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In this paper, we extend the analysis of multipartite entanglement, based on tech-
niques from classical statistical mechanics, to a system composed of n d-level parties
(qudits). We introduce a suitable partition function at a fictitious temperature with
the average local purity of the system as Hamiltonian. In particular, we analyze the
high-temperature expansion of this partition function, prove the convergence of the
series, and study its asymptotic behavior as d — co. We make use of a diagram-
matic technique, classify the graphs, and study their degeneracy. We are thus able to
evaluate their contributions and estimate the moments of the distribution of the local
purity. Published by AIP Publishing. https://doi.org/10.1063/1.5019481

. INTRODUCTION

Since its early origins,! entanglement has been considered as one of the most basic and intriguing
features of quantum mechanics.” During the years, it has turned out to be a fundamental resource
in quantum information®= and has originated a large number of research topics in mathematical
physics®!3 and in applied science such as quantum teleportation technology'# and quantum key
distribution protocols.'>~17

The characterization and quantification of quantum correlations are not simple tasks. Bipartite
entanglement, i.e., the entanglement of two subsystems, denoted by A and A, is well understood and
can be completely characterized, for instance, using the von Neumann entropy'® or the entanglement
of formation.!” Another possible measure is the so-called purity (of the relevant subsystem) 4.
Given an initial pure state, one can obtain the reduced density matrix of subsystem A performing
a partial trace over the degrees of freedom of subsystem A; the function 74 measures how “pure”
is the reduced state, i.e., its “distance” from a completely mixed state. The more entangled the ini-
tial pure state, the smaller the value of this purity. In particular (see Lemma 1 and Definition 2),
a maximally entangled (pure) state will be left in a completely mixed state after the partial
trace.

On the other hand, multipartite entanglement is less understood and more elusive even if widely
investigated.”*~>* These difficulties are deeply rooted both in the exponentially (with the system size)
large number of measurements needed for its complete characterization and in new phenomena emerg-
ing from the complex interactions among the parties. Obviously, the choice of a particular measure,
the dimension of the Hilbert space of local parties, and the symmetries imposed on quantum states will
have an influence on the result. A natural question is whether it is possible to find maximally entan-
gled states in the multipartite scenario. For instance, in Ref. 24, Gisin and Bechmann-Pasquinucci
characterized pure and symmetric maximally entangled states of n qubits (i.e., an ensemble of n
two-level systems) as the states such that all their partial traces are maximally mixed. The idea of
characterizing multipartite maximally entangled states (MMESs) minimizing their average purity
over different bipartitions of the system has been put forward in Ref. 25 where these states have
been obtained as solutions of an optimization problem where the cost function is a proper average of
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purities, the potential of multipartite entanglement,

1
FMEZA—/A;ﬂA. (1)

Here N denotes the number of terms in the summation, which can be restricted to a certain subset
of partitions (in this paper, we will consider the number of balanced bipartitions, see Definition 3). It
is interesting to notice that these states have been analyzed in different contexts. For instance, studies
have been devoted to their connections with quantum secret sharing®® and combinatorial designs.?’
Moreover, recent analyses have focussed attention on the so-called k-uniform states and their link to
orthogonal arrays.?8%°

As already mentioned, besides an interesting topic per se, the study of MMESs is important
because of new intriguing phenomena arising in the multipartite scenario. A peculiar property of
multipartite entanglement, the so-called entanglement frustration,*® naturally appears when one tries
to minimize the purity of all possible bipartitions at the same time. This subject has been explored
because of its connection with self-dual codes,?! and it has been possible to prove theorems which
ensures the impossibility to reach the ideal minimum value of purity for all bipartitions for collections
of n > 7 qubits®"3? and even in the relatively simple case of n = 47233

A possible approach to study the appearance of entanglement frustration has been introduced
for qubits in Refs. 34-36. In particular, this approach is based on methods from classical statistical
mechanics. One introduces a Hamiltonian representing the potential of multipartite entanglement,

H(z)=nmme(z) = ([ Ak, k5 1L D zize Tizr (2)

-1
]) "
|Al=ns/2 k' LI €Zy

(ST

for a normalized pure state written in the computational basis in terms of its Fourier coefficients
2= (1),

Y= k), 3)

keZj

with coupling function A (see Theorem 2 for its complete general expression). By introducing the
partition function

Z(B)= / du(z)e P, )

with B as a Lagrange multiplier and u as the unitarily invariant measure over pure states on the

hypersphere {z € CV|||z||? = 3 Izx|* = 1} induced by the Haar measure over the unitary group U(N),”’

au@ =T 6 (1 el ) aasz )

one can explore the configurations for 8 — +oo where frustration appears and only MMESs are
sampled. For qubits, it has been possible to use a high-temperature expansion technique and a dia-
grammatic evaluation of the cumulants of a probability density function. In principle, one should try
to perform the re-summation of all diagrams. On the other hand, in order to better understand the
meaning of entanglement frustration, it is interesting to analyze the contributions of different classes
of diagrams. Unfortunately, the calculations are far from being simple and only a few number of
cumulants are analytically known. In particular, the topology of diagrams is highly non-trivial and
both analytical and numerical analyses suggest that the presence of frustration could be related to
a precise class of graphs appearing in the cumulant expansion. One would like to find an objective
procedure, if admissible, for discarding some graphs and resumming only a subset of them. Obvi-
ously, we would like to have a criterion for choosing diagrams which is not based only on simplicity.
A possible way to tackle this problem has been introduced in Ref. 38 where the selection of graphs
has been based on the introduction of a color index N, and on the consideration of a field theory for
the multipartite entanglement. An explicit calculation at leading order in N, has given hints about
the presence of a phase transition, and it has been possible to numerically observe that the limit of
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large values of the parameter N, removes the frustration. On the other hand, it is difficult to give a
direct physical interpretation to this approach though it is appealing from the mathematical point of
view.

Following these motivations, in this paper, we want to explore another limit. In particular, after
introducing a generalization of the previously sketched framework to a collection of d-level systems
with d > 2, we want to study and characterize the behavior of the potential of multipartite entanglement
in the limit of large values of d. In particular, we will find an explicit expression of the coupling
function A (see Theorem 2), which generalizes the one obtained for qubits, and study its symmetries.
Then we will examine the high-temperature expansion of the distribution function of the potential
of multipartite entanglement, proving that the series characterizing the expansion converges, and
observe that when d is large enough only a specific class of diagrams contributes to the partition
function.

This paper is organized as follows. In Sec. II, we introduce the notation and give a detailed
description of the problem. In Sec. III, we define and analyze the Hamiltonian function, introduce the
statistical mechanics approach, and give the main results of the paper (Theorems 3-5). In Sec. IV,
we introduce the diagrammatic technique used for the analysis of the cumulants. Finally, using this
diagrammatic technique, in Sec. V, we give the proof of Theorem 5. Sections IV and V present
the technical results of this paper and may be skipped by the eager reader who is interested on
the main results without going into too many details. We add two appendices. In Appendix A,
we exhibit numerical results about a state that, to the best of our knowledge, reaches the lowest
value of the 7-qubit potential of multipartite entanglement. In Appendix B, we include for self-
consistency some results about the relation between perfect MMESs and maximum distance separable
codes.

Il. BIPARTITE AND MULTIPARTITE ENTANGLEMENT

A. Bipartite entanglement and purity

Let us consider a collection of n d-dimensional quantum systems described by an N-dimensional
Hilbert space H = C*" (with N = d") and separate them into two disjoint sets of, respectively, n4 and
nj elementary systems (n4 + nz = n), thus defining a bipartition.

Definition 1. A bipartition of a system S = {1, 2, ..., n} of n parties is a pair (A, A) such that A
UA =S and A N A= ¢. Furthermore, if |Al = ny and |Al = ng = n — na are the dimensions of the two
subsystems, then the bipartition is called balanced if

n+1
2

, (6)

n
nA:[z] and ngz=

where [x] denotes the integer part of x (namely, the greatest integer that is less than or equal to x).

Notice that in the definition it is assumed, without loss of generality, that n4 < nj; indeed, the
bipartitions (A, A) and (A, A) will play the same role in our considerations.

With this definition, we can consider the Hilbert space 7 as a tensor product H = H4 ® H 3, where
Hy~CN+ and Hz ~CM with dimensions Ny =d"™ and Nj =d"4, respectively. Every normalized
vector |y ) € H, representing a pure state of the system, admits a Fourier expansion in terms of the
orthonormal computational basis {|k)} keZs

= wlh), )
keZl

where z; = (k| ) e C, k€ Z", and Z; =7/d Z is the cyclic group with d elements. Indeed, there is a
natural correspondence between the basis of the space and the strings of length n over d symbols.
A convenient measure of bipartite entanglement is the so-called purity (of the reduced state)

ma) =tr(p}) =tr(p) = >" A3, @®)
k
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where ps =trz(|¢) (¥|) is the reduced density matrix of the subsystem A, with tr; denoting the partial

trace over subsystem A, and A;’s are the eigenvalues of p,. Since for the rest of this work we will

consider only the purity of the relevant subsystem, we will refer to this quantity simply as purity.
Using this expansion, we can rewrite the purity as

ma) =tr (a9 <wh)’)
= tr(( Z 2kZi0kyty 1K) <lA|)2)

k,leZ';

=tr( Z 22k 220 Ok 13 O 1 |kA><lA|kA>|ZA>)
kLT €z

= Z 22w 221 Ok 15 Okt 1t O, 1 Okl » )
kLI €2
where we used the symbol k4 to denote the substring of k belonging to A, and where dy,, is the
Kronecker delta.
In the following, we will need this lemma of immediate proof.

Lemma 1. Given a state ) € H of n qudits and a bipartition (A, A), the following holds:

L ma(y) = mi(¥),
2. UNa<ma@) <1,

where Ny =d", with ng = Al. Moreover, the upper and lower bounds in 2 are reached, respectively,
only by separable states and maximally entangled states.

B. Multipartite entanglement and potential of multipartite entanglement

In this section, we will deeply extend the use of purity for the characterization of the multipartite
entanglement of a generic system of n parties.

In general, a system composed of n > 2 parties has a number of different bipartitions that scale
as N = O(2"). The states that saturate the lower bound of the purity for some bipartitions are called
maximally entangled with respect to these bipartitions. The Bell states are examples of maximally
entangled states (here there is no need to specify the bipartition since it is unique in systems with
only two components).

Definition 2. A state |) such that ma(p) = 1/N o with respect to every bipartition (A, A), i.e.,
maximally entangled with respect to every bipartition of the system, is called a perfect multipartite
maximally entangled state (perfect MMES).

To determine if a given state |) is a perfect MMES, it is sufficient to check if it satisfies the
minimization condition for all the balanced bipartitions, i.e., bipartitions with ng = |Al = [n/2]. Indeed,
if a state has a reduced density matrix of the form

1
=— 10
PA N, (10)
for subsystem A, then
I
=— 11
0B Np (1D

for every smaller subsystem B C A. Therefore, the problem of finding perfect MMESs can be tackled
by studying the average purity over all the balanced bipartitions.

Definition 3. The average purity over all possible balanced bipartitions is called the potential
of multipartite entanglement and is given by

-1
nME(w)=( , ) > maw). (12)
[3] |Al=[n/2]
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As for the purity, we can define a bound for the potential of multipartite entanglement.

Proposition 1. The potential of multipartite entanglement has the following bounds:

I/Na <mme() <1, (13)
with N4 = d""?), for every state |y) € H.

The proof of this proposition is a straightforward consequence of Lemma 1.

In the case d = 2 (qubits), it is possible to obtain an explicit expression of myz.3> We will extend
this result for states of qudits. Let us recall that using the Fourier expansion of the state, we can write
the purity of a pure state with respect to a given bipartition as (9),

mAY) = Z T2k 210 Ok, 1y Ok ll, O 15 O 1 (14)
kKT €2

If we average the purity over all the possible bipartitions with fixed dimension, we can define a
coupling function®

1. 1-
AR 113 m) = SR KL ima) + SAK ki L1 ), (15)
where »
A ’ ’ n
Ak, k'3 1,15 mp) = (nA) D GOk, kgt S - (16)
|Al=ny

Definition 4. The Hamming weight of a string k over an alphabet Z, denoted by |k, is the number
of symbols that are different from the zero symbol of the alphabet used.

If the alphabet is binary, i.e., itis Z; = {0, 1}, then the Hamming weight is nothing but the number
of occurrences of the symbol 1 in the string.

We can use the definition of Hamming weight to rewrite the coupling function in a more
convenient form.

Theorem 2. The coupling function A has the following expression:

Ak, k"5 1,175 1) = S g 80, (k—nke—1) fk — Lk — 1, np), 17
where .
Lin\" [(n—1kl =1l n— Ikl =l
k, 1, =— s 18
st 2(nA) [( ma - Ik )+( a1l )] (19
and
ktl=(k+0) and kA= (min{k;,L});. (19)

Remark 1. The binomial coefficients in Eq. (18) are intended to be zero if one of their arguments
is negative. The sum and difference are in Zg4, and the minimum in the definition of A is taken on the
(unique) representatives of kj and I; belonging t0 {0, 1,2, ...,d — 1}.

Proof. The coupling function

-1
, , n 1
Ak, k" 117 = (nA) Z 5 Ok 1Okt Oz 5.0k 1+ Ok 1, Okal Ok 13 Oty (20)
|Al=n4
is non-zero if and only if for some subset A of S = {1, 2, ..., n}, with |Al = n4, we have

kn=ly, k=l ki=l K= @1)

2
This imposes that if j € A and i €A,
k=l K=l k=l, K=l 22)



012201-6 Di Martino, Facchi, and Florio J. Math. Phys. 59, 012201 (2018)

or equivalently that for j € S,
kj—ljf:O and kj’—lj=0 (23)
or
ki—1;=0 and kj’ - lj’ =0. (24)
Putting these conditions together, we have that A # 0 if and only if
k+k'=1+10" and (k=D A K =1)=0. (25)

It remains to count the number of bipartitions (A, A) that contribute to the sum in Eq. (20). For
this aim, let us call
So={ieS|ki=li=k =1},
Si={ieS|ki#lork] 1},
Sz={i€S|ki¢ll-' Ol‘ki,?fli}.

From the previous discussion, it is easy to see that §1 N Sy = ¢ and that § = So + S + 5. With this
new notation, we can characterize a bipartition (A, A) for which the contribution of the first term in
the sum is non-zero, i.e.,

Ok, 14 Okl Ok 15 k2 # 0, (26)

as a bipartition such that A c Sy + So and A C S, + So. Furthermore, sinceA NA=¢andAUA=S
thenA=S; +ANSpand A =S, + AN Sy, we can conclude that their number is equal to the binomial

coefficient
S — 1811 = IS —lk=1I-1k -1
( [Sol )z(n 1St Izl):(n I | =1 I)' 27)
|A =81l na — |81l na — |k =1
The same result can be obtained for the second term in the sum,
Ok, 11, Okals Ok 1 Ok 17 (28)
swapping the role of A and A, and this ends the proof. O

Since we are going to focus on balanced bipartitions, from now on we will omit the dependence
on n4 both in A and f, with the understanding that n4 = [%] . In this way, with the use of the coupling
function, the potential of multipartite entanglement can be written as

mEW)= Y AKK LU aeir, (29)
kLl ez,

C. MMES, perfect MMES, and frustration

We will see that the lower bound 1/N = 1/d"?! of the potential of multipartite entanglement is
not always attained. This justifies the following.

Definition 5. A state |¢) that minimizes myg, i.e., ﬂl\m/[l]g = nme(y), where

AT — min{rveW) © W) € H, (Wlw)=1), (30)

is a multipartite maximally entangled state (MMES).

Let us stress, once again, that the difference between a MMES and a perfect MMES lies in the
saturation of the lower bound of the potential of multipartite entanglement.

Example 1. The qubit GHZ state, i.e., the state |GHZ) = \/%(IOOO) +|111)), is a perfect MMES;

1

indeed it is easy to show that the purities with respect to all the possible bipartitions are 5.
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One of the questions that arise naturally from the previous discussion is on the general structure
of a perfect MMES for given values of d (the dimension of each subsystem) and »n (the number of
subsystems).

With an abuse of notation, we can say that the Bell states are perfect MMESs for systems of two
qubits (there is no multipartite entanglement in this case), while for n = 3 qubits, the only perfect
MMES, up to local and unitary transformations, is the GHZ state.

The problem of characterizing a perfect MMES does not always have such an easy solution. In
Ref. 33, Gour et al. proved that for n = 4 qubits, a perfect MMES does not exist and that the minimum
value the average purity can attain is

min_ 1 _ 1 1
TyME =3 > ITN

When the lower bound of the potential of multipartite entanglement cannot be saturated, the
system is said to be frustrated. If this is the case, the requirement that the purity be minimal for all
the bipartitions generates conflicts among them.

For a system of n = 5, 6 qubits, there are examples of perfect MMESs, see Ref. 35, while for
n > 8 qubits, a perfect MMES does not exist as proved by Scott in Ref. 31, using classical error
correction theory. The case of n = 7 qubits has been recently shown to be frustrated.’> On the other
hand, the value of ﬂEg} in this case is unknown and so is the structure of the associated MMES. Until
now, only numerical estimates about the minimum of the potential of multipartite entanglement have
been done. For a lower bound of ﬂﬁn,}g‘ for 7-qubits, see Appendix A.

Frustration appears when one or more bipartitions cannot reach their minima. Nevertheless, it
can be proven that enlarging the dimension d of each subsystem, at fixed n, tends to eliminate this
problem and in particular that there exist values of d > n + 1 for which it is possible to find a perfect
MMES of n qudits. For a discussion on this statement, see Appendix B.

&1V

lll. MAIN RESULTS

In this section, we want to go briefly through the main results of this paper, before going into the
details of the proofs.

A. Symmetries of the coupling function A

We recall that, (20),

-1
Ak, k"5 1,17) = (,:) Z %(%IA Okaly Oz 3 Ok, 11+ O, 1, Okl Ok 13 Ok 1 )- (32)
|Al=n4
Due to its form, it is invariant under the permutation of the qudits and under some swaps of the
computational basis elements (k € ZZ).
It is well known that applying local unitary transformations to the system does not change its
entanglement and, as a consequence, the local purity of any of its subsystem:

AW =ma (U @ U2 ® -+~ @ Unl), (33)

for all y € H, for all A C S, and for all (Uy, ..., U,) € U(d)", with U(d) being the unitary group of
degree d. Moreover, if we permute the order of the qudits, the global entanglement of the system is
left invariant. The permutation group S,, of order n acts on H through (unitary) swap operators p €
S, =V, e UW),

Vo(l1) @ [Y2) @ -+ ® [Wn)) = [Wp(1)) ® [Wp2)) ® - -+ ® [Wp(ny)- (34)
For all (Uy, ..., U,) € U(d)" and for all p € S,,, we get that
((Ur,....Unsp)eve) @) =ame(U1 @ Uz ® - - ® Up) Vi) = amMe(¥). (35)

Therefore, the potential of multipartite entanglement (12) admits the semidirect product

SU(@)" = S, (36)
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as a symmetry group, whose product is easily seen to satisfy

(U1$ MR U}’L;p)(V]’ ceey Vn; q) = (Ul Vp(l)’ ey Uan(n);pq)- (37)

As a consequence, for the symmetries of the coupling function A, we have the following:

Theorem 3. The coupling function A in (15) is invariant under the action of the semidirect
product group

Sy %S, (38)

whose action on k € 7} is given by

@1, Pk, .. k) = (P1lkgy)s - - - Palkgm)), (39)
where p; € Sq,¥j € {1,...,n},and g € S,.

Proof. The proof is straightforward after observing that all the operations that characterize the
coupling function act position-wise and the permutations are bijective maps. O

In Sec. IV, we will show that the presence of these symmetries of the coupling function has
important consequences in the computation of the graphs in the diagrammatic technique we were
mentioning in the Introduction.

B. Statistical mechanics approach and cumulant expansion

The minimization problem of the potential of multipartite entanglement can be handled following
a statistical mechanics approach.** Roughly speaking, we will consider the free energy of a suitable
classical system at a fictitious temperature, and we will recover the original problem in the zero
temperature limit.

Considering the state

wy= " zlky, (40)

keZl

with z = (z)x as the vector of the Fourier coefficients in the expansion of the state, || z ||, = Yxlzl?
=1, we define the Hamiltonian
H(2) = nue(¥(2), (41)
where myg has been explicitly shown in Eq. (29). Let us consider M vectors and the ensemble {m;}
of the number of vectors with fixed potential of multipartite entanglement, H = €;. We want to find
the distribution that maximizes the quantity
M!
- Iim;!

(42)

under the constraints 3};m; =M and }, i mj€j=ME, where E is the average value of 7y . In particular,
if we let M — oo, we recover the canonical ensemble with the partition function

Z(B)= / du(z)ePHE), (43)

where

N —
an =" 6 (1 el ) T (44)

is the unitarily invariant measure over pure states induced by the Haar measure over U(#) through
the mapping |) = U |¢), for a given state [o).>” Here 8 plays the role of an inverse temperature so
that for 8 — +oo only the configurations that minimize the Hamiltonian survive. In other words, we
recover the MMES in the limit 8 — +c0. Moreover, if S — 0, we recover the behavior of a typical
state.

Using the partition function, the average energy can be written as
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(Hyz = %ﬂ) / du(z)H(z)e PHE = —% InZ(B). (45)
The high-temperature expansion of this energy distribution is
NGB
(H)p = le o o H) (46)
where
m) m 0" ma O
K )= 1 S I ZB) = D" s (47)
is the mth cumulant, which is related to the moments (H™)( through the recursion formula
m—1 1
K =(H™ = (’;’__1 )Kg><Hm-f o, (48)
j=1

with ) = (H)y.

This approach based on the methods from classical statistical mechanics has been applied to
qubits both in the bipartite’**! and in the multipartite cases.>*3® Here we want to analyze the general
qudit case.

We observe that the series in Eq. (46) converges. Indeed, we can prove that it is majorized term
by term by an absolutely convergent series.

Theorem 4. 1. The partition function Z(B) in (43) is an entire function of 3 € C.

2. The average energy (45) is holomorphic in a complex neighborhood of the real line.

3. Its high-temperature expansion (46) is a convergent series with a nonzero radius of
convergence.

Proof. 1. Notice that the measure in (43) has compact support {z € CM,|lzll=1}, and H(z) is a
continuous function with 1/N4 < H(z) < 1 for z in that support. Thus the integral
converges for all g € C and is differentiable with derivative given by

dZ(p) _ BH()
a5 du(z)H(z)e ,

implying that Z() is holomorphic in the whole complex plane.
2. This follows from the observation that the average energy is the ratio of two entire functions,
(H)g =Z'(B)/Z(B), and for SeR and || z|| = 1, one gets

e PH@ 5 o~ BIHQ) 5 o-1B].
implying that
Z(B)>e Bl >0, BEeR.
[In fact, for B < 0 one gets the stronger estimate Z(3) > e/#/N+ > 1.] The statement follows
by continuity.
3. This follows from statement 2. Notice in particular that Z(0) = 1. |
Finally, the following bounds hold:

Theorem S. 1. For all m > 1, the moment of the Hamiltonian has the form

(H™)o=(H")o,c +(H")onc, (49)
where
" _ Ci(m)N! Ny + Ny "
H e = =D ( 2 ) 50)
and |
m Cr(m)N! Ny + Ny "=
0= >O’NCS(N+2m—1)!( 2 ) ’ Gb
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with C1(m) and C,(m) being positive functions of the parameter m only that do not depend on
dorn.
2. The following bound holds:
m
0< (H™)oNC < C(’,,n)’
(H™yoc ~ ql3l

(52)
where C(m) = Co,(m)/C(m).

This is the central result of our paper. In principle, this majorization allows us to evaluate the
terms in series (46), using Eq. (48). In particular, we notice that since C(m) does not depend on d, in
the limit d — oo, the contribution of the second term, (H")onc, in Eq. (49) is subdominant and

H")o~(H")c,  d—oo. (53)

We will show in the following that this behavior can be interpreted in terms of the structure of graphs
contributing to the moments.

We will give a proof of this theorem in Sec. V. Before doing this, we will introduce in Sec. IV
the diagrammatic technique used for the majorization of the moments in Eq. (49).

IV. CACTUS AND OTHER DIAGRAMS

In this section, we will use the diagrammatic technique introduced in Ref. 36 for qubits, properly
generalized for the case of qudits, in order to control each term of series (46).
First of all, let us consider the quantity

HYo=(( D MK Lz,

0 (54)
kK LI €2

An explicit form of this quantity requires the product of m coupling functions A. In order to simplify
the notation, we introduce the vectors

k:(kl3--- km,kl’,-”akm’)’ l (ll’ m9lla~--9lml)
with k;, ks, I, Iy € 7). Therefore,

AR
H™o= ) ]_[A(k,,k,,z,,m ﬂm 2,2, ) (55)

klez2m j=

Theorem 6. The following equality holds:

m — 1 Y . .
o= NN+ (N eam 1) 2. 2 HA(" kirs ko> Kpii)), (56)

kezZm pESom J=

with p € Sy, being a permutation acting on the 2m elements
{,2,....m,1,2",...,m'}.

This theorem was given in Ref. 36 for qubits d = 2. The proof of its extension to qudits d > 2 is
a carbon copy of the proof for qubits.
By defining the square brackets

[p(1) p(1"), ..., pm) pom )] = > ﬂ Ay i Kpgis Kpii)s (57)
keZZmn ]
with p € Sy, Eq. (56) becomes
1

H" 0= ST D N Tam =T ; [p(1) p(1), ..., p(m) p(m")]. (58)

As promised, we can give a diagrammatic representation of the terms in the sum. Each pair (k;, k;/)
can be associated with a vertex of a graph from which two edges go out and two go in. The first two
edges are labeled by k,(;y and k), and the latter are k; and k;; see Fig. 1(a).
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(K1, k1)

(K2, kar)

(b) ()

FIG. 1. (a) Graphical representation of the interaction of each pair (k;, ki ): each vertex with 4 edges, two going in and two
going out. (b) Graph with two points representing [1 2, 1’ 2]. (c) A graph with a cycle is a non-cactus.

Example 2. The square brackets [1 2, 1’ 2] lead to the graph in Fig. 1(b).

It is possible to rephrase some of the previous results in terms of these diagrams. Indeed, Eq.
(25) can be interpreted as a current conservation law, i.e., the current going into a vertex has to be the
same as the current that goes out; see Fig. 1(a). Moreover, the symmetries of the coupling function A,
given in Theorem 3, are translated in the degeneracy of the graphs. For instance, the square brackets
in example 2 lead to the same graph as

(12,172, [21,2" 1], [1"2°,12], [2" 1,1 2], [12,2" 1], (59)

and so on.

Example 3. In terms of Feynman graphs, we have

1 1

(H)o = NN +1) (LU]+0"1]) = m(

+ ) . (60)

Definition 6. A connected graph with v > 2 vertices is called a cactus if for every vertex there
exists a pair of edges such that removing them the graph becomes disconnected, otherwise the graph
is called a non-cactus. A graph with v = 1 is a cactus by definition.

Example 4. The graph in Fig. 1(b) is a cactus, while the graph in Fig. 1(c) is a non-cactus.

Indeed, by removing a pair of edges from a vertex, the graph becomes one of the two graphs in
Fig. 2.

(2) (b)

FIG. 2. Removing two edges from a vertex of the non-cactus in Fig. 1(c) leaves the graph connected.
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A. Graph surgery

In this section, we will study in detail the graphs introduced at the beginning of Sec. IV. In par-
ticular, we will compute the contribution that each graph gives to moments (58) and their degeneracy.
In order to do this, we will divide each graph into subgraphs and will compute the degeneracy and
the contribution of each single subgraph.

Definition 7. We call a leaf the subgraph of a graph represented by

(61)
Lemma 7. A leaf at the vertex (kj, ki) gives the contribution
Ny + N;
Ok k) TA. (62)
Proof. In a graph, the contribution of a leaf is
[sd PG 1= 0 e D Ak s s K. (63)
ki:i#j ki
ki
Since this is the only term in which the index j appears, it can be isolated from the rest,
D A,k ks o) = 0, s D L F (k= K, 0)
kj ki
_ Ny + NA
- 6kj!,kp(/-/) T'
]

Example 5. As an example, consider the Feynman graph in Fig. 3(a). By computing the
contribution of the upper leaf as in the previous lemma, we find

Ny + Nj Ny + Nj
_ Z%,Wg _ oy YatNa

2 N 2 (64)
ks

k;

id

.
: .
Y. R
e
-

(a ~~.-'~X~

-~

Km
(a) (®)

FIG. 3. (a) The only graph with a single vertex. (b) Pinching operation.
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Definition 8. A loop is the subgraph of a graph represented by

(65)
Theorem 8. Each cactus graph gives a contribution
Na+N;\’

N (%) , (66)

where v is the number of vertices in the graph.

Proof. We can compute the contribution of a graph decomposing it in its elementary subgraphs.
From its definition, we can deduce that a cactus has at least one leaf. Moreover, notice that after we
have computed the contribution of the leaf, the remaining terms in the square brackets correspond
to a Feynman graph with v — 1 vertices. This new graph is essentially the same as the graph with v
vertices but without a leaf and with a loop transformed into a leaf. Besides, the structure of the graph
is left invariant after the removal of a leaf, i.e. this operation transforms a cactus in a cactus and a
non-cactus in a non-cactus.

We can iterate the computation obtaining the contribution

Ny + N;
AT VA (67)
2
for each vertex. At the end of this computation, the remaining term will be > ;1 = N, and this concludes
the proof. O

The evaluation of the contribution of non-cactus graphs is not as simple as the one of the cactus.
Nevertheless, we can give an upper bound for it by bounding the loop contributions.

Theorem 9. A loop gives a contribution that is lower than or equal to (N4 + nz)/2.

Proof. We can isolate the contribution of each single loop obtaining

[. .. ,p(i)j/, e ,p(j) i,, e ] = Z A(ki, k,‘/; kp(,'), kj/)A(kj, kj/; kp(j), kif). (68)
%

If we substitute here the expression of the coupling function in Theorem 2, we find

Z Otk Jepiiy ey O+ Ky ki 00, (ki=lepi) Al ki)
ki K
X 00, (k;—kp Ak —kp ) (ki = Kp(iys ki = Kpiy ) (Kj = k(s ki = Kip())

= Okyerky iy Hog Z 00.(ki—kyip)n 1S (ki = kpiy, D) f (ki = kp(iys L+ Kpiiy = kj)
7

X Z Okt g+ 00,05k )A Gy ~Kipy)
k'/
J

= Ok Koy Hoo) Zf (ki = kp(iys D) f (ki = kp(iys L+ kpiiy = kj)
]

X 00, (ki—kp(iy) AL 00, (ki) A+hiy—Ki) - (69)

It is straightforward to prove that f(k, [) < 1. Moreover, the condition that the Kronecker deltas have
to be different from zero and the assumption that the binomial coefficient is zero if one of its argument
is negative, Remark 1, fix the positions in which / can be different from 0 and give the condition
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n
n<m=[3]. (70)
and so the last expression in (69) can be bounded by Ny =d [2] and thus by (N4 + N3)/2. |

In the next part of this section, we will give an explicit way to compute the degeneracy of graphs.
In particular, we prove that we can compute the degeneracy of a generic (v + 1)-vertex graph (we
will call it daughter) knowing only the degeneracy D of a v-vertex graph from which the graph is
generated (we will call it mother). In the following, given a (v + 1)-vertex graph G, we will call G/
its mother graph. In this notation, G will be the mother of the mother and so on until the 1-vertex
graph is obtained.

Definition 9. We define the pinching operation that connects two edges adding a vertex to the
graph [see Fig. 3(b)].

The following proposition illustrates the degeneracy of this operation.

Proposition 2. Adding a vertex through pinching increases the degeneracy D(G) of a graph by
factor

(a) 4 if the four vertices are non-degenerate or if they degenerate into two but the edges have
different directions;

(b) 2 if the four vertices degenerate into one;

(c) 2 ifthe four vertices degenerate into two and the directions of the two edges are the same.

Remark 2. From now on, we suppose to start from a v-vertex graph and to add a vertex labeled
by w+1, (v+1)).

Proof. In the first case [Fig. 3(b)], if the mother graph is of the form

[....ip@"),....,mp(I"),...1, (71)
then the daughter graph can be represented by
[...,0" p@),...,o+ D p),...,jm]. (72)

After the exchange of v’ and v + 1 or j and m, the graph is left unchanged; therefore, the degener-
acy of this new graph has an extra factor of 4 compared with the degeneracy of the mother, i.e.,
D(G) =4D(G™).

In the second case, see Fig. 4(a), the v-vertex graph can be represented by

[P A (73)

and the pinching leads to the representation

(a) (0) (©)

FIG. 4. (a) Four vertices degenerating into one. (b) Four vertices degenerating into two. (c) Germination of a leaf.
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[....,0+D@+1Y,....7j ] (74)
or equivalently to
[....,0+ D' @+1),....jj 1 (75)

Since there are no other possibilities, D(G) = 2D(G™).
In the last case, Fig. 4(b), we start from the graph

[...,0f ... ] (76)

and arrive at
[...,@+D)@+1),...,ii"], 77)
where again we have an extra factor 2 of degeneracy. O

Remark 3. In the previous proposition, there is no mention to the case in which the four vertices
degenerate into two and the two edges degenerate into one. Nevertheless, this operation coincides
with the germination of a leaf, Fig. 4(c). Indeed, before the creation of the leaf, the graph is associated
with

[...,ip(G"),... 1, (78)
while after the pinching, the representation becomes
[...,0+DpG),....i00+1)], (79)

and 3 other combinations lead to the same graph, swapping v + 1 and (v + 1)’ or the elements in the
two pairs.

Remark 4. Remarkably, the pinching operation allows us to construct all (v + 1)-vertex graphs
starting from the v-vertex graphs and in addition provides a practical way for computing the degen-
eracy. Moreover, we recall that cactus graphs are always generated by other cacti, and there is no
way to transform a non-cactus into a simpler graph just by adding a vertex. However, it is not true
in general that the degeneracy of the daughter graph is the degeneracy of the mother multiplied by
the degeneracy of the pinching, Dpinc. In fact, the addition of a vertex can break the symmetry of a
graph, and when this happens, we have a factor lower than or equal to

@+ )

+1 o

(80)

so that the more symmetric the graph, the lower is its degeneracy. Furthermore, sometimes pinching
different edges gives rise to the same graph so that in counting the degeneracy, we also have to
consider all these possibilities.

Summing up the previous considerations, we can state the following.

Proposition 3. The degeneracy of a graph G is
D(G) = D(G™) X Dine X Dyine X (v + 1),
where the last factor is the symmetrization factor and T)pinc are the different ways in which pinching

the edges gives rise to the same graph.

Remark 5. Pinching edges pointing in the same direction gives rise to different graphs from the
ones obtained by pinching edges in the opposite direction. The difference between these two cases is
shown in Figs. 5(b) and 5(c) where the two graphs differ in the direction of arrows.

We are now ready to give a bound for the degeneracy of the graphs.

Theorem 10. The degeneracy of a v-vertex graph G satisfies
D(G) < 2% v!. (81)
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(a) (b) () ()

FIG. 5. (a)—(c) All connected non-cacti with three vertices. (d) A non-cactus with two vertices.

Proof. To compute the degeneracy of a graph in the worst case scenario, we have to compute
all the configurations [p(1) p(1’), ..., p(v) p(v’)] that lead to the same graph. In the worst case, the
pinching operation gives a factor of 4 for each point and every permutation of the vertices leaves the
configuration unchanged so that the degeneracy in the worst case is 4°v!. O

Example 6. The only graph with one vertex is the one in Fig. 3(a) that has degeneracy 2. From
this graph, we can generate the two connected graphs with two vertices. The one in Fig. 1(a) is
obtained by a non-degenerate pinching so that its degeneracy is 2 X 4 X 2 = 16, while the one in
Fig. 5(d) is generated by a degenerate pinching and so its degree of degeneracy is 2 X 2 = 4.

Example 7. The Feynman graph in Fig. 5(a) is generated from the one in Fig. 5(d) by the
germination of a leaf. Its degeneracy is 4 X 4 X 4 X 3 = 192, where 3 is the symmetrization factor.

Example 8. The graph in Fig. 5(c) is generated after a pinching of the graph in Fig. 5(d) so that
its degeneracy is 16 X 4 = 64, while the graph in Fig. 5(b) is generated by pinching of the graph in
Fig. 5(d); therefore, its degeneracy is 4 X 2 X 2 = 16.

V. HIGH-TEMPERATURE EXPANSION: PROOF OF THEOREM 5

The representation in terms of Feynman graphs introduced in Sec. IV gives important information
about series (46) and in particular allows us to prove Theorem 5.

Proof of theorem 5. From Eq. (58), we can write (H™)( in terms of the square brackets,

1

(H™)o = NN+D . Ntam= l)p; [p(Dp1"), ..., pm)p(m”)]. (82)

Let us now divide the permutation in S,,, into the ones that generate a cactus, Py, and the ones that
generate a non-cactus, P,
1

<Hm>0:N(N+1)...(N+2m—1)

x (HZ (P, . pmpen )+ Y [p(Dp(1), .. ,p<m)p<m')]).

eP; pEP>
Applying Theorem 5, the first permutations give

Ni+ Nz \"
At A) : (83)

2

recalling that the number of vertices in a Feynman graph generated by permutations in S, is exactly
m, while for permutation in P, applying Theorem 9, we have

Nj + N3 m-1
3 .

[p(Dp(1"), ..., pm)p(m”)] = (

[p(Wp1'), ..., plm)p(m’)] <N ( (84)
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Defining C;(m) and C»(m) as the number of nonequivalent cactus and non-cactus graphs (respec-
tively) with m vertices, and recalling that according to theorem 10 every m-vertex graph has at most
degeneracy 2°"m!, we eventually get

" 22mm!
(H >OSN(N+1)...(N+2m—1)
3 Ni+N;\" . Na+Nz\"!
X[Cl(m)N( A; A) +Cz(m)N(%) ]

and the first part of the theorem follows.
The second statement follows immediately from the first one by recalling that

n ntl
Ny + Nj _ dlzl +d[ el S ql3l
2 2
This concludes the proof of theorem 5. O

Remark 6. A final remark is in order. As stated at the end of Sec. 111, it is clear that since C(m)
and Cy(m) do not depend on d, in the limit d — oo, the contribution to the sum due to the presence of
the non-cactus graphs goes to zero and only the presence of a cactus becomes relevant. Heuristically,
we can attribute the presence of frustration in the system to the relevance of the non-cactus graphs
in the series.

Remark 7. We can apply theorem 5 from a different perspective, keeping d fixed and evaluating
the limit N = 2" — oo. In particular, let us consider the case of qubits (d = 2) where exact explicit
expressions for the first, second, and third moments have been obtained using Feynman diagrams,>®
and one can evaluate the contributions from non-cactus diagrams in the limit N = 2" — oo.

1. m = 1. This case is trivial. Contributions to the moment only come from the cactus shown in
Fig. 3(a).

2. m = 2. An explicit calculation shows that cactus diagrams are of the form in Fig. 3(a)
(disconnected) whereas non-cactus diagrams are of the form in Fig. 5(d). We obtain

(H*)onc S2(N)

= , 85
(H?)oc (N +4)(Na +Ny)? (8
with .,
S(N)=2 " Z na) (" N2 [4"/4_1‘ +4_("/4_k)] .
nA k k
0<k<nyp
It is possible to prove’® that in the limit N — oo,
fH(N)~3V2N?, (86)
with
a =log, 3 — 1=0.5850. (87)

Therefore, for N — co and Ny = Nz = 2[%], we have

(H*)one _b@ < CQ2)
(H%)c N*a ™ 7[3]

with b(2) as a positive constant.
3. m=3. We obtain
H¥Yone _ 16£,(N) +64£, (V) + 3(N + 8)(Na + N3)a(N)
(H¥Yc (40 + 12N + N2)(N + N3)3

b}

where the role of f3(1) and f3(0) is analogous to that of f > for m = 2. Their complete expressions are

0) £(D)

.f3 7 come

not transparent and can be found in Ref. 36. We notice that the contributions of f.
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from non-cactus diagrams in Figs. 5(b) and 5(c), respectively. The contribution of f, comes
from the non-cactus (connected) diagram in Fig. 5(a) and from (disconnected) contributions
obtained from the non-cactus in Fig. 5(d) and the diagram in Fig. 3(a). In the limit N — oo, we
obtain

FONy ~eN>, fOW) ~ N (88)
with
v=4.1583, ¢=1.05385. (89)
Finally, for N — oo and Ny =~ Nj = 2131, we have
(H?)onc _b3) €O
(H3c N3~ g[3]

with b(3) as a positive constant.

VL. CONCLUSION

The main aim of this paper is a deeper study of the potential of multipartite entanglement,
i.e., the average purity over balanced partitions of the system, as a measure of multipartite entan-
glement. In particular, by introducing a properly defined Hamiltonian representing the multipartite
entanglement and a fictitious inverse temperature, we have rephrased the problem in the framework
of classical statistical mechanics for the case of d-level systems (qudits). Thus, we have exam-
ined the high-temperature expansion of the distribution function of the potential of multipartite
entanglement. In Sec. III, we have included the main results of the paper. In particular, in Theo-
rem 4 we have shown that the series characterizing the expansion converges and that the moments
of the distribution of the Hamiltonian can be explicitly evaluated or estimated (Theorem 5). In
order to prove these results, we have introduced a diagrammatic technique that leads to a natural
classification of the graphs in two classes (Secs. IV and V). We have shown that when d is large
enough only one of these classes (the so-called cactus diagrams) gives a contribution to the partition
function. These results pave the way to further investigations about the properties of multipartite
entanglement, such as the possible presence of phase transitions analogous to the case of bipartite
entanglement.
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APPENDIX A: LOWER BOUND ON THE 7-QUBIT POTENTIAL OF MULTIPARTITE
ENTANGLEMENT

The minimum of the potential of multipartite entanglement for 7 qubits is not known yet. Until
now, only guesses have been proposed and some numerical bounds have been found. Here we construct
a 7-qubit state with the lowest g found until now, to the best of our knowledge. The state can be
constructed starting from an orthonormal basis of 3- and 4-qubit MMESs.

Considering the computational basis, we will write the ith vector of the basis in terms of the

Fourier coefficients z() = (Z,(f)),

EDIIS (A1)

keZ}
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The 3-qubit MMES basis (d = 2, n = 3) is made of GHZ states |GHZ); (i =0, ..., 7) with Fourier
coefficients

1 1

© _ M

7V = (1,0,0,0,0,0,0,1), = (1,0,0,0,0,0,0,-1),
V2 V2
1 1

@ _ G _

79 = 0,1,0,0,0,0,1,0), 77 = 0,1,0,0,0,0,-1,0),
V2 V2
1 1

@ _ G)_

V= 0,0,1,0,0,1,0,0), 7= 0,0,1,0,0,-1,0,0),
V2 V2

1 1

© _ a _

= (0,0,0,1,1,0,0,0), V= (0,0,0,1,-1,0,0,0).
V2 V2

The 4-qubit MMES basis (d = 2, n = 4) is made by the states [MMESy); (i =0, ..., 15) with
Fourier coefficients
1

79 = 7 CL-L=L =L =1L 1L 1L-L1-L11,-1,-11),

1
D= (=1,-1,-1,-1,-1,-1, 1,1, 1,-1,1,-1,-1,1,1, 1),

4

z<2)=4-11(—1,—1,—1,—1, 1,1,-1,-1,-1,1,-1,1,-1,1,1,-1),
z<3>=%(—1,—1,—1,—1, 1,1,-1,-1,1,-1,1,-1,1,-1,-1, 1),
z<4)=%(—1,—1, 1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1,1, 1),
z<5)=%(—1,—1, 1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,-1, 1),
z“):%(—],—l, 1,1,1,1,1,1,-1,1,1,-1,-1,1,-1, 1),
z<7>=%(—1,—1, 1,1,1,1,1,1,1,-1,-1,1,1,-1,1,-1),

1

7® = 7 CLL=LL=L L1 =1 =1 =1, -1,=1,1,1,-1,-1),
1

9= ZCLL-LL=LL1L-LL1LL1L=1-111),

1
M= (-1,1,-1,1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1),

4

210 = i (-1,1,-1,1,1,-1,-1,1,1,1,1,1,1,1,-1,-1),
M= i (-1,1,1,-1,-1,1,-1,1,-1,-1, 1, 1,1, 1, 1, 1),

213 = % (-1,1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,-1, -1, -1),
219 = i (-1,1,1,-1,1,-1,1,-1,-1,-1,1,1,-1,-1, -1, 1),
71V = ! (-1,1,1,-1,1,-1,1,-1,1,1,-1,-1,1, 1, 1, 1)..

4
We will look for a minimizing 7-qubit state expressed in terms of tensor products of the elements
of the two bases
lo7) = Z ¢ij IMMESy); ® |GHZ); . (A2)
ij
We have numerically evaluated the complex coefficients ¢; ; so that the state |o77) is a minimizer of the
potential of multipartite entanglement . We have found a solution such that the only non-vanishing



012201-20 Di Martino, Facchi, and Florio J. Math. Phys. 59, 012201 (2018)

TABLE I. Table of non-vanishing coefficients c;; obtained from the
minimization of 7y in the case of 7 qubits.

) ¢ ¢
(L,1) 0.313 685 -0.019416
(1,4) —0.124 963 0.007 51404
2,2) 6.168 76805 x107° -0.000116371
2,3) —0.000 103 808 —0.000069 1072
3,2) 0.000 046 695 —0.000073 5369
3.,3) -0.000243 151 -0.000195018
4,1) 0.0193888 0.313752
4,4) -0.007 77771 -0.124766
(5,5) 0.0719262 0.15313
(5,8) 0.152837 -0.072 1254
(6,6) -0.160 604 -0.052677 1
6,7) 0.0528744 —-0.160 803
(7,6) 0.0527307 -0.160861
(7,7) 0.161076 0.0527179
(8,5) 0.153033 -0.0719374
(8,8) -0.0723194 -0.153041
9,5) 0.0529309 -0.160616
9,8) 0.160 688 0.0526321
(10,6) -0.072288 -0.153269
(10,7) -0.15302 0.0720842
(11,6) —0.152985 0.071988 8
(11,7) 0.0719157 0.153028
(12,5) -0.161016 -0.052708 3
(12,8) 0.052 609 4 -0.160931
(13,1) 0.0128427 -0.0812437
(13,4) 0.032297 —0.204 478
(14,2) -0.087611 -0.170 06
(14,3) 0.264 942 0.001 347 56
(15,2) —0.245851 —0.124 495
(15,3) -0.132874 0.115682
(16,1) -0.0128813 0.0812742
(16,4) -0.0323628 0.204 452

c;j’s are tabulated in Table I and expressed in the form
cij=¢) +ig", (A3)

with ¢§;.e), ¢f’]’") denoting the real and imaginary parts of the coefficient, respectively.

n(74)

20
15

10

P S S I S [ S S SRS 8 I i |
0.126 0.128 0.130 0.132 0.134 0.136 0.138 0.140”A

FIG. 6. Purity distribution among balanced bipartitions for the 7-qubit state |077).
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The value of myg in this case is
ame(o7) =0.131952. (A4)

In Fig. 6, we plot the histogram characterizing the distribution of the purities among the balanced
bipartitions. An interesting feature of this state is that all bipartitions are frustrated, i.e., none of
them reaches the minimum for the corresponding purity, but the distribution is fairly well peaked in
correspondence with two spikes only.

APPENDIX B: MAXIMUM DISTANCE SEPARABLE CODES AND PERFECT MMES

The definition of a (classical) code starts from the choice of a set of elements X that constitutes
the alphabet of the code. Even if there is no restriction on this choice, since information theory is
constructed around machines and computers, the most common set considered is X = {0, 1}, with
the clear meaning that the information is encoded in bits.

Definition 10. Given an alphabet X, a (classical) code C is a set of strings, called codewords,
over X of fixed length.

In the set of all possible codewords of fixed length n, £", it is possible to define a distance in the
following.

Definition 11. The Hamming distance between two strings of the same length, dg : 2" X X" - R,
is the number of positions in which the corresponding symbols are different.

Example 9. The Hamming distance between the two strings 0011 and 1001 is dg (0011, 1001)
=3.

Remark 8. The Hamming distance is a proper distance, i.e., it is positive, is symmetric, and
satisfies the triangle inequality.
Definition 12. The minimal Hamming distance of the code, 9, is defined as
6= min ]dH(v, w). (B1)

{v,weCv+w

The following theorem gives a bound on the dimension of the code (the maximum number of
codewords) and the minimal Hamming distance of the codewords.

Theorem 11 (Singleton bound**). For any code C C X", the following inequality holds:
M> qn—6+l’ (B2)

with M as the number of the codewords and § as its minimum Hamming distance.

Definition 13. A code for which the Singleton bound is saturated is called the Maximum Distance
Separable (MDS) code.

Let us consider a code C = {c;}, with N4 as codewords of length n and alphabet Z,. Using the
codewords of C, we can construct the n-qudit state

1
= ). B3
) m;m (B3)

If the minimal Hamming distance of C is greater than n4 + 1, after the partial trace over a balanced
bipartition, all the off-diagonal terms, trz(|c;) (ck|), vanish. Indeed

tra(le;) <cxl) = Z (ejy Cerll) #0, (B4)

ZEZZA
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if and only if ¢; and c; have at least nz symbols in common. Moreover, the presence of d [5] terms
in the sum is due to the necessity of having p4 proportional to identity, i.e., I%A for every bipartition

(A, A). Therefore, for this state, myz reaches its minimum and the state in Eq. (B3) is a perfect
MMES.

It remains to prove the existence of such a code. In particular, from the Singleton bound,
§ > nA + 1, meaning that we are addressing the relation between n and d in order for a MDS
code to exist.

Theorem 12. If d is a prime or a prime power, a MDS code exists ifn < d — 1.

The MDS codes to which the theorem is referring are the Reed-Solomon codes.** This means
that given 7 it is always possible to choose the first suitable d > n + 1 in order to construct a perfect
MMES.

Remark 9. This bound gives only a bound on the point at which frustration disappears. Indeed,
in the case of 5 qubits, for example, a perfect MMES exists, while according to the bound, we need
d>4.
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