

(
∆ ch(a∆) + (b + inz) sh(a∆) in− sh(a∆)

in+ sh(a∆) ∆ ch(a∆) − (b + inz) sh(a∆)

)
, (A.12)

which is Eq. (12.41) of the text.
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