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Abstract We establish a bijection between the self-adjoint extensions of the Laplace
operator on a bounded regular domain and the unitary operators on the boundary.
Each unitary encodes a specific relation between the boundary value of the function
and its normal derivative. This bijection sets up a characterization of all physically
admissible dynamics of a nonrelativistic quantum particle confined in a cavity. More-
over, this correspondence is discussed also at the level of quadratic forms. Finally, the
connection between this parametrization of the extensions and the classical one, in
terms of boundary self-adjoint operators on closed subspaces, is shown.
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1 Introduction

In the last few years, there has been an increasing interest in the physics of
quantum systems confined in a bounded spatial region and in the role of quan-
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tum boundary conditions. It has been realized that the presence of boundaries can
often catalyze and amplify the quantum behavior of a system. For a review, see,
e.g., [2,5,16].

All physical dynamics of closed quantum systems are implemented by strongly
continuous one-parameter unitary groups, which by Stone’s theorem are in one-
to-one correspondence with their generators, which are self-adjoint operators. See,
e.g., [28].

The characterization of the self-adjoint extensions of a symmetric operator is given
by von Neumann in his theory of self-adjoint extensions, one of the gems of func-
tional analysis [32]. This theory is fully general and completely solves the problem of
self-adjoint extensions of every densely defined and closed symmetric operator in an
abstract Hilbert space in terms of unitary operators between its deficiency subspaces.
See, e.g., [13].

However, for specific classes of operators, e.g., differential operators, it would be
desirable to have a more concrete characterization of the set of self-adjoint extensions.
A concrete characterization was given by Grubb [19] for symmetric even-order ellip-
tic differential operators in a bounded regular spatial domain. Building on the earlier
work of Vis̆ik [31], Birman [9], and Lions and Magenes [25], she was able to charac-
terize all the self-adjoint extensions in terms of boundary conditions parametrized by
(unbounded) self-adjoint boundary operators L : D(L) ⊂ X → X ∗ acting on closed
(proper) subspaces X of the boundary Hilbert space. See Theorem 2 for the Laplace
operator.

At an intermediate level of abstraction between Grubb’s and von Neumann’s
descriptions lies the theory of boundary triples [10,13], which elaborates on ideas
of Calkin [11] and Vis̆ik [31], and is valid for every symmetric operator, because it
relies on an abstraction of boundary values in function spaces. A related description
was discovered in the last years by Posilicano [26,27], who introduced a parametriza-
tion in terms of pairs (Π,Θ), where Π is an orthogonal projection in an auxiliary
Hilbert space h andΘ is a self-adjoint operator in the range ofΠ . See also [12]. When
particularized to differential operators, one recovers Grubb’s parametrization, where
h is essentially the boundary space, Π is the projection onto X , and Θ is L .

Recently, Asorey, Marmo and Ibort [5,6] proposed on physical ground a different
parametrization of the self-adjoint extensions of differential operators in terms of
unitary operatorsU on the boundary. This description relies more directly on physical
intuition, and in the last years it has been applied to several physical systems [3,4,7,
8,14,15,17].

The large use of this description in several applications is also due to its great
manageability: The parametrization is in terms of a single unitary operator U on the
boundary, instead of a pair (X , L) composed of a closed subspaceX and a self-adjoint
operator L , which in general is unbounded and thus also needs a domain specification
D(L). Here, all information is encoded in a single simpler object.

Our main objective is to establish a characterization of the self-adjoint extensions
of an elliptic differential operator in terms of unitary operators on the boundary. In
this paper, we will focus on the paradigmatic model of the Laplacian in a bounded
regular domain. We will establish, in Theorem 1, a bijection between the set of
the self-adjoint extensions of the Laplace operator on a bounded regular domain
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Self-adjoint extensions and unitary operators on the boundary 197

and the set of boundary unitary operators. Each unitary operator is characteristic
of a specific boundary condition that is a relation between the boundary value, γψ ,
of the function ψ and its normal derivative at the boundary, νψ (in the sense of
traces).

The explicit relation, given in Remark 2, reads

μψ − iγψ = U (μψ + iγψ),

and, in fact, it links the boundary value γψ of the functionψ to the regular part μψ of
its normal derivative νψ , see Definition 1. This is consistent with a different regularity
of the boundary values of the function and of its normal derivative: In general, their
traces belong to different Sobolev spaces, H−1/2(∂Ω) and H−3/2(∂Ω), respectively,
and cannot be compared. Interestingly enough, the irregular part of the normal deriva-
tive plays no role in the boundary conditions; in fact it is not an independent boundary
datum and indeed is completely determined by the trace of the function γψ through
the Dirichlet-to-Neumann operator [1,20].

The link between Grubb’s parametrization and our parametrization, (X , L) ↔ U ,
will be given in Theorem 3. In a few words, the unitary U is adapted to the direct
sum H−1/2(∂Ω) = X ⊕ X⊥ and reads U = V ⊕ I. Here, the unitary component
V is essentially the (partial) Caley transform of L and, as such, it does not have 1
as eigenvalue. Therefore, the eigenspace associated with the eigenvalue 1 (the idle
subspace) coincides with X⊥. As a matter of fact, at the level of Hilbert spaces, the
relevant information is encoded in X . Its orthogonal X⊥, which for this reason is
called idle, is only necessary to extend V to a unitary operatorU on the whole Hilbert
space of boundary data.

A final remark is in order. In this paper, for definiteness, we explicitly consider only
the case of the Laplace operator in a bounded regular domain of Rn . However, Theo-
rem 3 which establishes the link (X , L) ↔ U , and the general strategy of encoding
boundary conditions in a unitary operator by using an idle subspace and a partial Caley
transform, would allow us to generalize our results to a larger class of operators (e.g.,
Laplace–Beltrami [23], Dirac [6], pseudodifferential operators [19]) and/or settings
(e.g., manifolds with boundaries [22]).

Notice that, up to this point, we considered only regular domains. Recently, there
has been an increasing interest in domains with nonsmooth boundaries, and by now
there are general approaches to this circle of ideas, see, for example, [18]. It would
be interesting to understand whether a parametrization in terms of unitary boundary
operators might also be available in this more general setting.

This article is organized as follows. In Sect. 2, after setting the notation and defining
the regularized normal derivative at the boundary, we state our main result, Theorem
1. Then, after recalling Grubb’s characterization of self-adjoint extensions, Theorem
2, we establish the connection between the two parametrizations in Theorem 3. Then,
we state our result in terms of quadratic forms in Theorem 4, which is a corollary
of Theorem 1. Sections4 and 5 are devoted to the proofs of the theorems. The main
properties of the Cayley transform which are used in the proofs are gathered in the
final Sect. 6.
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2 Notation and main results

Weare going to consider complex separableHilbert spaces. The inner product between
two vectors u,v of a Hilbert space H is denoted by 〈u|v〉H . In our convention, it is
anti-linear in the first argument and linear in the second one.

Given two Hilbert spacesH1 andH2, the set of unitary operators fromH1 toH2
is denoted by U (H1,H2), while U (H1) stands for U (H1,H1).

Let H be an Hilbert space and A a densely defined linear operator on H ,

A : D(A) ⊂ H → H .

We are going to denote by A∗ the adjoint operator of A,

A∗ : D(A∗) ⊂ H → H .

We say that A is self-adjoint if A = A∗.
Let Ω be a regular domain that is an open bounded set of Rn , n ∈ N, whose

boundary ∂Ω is a (n − 1)-dimensional infinitely differentiable manifold, with Ω

being locally on one side of ∂Ω [25]. By convention, the normal ν of ∂Ω is oriented
toward the exterior of the regular domain Ω .

Let Hs(Ω) (resp. Hs(∂Ω)), s ∈ R , be the Sobolev space of order s onΩ (resp. on
∂Ω) with the usual norm [21,25]. Furthermore, we set Hs

0 (Ω) the closure of C∞
c (Ω)

in Hs(Ω), where C∞
c (Ω) is the set of C∞ functions with compact support in Ω .

In what follows, we will need the following family of operators {Λt }t∈R, where for
all t ∈ R the operator Λt is defined as

Λt = (I − ΔLB)t/2,

where I is the identity operator on L2(∂Ω) and ΔLB is the Laplace–Beltrami operator
on ∂Ω . We will set Λ ≡ Λ1. The family {Λt }t∈R has the following property: For all
t, s ∈ R

Λt : Hs(∂Ω) → Hs−t (∂Ω)

is positive and unitary. For an explicit construction of {Λt }t∈R, see [25].
We denote by 〈·, ·〉s,−s , with s ∈ R, the pairing between H−s(∂Ω) and its dual

Hs(∂Ω) induced by the scalar product in L2(∂Ω), i.e.,

〈u, v〉s,−s := 〈Λsu|Λ−sv〉L2(∂Ω), for all u ∈ Hs(∂Ω), v ∈ H−s(∂Ω).

Let T ∗ be the operator that acts as the distributional Laplacian on the maximal domain

D(T ∗) = {ψ ∈ L2(Ω) | Δψ ∈ L2(Ω)}.

We denote by

γ : D(T ∗) → H−1/2(∂Ω), ψ 
→ γ (ψ) = ψ |∂Ω
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Self-adjoint extensions and unitary operators on the boundary 199

the trace operator and by

ν : D(T ∗) → H−3/2(∂Ω), ψ 
→ ν(ψ) = ∂ψ

∂ν
= (∇ψ)|∂Ω · ν

the normal derivative, and we recall that these operators are continuous with respect
to the graph norm of T ∗ [25].

In the following, we will consider the Laplace operator T = −Δ on the domain

D(T ) = {ψ ∈ H2(Ω) | γψ = νψ = 0} ≡ H2
0 (Ω) (1)

and the Dirichlet Laplacian TD = −Δ on

D(TD) = H2(Ω) ∩ H1
0 (Ω) = {ψ ∈ H2(Ω) | γψ = 0}.

We recall that T is nothing but the closure in L2(Ω) of the symmetric operator given
by the Laplacian on functions in C∞

c (Ω). Moreover, TD is a self-adjoint, positive
definite operator, TD = T ∗

D > 0.
Moreover, T ∗ is the adjoint operator of the symmetric operator T , and TD is a

self-adjoint extension of T , namely

T ⊂ TD ⊂ T ∗.

Our main objective is to characterize all the possible self-adjoint extensions of the
symmetric operator T . As the Dirichlet Laplacian, they will all be contained between
the minimal Laplacian T and the maximal one T ∗. The domain of each self-adjoint
extension will be characterized by a specific relation between the values of the func-
tions and those of their normal derivatives at the boundary.

We will need a regularized version of the trace operator for the normal
derivative ν.

Definition 1 The regularized normal derivative μ : D(T ∗) → H−1/2(∂Ω) is the
linear operator whose action is

μψ = Λ νΠDψ,

for all ψ ∈ D(T ∗), where ΠD = T−1
D T ∗.

Remark 1 Note that T−1
D maps L2(Ω) onto D(TD) ⊂ H2(Ω). By the trace theorem,

ν(H2(Ω)) = H1/2(∂Ω), whence μψ ∈ H−1/2(∂Ω) is more regular than the normal
derivative νψ ∈ H−3/2(∂Ω).

The operator ΠD is in fact a (nonorthogonal) projection from D(T ∗) onto D(TD),
since for all ψ ∈ D(TD) one gets that ΠDψ = T−1

D T ∗ψ = T−1
D TDψ = ψ . Thus,

μψ is the image under Λ of the normal derivative of the component ψD = ΠDψ of
ψ belonging to the regular subspace D(TD) of D(T ∗).
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Theorem 1 The set of all self-adjoint extensions of T is

{
TU : D(TU ) → L2(Ω) |U ∈ U (H−1/2(∂Ω))

}
,

where for all U ∈ U (H−1/2(∂Ω))

D(TU ) = {
ψ ∈ D(T ∗) | i(I +U )γψ = (I −U )μψ

}
.

Remark 2 Note the role played by the regularized normal derivative μψ in the above
theorem: The trace γψ and μψ can be compared because they both belong to the
same (boundary) space, namely H−1/2(∂Ω). Notice also the equivalent relation

μψ − iγψ = U (μψ + iγψ)

defining the domain of the self-adjoint extension TU .

Nowwewant to compare the result in Theorem 1with the classical characterization
of the self-adjoint extensions of T due to Grubb [19,20]. We need some notation: A
closed linear subspace X of H−1/2(∂Ω) is denoted by X � H−1/2(∂Ω), and X ∗
denotes its dual; we say that a densely defined operator L : D(L) ⊂ X → X ∗ is
self-adjoint if

ΛL : D(L) ⊂ X → X

is self-adjoint, (ΛL)∗ = ΛL .

Theorem 2 [19] The set of all self-adjoint extensions of T is

{
T(X ,L) : D (

T(X ,L)

) → L2(Ω) |
X � H−1/2(∂Ω), L : D(L) ⊂ X → X ∗, L self-adjoint

}
,

where, for all X � H−1/2(∂Ω) and L : D(L) ⊂ X → X ∗, L self-adjoint,

D
(
T(X ,L)

) =
{
ψ ∈ D(T ∗) |
γψ ∈ D(L), 〈νΠDψ, u〉 1

2 ,− 1
2

= 〈Lγψ, u〉 1
2 ,− 1

2
, ∀u ∈ X

}
.

The relation between the two different parametrizations of the self-adjoint exten-
sions of T given in Theorems 1 and 2 is established in the next theorem. First we
introduce some notation: If U : H−1/2(∂Ω) → H−1/2(∂Ω) is a linear operator and
X is a subspace of H−1/2(∂Ω), we denote by U�X the operator

U�X : X → U (X ), u ∈ X 
→ Uu.
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Self-adjoint extensions and unitary operators on the boundary 201

Theorem 3 For allX � H−1/2(∂Ω) and L : D(L) ⊂ X → X ∗, with L self-adjoint,
it results that

T(X ,L) = TU , with U = C (ΛL) ⊕ IX⊥ ∈ U (H−1/2(∂Ω)),

where
C (ΛL) = (ΛL − iIX )(ΛL + iIX )−1

is the Cayley transform of ΛL, and IX , IX⊥ are the identity operators on X and on
X⊥, respectively.

Conversely, for all U ∈ U (H−1/2(∂Ω)) it results that

TU = T(X ,L), with X = Ran QU and L = Λ−1C−1 (U�X ) ,

where QU is the spectral projection of U on the Borel set R\{1} and

C−1(V ) = i (IX + V ) (IX − V )−1

is the inverse Cayley transform of V ∈ U (X ).

Remark 3 The Cayley transformmaps bijectively self-adjoint operators on the Hilbert
spaceX to unitary operators that do not have 1 as eigenvalue. See Sect. 6. In the second
part of the theorem, V = U�X is the restriction of the unitaryU to its spectral subspace
X = Ran QU orthogonal to the (possible) eigenspace belonging to the eigenvalue 1.
Therefore, its inverse Cayley transform exists. It is a bounded self-adjoint operator if
1 is a point of the resolvent set of V , i.e., if the (possible) eigenvalue 1 ofU is isolated;
otherwise, it is an unbounded self-adjoint operator.

3 Quadratic forms

Consider the expectation value of the symmetric operator T = −Δ at ψ ∈ D(T ) =
H2
0 (Ω):

t(ψ) = 〈ψ |Tψ〉L2(Ω) = ‖∇ψ‖2L2(Ω)
. (2)

Physically, this represents the kinetic energy of a quantum particle in the vector stateψ

(assumed to be normalized). A quadratic form corresponds to a self-adjoint operator—
and hence to a physical observable—if and only if it is real and closed [28]. Therefore,
the search of the self-adjoint extensions of the symmetric operator T is mirrored in
the search of the real and closed quadratic forms that extend the minimal form (2).

As a consequence, Theorem1 has a counterpart in terms of quadratic forms, through
the relation tU (ψ) = 〈ψ |TUψ〉, which must hold for all ψ ∈ D(TU ).

Theorem 4 The set of all real closed quadratic forms on L2(Ω) that extend t(ψ) is

{
tU : D(tU ) → R |U ∈ U (H−1/2(∂Ω))

}
,
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with

tU (ψ) = ‖∇ψD‖2L2(Ω)
+ 〈γψ |KUγψ〉H−1/2(∂Ω), for all ψ ∈ DU ,

where

DU = D(tD) + N (T ∗) ∩ γ −1 (D(KU ))

is a core of tU .
Here ψD = ΠDψ ∈ D(tD) = H1

0 (Ω), the domain of the Dirichlet form, and KU

is a self-adjoint operator on the boundary space H−1/2(∂Ω) defined by

D(KU ) = Ran(I −U ), KU (I −U )g = −i QU (I +U )g, for all g ∈ H−1/2(∂Ω),

with QU the projection onto the subspace Ran(I −U ).
Moreover, the domain D(TU ) of Theorem 1 is a core of tU (in fact it is a subspace

of DU ), and

tU (ψ) = 〈ψ |TUψ〉L2(Ω) for all ψ ∈ D(TU ).

Proof According to assertion 2 of Lemma 1 in Sect. 4, every φ ∈ C∞(Ω) ⊂ D(T ∗)
has a unique decomposition φ = φD + φ0, with γφD = 0 and Δφ0 = 0. Thus, for
any φ ∈ C∞(Ω), we get by the Gauss–Green formula and Definition 1

〈φ|T ∗φ〉L2(Ω) = −
∫

Ω

φ̄ΔφDdx

=
∫

Ω

∇φ̄0 · ∇φDdx +
∫

Ω

|∇φD|2dx −
∫

∂Ω

φ̄
∂φD

∂ν
dS

= ‖∇φD‖2L2(Ω)
− 〈γφ|μφ〉H−1/2(∂Ω), (3)

since ∫

Ω

∇φ̄0 · ∇φDdx = −
∫

Ω

Δφ̄0φDdx +
∫

∂Ω

∂φ̄0

∂ν
φDdS = 0.

By density, formula (3) is valid for all φ ∈ D(T ∗). Therefore, we can define the
following quadratic form

t∗(ψ) = ‖∇ψD‖2L2(Ω)
− 〈γψ |μψ〉H−1/2(∂Ω), (4)

which on D(T ∗) coincides with the expectation value of the operator T ∗, namely

t∗(ψ) = 〈ψ |T ∗ψ〉L2(Ω),

123



Self-adjoint extensions and unitary operators on the boundary 203

for all ψ ∈ D(T ∗). However, notice that D(TD) = H2(Ω) ∩ H1
0 (Ω) is a dense

subspace of D(tD) = H1
0 (Ω), the domain of the Dirichlet quadratic form,

tD(u) = ‖∇u‖2L2(Ω)
.

Therefore, the form (4) can be extended by density to functions

ψ ∈ D(tD) + N (T ∗).

[Recall the decomposition of Lemma 1, D(T ∗) = D(TD) + N (T ∗).]
Suppose now that ψ ∈ D(TU ) ⊂ D(T ∗). Thus,

〈ψ |TUψ〉L2(Ω) = t∗(ψ) = ‖∇ψD‖2L2(Ω)
− 〈γψ |μψ〉H−1/2(∂Ω),

and, by Theorem 1,

i(I +U )γψ = (I −U )μψ.

Let PU and QU be the spectral projections of U on the Borel sets {1} and R\{1},
respectively (PU is zero if 1 is not an eigenvalue of U ). Then, the above relation is
equivalent to

PUγψ = 0, i(I +U )QUγψ = (I −U )QUμψ, (5)

which imply that

γψ ∈ Ran (I −U ) ⊂ Ran QU ,

since Ran PU = Ran (I −U )⊥. Let us now define the operator KU with domain

D(KU ) = Ran(I −U ),

whose action is

KU (I −U )g = −i QU (I +U )g = −i(I +U )QUg,

for all g ∈ H−1/2(∂Ω). Thus, we get that, for some g ∈ H−1/2(∂Ω),

i(I +U )QUγψ = i(I +U )QU (I −U )g = (I −U )i QU (I +U )g

= −(I −U )KU (I −U )g = −(I −U )KU QUγψ,

which plugged into (5) gives

−(I −U )QU KUγψ = (I −U )QUμψ.

Since I −U is injective when restricted to Ran QU , we get that

KUγψ = −QUμψ, (6)
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for all γψ ∈ D(KU ). This implies that

−〈γψ |μψ〉H−1/2(∂Ω) = 〈γψ |KUγψ〉H−1/2(∂Ω),

for all ψ ∈ D(tD) + N (T ∗), such that γψ ∈ D(KU ).
Thus, we can define the quadratic form

tU (ψ) = ‖∇ψD‖2L2(Ω)
+ 〈γψ |KUγψ〉H−1/2(∂Ω),

on the domain

DU = D(tD) + N (T ∗) ∩ γ −1 (D(KU )) .

For all ψ ∈ D(TU ), it coincides with the expectation value of the self-adjoint exten-
sion TU :

tU (ψ) = 〈ψ |TUψ〉L2(Ω).

The domain DU is a core of the quadratic form tU since it contains the domain of its
associated self-adjoint operator TU , namely D(TU ) ⊂ DU . ��
Remark 4 At variance with the domains of their corresponding operators, the domains
of the kinetic energy forms are all contained between aminimal domain and amaximal
one:

D(tI) ⊂ D(tU ) ⊂ D(t−I).

The Dirichlet form tI = tD has the expression

tD(ψ) = ‖∇ψ‖2L2(Ω)
,

on the minimal domain D(tD) = H1
0 (Ω), while the form t−I has maximal domain

D(t−I) = H1
0 (Ω) + N (T ∗) and acts as

t−I(ψ) = ‖∇ψD‖2L2(Ω)
.

Both forms have no boundary term, since the boundary Hamiltonians are both zero,
KI = K−I = 0, but on the smallest and largest domain, respectively: D(KI) = {0}
and D(K−I) = H−1/2(∂Ω). The maximal form t−I corresponds to the Kreĭn-von
Neumann extension T−I, whose boundary condition is the vanishing of the regularized
normal derivative, μψ = 0 [24].

Remark 5 Notice that the boundary Hamiltonian KU is nothing but the inverse partial
Cayley transform of the unitary U on its spectral subspace Ran QU = Ran (I −U ).
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Self-adjoint extensions and unitary operators on the boundary 205

(In the above proof, QU has been identified as the spectral projection of U on the
Borel set R\{1}). Explicitly, one gets

KU = C−1(U�Ran QU ).

The inverse Cayley transform is well defined since the restriction of U has the eigen-
value 1 stripped out. Notice, however, that if 1 is not an isolated eigenvalue ofU , then
1 is not in the resolvent set of U�Ran QU , and thus, KU is an unbounded operator.

4 Proof of Theorem 1

We will first need some properties of the regularized normal derivative μ and of the
projection ΠD.

Lemma 1 The following properties hold:

1. Let μ be the regularized normal derivative of Definition 1, then

μ : D(T ∗) → H−1/2(∂Ω)

is a surjective continuous map with respect to the graph norm of T ∗.
2. The domain of the adjoint D(T ∗) is the vector space direct sum of the domain of

the Dirichlet Laplacian TD and the kernel of T ∗:

D(T ∗) = D(TD) + N (T ∗), ψ = ψD + ψ0,

where ψ ∈ D(T ∗), ψD = ΠDψ ∈ D(TD), and ψ0 = (I − ΠD)ψ ∈ N (T ∗).
3. The map

φ ∈ D(T ∗) 
→ (γ φ,μ φ) ∈ H−1/2(∂Ω) × H−1/2(∂Ω)

is surjective.

Proof 1. The map μ is continuous as a composition of three continuous maps: μ =
ΛνΠD, with Λ : H1/2(∂Ω) → H−1/2(∂Ω) being unitary,

ν : H2(Ω) → H1/2(∂Ω)

being continuous by the trace theorem, and

ΠD = T−1
D T ∗ : D(T ∗) → D(TD) = H2(Ω) ∩ H1

0 (Ω)

being a projection, as pointed out in Remark 1.
Surjectivity follows from the surjectivity of the projection ΠD and from the sur-
jectivity of the map

γ 1 = (γ , ν) : H2(Ω) → H3/2(∂Ω) × H1/2(∂Ω),
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206 P. Facchi et al.

which implies the surjectivity of its restriction

γ 1 : H2(Ω) ∩ γ −1
1 ({0} × H1/2(∂Ω)) → {0} × H1/2(∂Ω)

and thus of the map

ν : H2(Ω) ∩ H1
0 (Ω) → H1/2(∂Ω).

2. For any ψ ∈ D(T ∗), we have ψD = ΠDψ ∈ D(TD) and ψ0 = (I − ΠD)ψ ∈
N (T ∗). Indeed,

T ∗ψ0 = T ∗ψ − T ∗ΠDψ = T ∗ψ − T ∗T−1
D T ∗ψ = T ∗ψ − TDT

−1
D T ∗ψ = 0.

3. Since Λ : H1/2(∂Ω) → H−1/2(∂Ω) is unitary, the surjectivity of the map

(γ ,μ) : D(T ∗) → H−1/2(∂Ω) × H−1/2(∂Ω)

is equivalent to the surjectivity of

(γ , νΠD) : D(T ∗) → H−1/2(∂Ω) × H1/2(∂Ω).

By the decomposition of point 2 of the lemma, we get that for any ψ ∈ D(T ∗),
ψ = ψD + ψ0 with γψD = 0 and νΠDψ0 = νΠD(I − ΠD)ψ = 0. Therefore,

(γ , νΠD)ψ = (γψ0, νψD).

Therefore, the surjectivity of (γ ,μ) follows from the separate surjectivity of the
two component maps:

γ : N (T ∗) → H−1/2(∂Ω), ν : D(TD) → H1/2(∂Ω).

The surjectivity of ν has just been proved in part 1. The surjectivity of γ is nothing
but a classical result [30] on the existence of an L2(Ω)-solution to the Laplace
equation −Δu = 0 for any Dirichlet boundary condition γ u = g ∈ H−1/2(∂Ω).

��
Using the regularity result in Lemma 1, we can define the generalized Gauss–Green
boundary form.

Definition 2 We define the generalized Gauss–Green boundary form

Γ : D(T ∗) × D(T ∗) → C

such that for all φ,ψ ∈ D(T ∗)

Γ (φ,ψ) = 〈μφ|γψ〉H−1/2(∂Ω) − 〈γφ|μψ〉H−1/2(∂Ω).
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In [19], it was proved the following result.

Proposition 1 Let T the operator defined in (1) and let Γ the generalized Gauss–
Green boundary form in Definition 2. Then,

Γ (φ,ψ) = 〈φ|T ∗ψ〉L2(Ω) − 〈T ∗φ|ψ〉L2(Ω) for all φ,ψ ∈ D(T ∗). (7)

Proof According to Lemma 1, every φ ∈ C∞(Ω) ⊂ D(T ∗) has a unique decompo-
sition φ = φD + φ0, with γφD = 0 and Δφ0 = 0. Thus, for any φ,ψ ∈ C∞(Ω), we
get

〈φ|T ∗ψ〉L2(Ω) − 〈T ∗φ|ψ〉L2(Ω) =
∫

Ω

(
Δφ̄Dψ − φ̄ΔψD

)
dx

=
∫

∂Ω

(
∂φ̄D

∂ν
ψ − φ̄

∂ψD

∂ν

)
dS

= 〈νφD, γψ〉 1
2 ,− 1

2
− 〈γφ, νψD〉− 1

2 , 12

= 〈μφ|γψ〉H−1/2(∂Ω) − 〈γφ|μψ〉H−1/2(∂Ω),

by the Gauss–Green formula and Definition 1. The result follows by density. ��
Remark 6 Notice that the irregular part of the normal derivative is immaterial to the
boundary conditions as it follows from the generalized Green formula; see Definition
2 and Proposition 1. It exploits a gauge freedom in Green’s second identity: One can
add and subtract an arbitrary boundary self-adjoint operator to the difference of the
normal derivatives. It is just this freedom that was used to get rid of the irregular part of
the normal derivative and to gain regularity. In other words, the Dirichlet-to-Neumann
operator is a self-adjoint operator [1].

We denote by Hb := H−1/2(∂Ω) ⊕ H−1/2(∂Ω).

Definition 3 Let W be a subspace of Hb. We define the Γ -orthogonal subspace of
W as

W† := {
(u1, u2) ∈ Hb

∣∣ 〈u2|v1〉H−1/2(∂Ω) = 〈u1|v2〉H−1/2(∂Ω), ∀(v1, v2) ∈ W}
.

We say that W is a maximally isotropic subspace ifW = W†.

Proposition 2 Let W be a subspace of Hb, and let T̃ be the restriction of T ∗ to the
domain

D(T̃ ) = {
φ ∈ D(T ∗) | (γφ,μφ) ∈ W}

.

Then, T̃ is self-adjoint if and only if W is a closed maximally isotropic subspace.

Proof First of all, we observe that

T̃ is self-adjoint ⇐⇒ G(T̃ ∗) = G(T̃ )
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and that D(T̃ ) ⊂ D(T̃ ∗) ⊂ D(T ∗). The proof follows immediately by observing that
the graph of T̃ reads

G(T̃ ) =
{
(φ, T ∗φ)

∣∣φ ∈ D(T̃ )
}

= {
(φ, T ∗φ)

∣∣ φ ∈ D(T ∗), (γφ,μφ) ∈ W}
,

while the graph of T̃ ∗ is

G(T̃ ∗) =
{
(φ, T ∗φ) | φ ∈ D(T̃ ∗)

}

=
{
(φ, T ∗φ) | φ ∈ D(T ∗), Γ (φ,ψ) = 0, ∀ψ ∈ D(T̃ )

}

=
{
(φ, T ∗φ) | φ ∈ D(T ∗), 〈u1|μφ〉H−1/2(∂Ω) = 〈γφ|u2〉H−1/2(∂Ω),∀(u1, u2) ∈ W

}

=
{
(φ, T ∗φ) | φ ∈ D(T ∗), (γφ,μφ) ∈ W†

}
,

and thus, G(T̃ ) = G(T̃ ∗) iffW = W†. ��
The closed maximally isotropic subspaces are characterized by the following the-

orem, whose straightforward proof can be found in [10].

Theorem 5 A closed subspace W of Hb is a maximally isotropic subspace if and
only if there exists U ∈ U (H−1/2(∂Ω)) such that

W = {(u1, u2) ∈ Hb | i(I +U )u1 = (I −U )u2} .

We can now conclude.

Proof of Theorem 1 The proof follows immediately from Proposition 2 and
Theorem 5. ��
Remark 7 The proof of Theorem 1 can be translated into the language of boundary
triples [10], by saying that (Hb, γ ,μ) is a boundary triple for T ∗. This follows by
Proposition 1 and by assertion 3 of Lemma 1.

5 Proof of Theorem 3

Proof Let X � H−1/2(∂Ω) and L : D(L) ⊂ X → X ∗ a self-adjoint operator. For
all ψ ∈ D(T ∗), we denote by (μ̃ψ)

∣∣X the element of X ∗ defined as follows:

(μ̃ψ)
∣∣X u := 〈Λ−1μψ, u〉 1

2 ,− 1
2
, for all u ∈ X ,

and thus, we have that

D(T(X ,L)) = {
ψ ∈ D(T ∗) | γψ ∈ D(L), (μ̃ψ)

∣∣X = Lγψ
}
.
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The operator ΛL : D(ΛL) ⊂ X → X is self-adjoint, where D(ΛL) = D(L). We
can define

V = C (ΛL) = (ΛL − iIX )(ΛL + iIX )−1

and byProposition 3 in Sect. 6we have that V ∈ U (X ). Nowobserve that, by assertion
3 of Proposition 3, we can rewrite D(T(X ,L)) as follows

D(T(X ,L)) = {
ψ ∈ D(T ∗) | γψ ∈ D(ΛL), i(IX + V )γψ = (IX − V )Λ(μ̃ψ)

∣∣X
}
.

For all ψ ∈ D(T ∗), we denote by (μψ)
∣∣X the element of X defined as follows:

v(μψ)
∣∣X := 〈v,μψ〉 1

2 ,− 1
2
, for all v ∈ X ∗.

Observe that

Λ(μ̃ψ)
∣∣X = (μψ)

∣∣X for all ψ ∈ D(T ∗),

and therefore, D(T(X ,L)) can be rewritten as

D(T(X ,L)) = {
ψ ∈ D(T ∗) | γψ ∈ D(ΛL), i(IX + V )γψ = (IX − V )(μψ)

∣∣X
}
.

By Lemma 2 in Sect. 6, one gets that the condition γψ ∈ D(ΛL) can be dispensed
with. Indeed, as long as γψ ∈ X satisfies the equation

i(IX + V )γψ = (IX − V )(μψ)
∣∣X ,

then γψ ∈ D(ΛL). Therefore, we have proved that

D(T(X ,L)) = {
ψ ∈ D(T ∗) | γψ ∈ X , i(IX + V )γψ = (IX − V )(μψ)

∣∣X
}
.

Thus, by defining the operator U := V ⊕ IX⊥ ∈ U (H−1/2(∂Ω)), we have that
D(T(X ,L)) = D(TU ), and that T(X ,L) = TU with U := C (ΛL) ⊕ IX⊥ .

Now we prove the converse. Fix U ∈ U (H−1/2(∂Ω)) and consider TU , a self-
adjoint extension of T . Let PU the spectral projection of U on the Borel set {1} ⊂ R.
DefineX := Ran(PU )⊥ � H−1/2(∂Ω) and consider the operator V = U�X∈ U (X ).
Clearly, 1 is not an eigenvalue of V ; therefore, we can define the self-adjoint operator

L := Λ−1
[
i(IX + V )(IX − V )−1

]
: D(L) ⊂ X → X ∗.

We know that

D(TU ) = {
ψ ∈ D(T ∗) | i(I +U )γψ = (I −U )μψ

}
.
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By projecting on X and X⊥ the equation i(I +U )γψ = (I −U )μψ , one gets

D(TU ) = {
ψ ∈ D(T ∗) | γψ ∈ X , i(I + V )γψ = (I − V )(μψ)

∣∣X
}
.

Since (μψ)
∣∣X = Λ(μ̃ψ)

∣∣X , for all ψ ∈ D(T ∗), we have that

D(TU ) = {
ψ ∈ D(T ∗) | γψ ∈ X , i(I + V )γψ = (I − V )Λ(μ̃ψ)

∣∣X
}
.

Again by Lemma 2, one has that

D(TU ) = {
ψ ∈ D(T ∗) | γψ ∈ D(ΛL), i(I + V )γψ = (I − V )Λ(μ̃ψ)

∣∣X
}

and thus
D(TU ) = D(T(X ,L)).

��

6 Supplemental results

Let us recall some basic facts about the Cayley transform of self-adjoint operators.
For further details, see [29].

Definition 4 Let A : D(A) ⊂ H → H be a self-adjoint operator. We define the
Cayley transform of A, denoted by C (A), as follows

C (A) = (A − iI)(A + iI)−1,

where I is the identity operator on H .
Conversely, letU ∈ U (H ) and assume that 1 is not an eigenvalue ofU . We define

the inverse Cayley transform of U , denoted by C−1(U ), as follows

C−1(U ) = i(I +U )(I −U )−1.

Proposition 3 [29] Let A : D(A) ⊂ H → H be a self-adjoint operator. Then,

1. C (A) ∈ U (H );
2. I − C (A) is injective;
3. Ran(I − C (A)) = D(A);
4. For all φ ∈ D(A),

Aφ = i(I + C (A))(I − C (A))−1φ = C−1(C (A))φ.

5. Moreover, if U ∈ U (H ) such that 1 is not an eigenvalue of U, then

C−1(U ) : Ran(I −U ) → H

is a self-adjoint operator and C (C−1(U )) = U.
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Lemma 2 Let A : D(A) ⊂ H → H be a self-adjoint operator and

G(A) = {(u, Au) ∈ H × H | u ∈ D(A)}

be its graph. Let

Θ(A) = {(φ,ψ) ∈ H × H | i(I + C (A)) φ = (I − C (A)) ψ}.

Then, G(A) = Θ(A).

Proof Notice first that the inclusionG(A) ⊂ Θ(A) follows immediately fromproperty
3 of Proposition 3. We need to show that Θ(A) ⊂ G(A).

Fix (φ,ψ) ∈ H × H such that

i(I + C (A)) φ = (I − C (A)) ψ. (8)

Observe that

I − C (A) = 2i(A + iI)−1 and I + C (A) = 2A(A + iI)−1.

Plugging these expressions in Eq. (8), we obtain:

A (A + i I)−1φ = (A + i I)−1ψ.

The right-hand side belongs to D(A), and thus, also the left-hand side belongs to
D(A). Then, we can multiply both sides by A + i I, obtaining

ψ = (A + i I) A (A + i I)−1φ.

Since (A+i I)−1φ ∈ D(A) and A (A+i I)−1φ ∈ D(A), it follows that (A+i I)−1φ ∈
D(A2). The operators (A + i I) and A commute on D(A2) and we get that

ψ = Aφ,

and thus (φ,ψ) ∈ G(A). ��
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