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Abstract

A quantum mechanical version of a classical inverted pendulum is analyzed. The stabilization of the classical motion is
reflected in the bounded evolution of the quantum mechanical operators in the Heisenberg picture. Interesting links with the
quantum Zeno effect are discussed. 2001 Elsevier Science B.V. All rights reserved.

PACS:42.65.Sf; 03.65.Bz; 05.45.-a; 42.65.Yj

An inverted pendulum is an ordinary classical pen-
dulum initially prepared in the vertical upright posi-
tion [1–3]. This is normally an unstable system, but
can be made stable by imposing a vertical oscillatory
motion to the pivot. In a few words, when the pivot
is accelerated upwards the motion is unstable, while
when it is accelerated downwards the motion can be
stable: the periodic switch between these two situa-
tions can be globally stable or unstable depending on
the values of some physical parameters. In particular,
when the frequency of the oscillation is higher than a
certain threshold, the system becomes stable. This re-
sult is a bit surprising at first sight, but can be given an
interesting explanation in terms of the so-called para-
metric resonance [2].

* Corresponding author.
E-mail address:saverio.pascazio@ba.infn.it (S. Pascazio).

In this Letter we shall study a system that can be
viewed as a quantum version of the inverted pen-
dulum. The system to be considered makes use of
down-conversion processes interspersed with zones
where a linear coupling takes place between the down-
converted photon modes. It is similar to other exam-
ples previously analyzed [4,5] in the context of the
quantum Zeno effect [6], where the “measurement” is
performed by a mode of the field on another mode.
When the coupling between the two modes is large
enough, the measurement becomes more effective and
the dynamics gets stable: this is just a manifestation
of the quantum Zeno effect, which consists in the hin-
drance of the quantum evolution caused by measure-
ments. The very method of stabilization of the quan-
tum system analyzed here is one of its most interest-
ing features and the configuration we discuss is ex-
perimentally realizable in an optical laboratory. It is
therefore of interest both for the investigation of the
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stable/unstable borderline for classical and quantum
mechanical systems and their links with the quantum
Zeno effect.

We consider a laser field (pump) of frequencyωp ,
propagating through a nonlinear coupler. The field is
considered to be classical and the signal and idler
modes are denoted bya andb, respectively. We will
assume that all modes are monochromatic and the
amplitudes of the fields inside the coupler vary little
during an optical period (SVEA approximation). The
effective (time-dependent) Hamiltonian reads (h̄= 1)

(1)H(t)= ωaa†a +ωbb†b+Hint(t),

where the interaction Hamiltonian is given by

(2)Hint(t)=


Γ (a†b†e−iωpt + abeiωpt )

if 0 < t < τ1,

Ω(a†b+ ab†)

if τ1< t < τ1+ τ2,
andHint(t +nT )=Hint(t), with a periodT = τ1+ τ2.
The nonlinear coupling constantΓ is proportional
to the second-order nonlinear susceptibility of the
mediumχ(2) [7], Ω to the overlap between the two
modes [8] andn= 0,1, . . . ,N is an integer.

We require the matching conditionsωp = ωa + ωb
andωa = ωb [9]. The above Hamiltonian describes
phase-matched down-conversion processes, fornT <

t < nT + τ1, interspersed with linear interactions
between signal and idler modes, fornT + τ1 <

t < (n + 1)T . Since time is equivalent, within our
approximations, to propagation length, our system
can be thought of as a nonlinear crystal cut intoN
pieces, in each of whicha, b photons are created in
a down-conversion process. A similar configuration
was considered in [4]. Between these pieces, no
new photons are created by the laser beam, but the
idler and signal modes (linearly) interact with each
other, for instance, via evanescent waves. See Fig. 1.
By introducing the slowly varying operatorsa′ =
eiωat a, b′ = eiωbt b, the free part of Hamiltonian (1)
is transformed away and the Hamiltonian becomes
(suppressing all primes for simplicity)

(3)H(t)=


Hu≡ Γ (a†b†+ ab)

if 0 < t < τ1,

Hs≡Ω(a†b+ ab†)

if τ1< t < τ1+ τ2,

Fig. 1. The system.

with H(t + nT ) = H(t), yielding the equations of
motion

(4)ȧ =−i[a,H ], ḃ =−i[b,H ].
In terms of the variables

x± = 1

2

[(
a + a†)∓ (b+ b†)],

(5)p± =− i
2

[(
a − a†)∓ (b− b†)],

which satisfy the equal-time commutation relations
[x+,p+] = [x−,p−] = i, others= 0, the Hamiltoni-
ans in Eq. (3) become

Hu= Γ
2

[(
p2+ − x2+

)− (p2− − x2−
)]
,

(6)Hs= Ω
2

[(
p2+ + x2+

)− (p2− + x2−
)]
.

They describe two uncoupled oscillators, whose equa-
tions of motion are{
ẋ± =−i[x±,Hu] = ±Γp±,
ṗ± =−i[p±,Hu] = ±Γ x± ⇔{
ẍ± − Γ 2x± = 0,

p̈± − Γ 2p± = 0,{
ẋ± =−i[x±,Hs] = ±Ωp±,
ṗ± =−i[p±,Hs] = ∓Ωx± ⇔

(7)

{
ẍ± +Ω2x± = 0,

p̈± +Ω2p± = 0.

The first set of equations describes anunstablemotion,
the second set astableone, around the equilibrium
point x = p = 0. Notice that the motion of(x−,p−)
is the time-reversed version of that of(x+,p+). This
is due to the fact that the two motions are governed by
Hamiltonians with opposite sign in Eqs. (6). Hence-
forth, we shall concentrate on the variables(x+,p+)
(the stability condition for(x−,p−) is identical). The



P. Facchi et al. / Physics Letters A 279 (2001) 117–122 119

Fig. 2. Stability condition (12) in parameter space. (a)|TrA|/2 vs.Ωτ2 andΓ τ1; (b) stability (Zeno) region.

solutions are(
x+(τ1)
p+(τ1)

)
=Au

(
x+(0)
p+(0)

)
,

(8)Au≡
(

cosh(Γ τ1) sinh(Γ τ1)
sinh(Γ τ1) cosh(Γ τ1)

)
,

for the period governed byHu and(
x+(τ2)
p+(τ2)

)
=As

(
x+(0)
p+(0)

)
,

(9)As≡
(

cos(Ωτ2) sin(Ωτ2)
−sin(Ωτ2) cos(Ωτ2)

)
,

for that governed byHs. Remember thatT = τ1+ τ2
is the period of the HamiltonianH(t) in (3).

The dynamics engendered by (3) at timet = NT
(remember thatn= 1, . . . ,N ) yields therefore

(10)

(
x+(NT )
p+(NT )

)
=AN

(
x+(0)
p+(0)

)
, A≡AsAu.

These equations of motion have the same structure
of a classical inverted pendulum with a vertically
oscillating point of suspension [2], whose classical
map is given by the product of two matricesAcl ≡
A2A1, with

A1≡
(

cosh(k1τ ) k−1
1 sinh(k1τ )

k1 sinh(k1τ ) cosh(k1τ )

)
,

(11)A2≡
(

cos(k2τ ) k−1
2 sin(k2τ )

−k2 sin(k2τ ) cos(k2τ )

)
,

where the parametersk1 and k2 are subject to the
physical conditionk1 > k2 > 0. Observe that our
system has more freedoms:τ1 and τ2 are in general

different and the parametersΩ andΓ do not have to
obey any additional constraint.

The global motion is stable or unstable, according
to the value of|TrA|Q 2 [2]. The stability condition
|TrA|< 2 reads

(12)|TrA|/2= ∣∣cos(Ωτ2)cosh(Γ τ1)
∣∣< 1.

This relation is of general validity and holds for any
value of the parametersΩ , Γ and τi . The value of
|TrA|/2 is shown in Fig. 2(a). A small-τ expansion
(the physically relevant regime: see final discussion)
yields

(13)1− (Ω2τ2
2 − Γ 2τ2

1

)
/2+O(τ4)< 1,

so that the system is stable forΩτ2 > Γ τ1 when
τ2→ 0.

It is interesting to discuss the stability condition just
obtained for the(x,p) variables in terms of the num-
ber of down-converted photons. To this end, let us look
at some limiting cases. (Needless to say, the analysis
could be done from the outset in terms ofna andnb
and would yield an identical stability condition (12).)
WhenΩ = 0 in (3) and following equations, only the
down-conversion process takes place and bothna =
a†a andnb = b†b grow exponentially with time. There
is an exponential energy transfer from the pump to the
a, b modes. On the other hand, ifΓ = 0 and the sys-
tem is prepared in any initial state (except vacuum,
whose evolution is trivial),na andnb oscillate in such
a way that their sum is conserved (this is due to the
property[na +nb,Hs] = 0). If bothΩ andΓ are non-
vanishing, these two opposite tendencies (exponential
photon production and bounded oscillations) compete
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in an interesting way. WhenΓ τ1 > Ωτ2, in the limit
τ1→ 0, the exponential photon production dominates
and there is no way of halting (or even hindering) this
process: the (external) pump transmits energy to the
a, b modes. In terms of the(x,p) variables, the sta-
bility condition (13)cannotbe fulfilled and the oscil-
lator variables move exponentially away from the ori-
gin. The opposite situationΩτ2 > Γ τ1 is very inter-
esting and displays some quite nontrivial aspects: The
motion becomes stable and the pump does not trans-
mit energy to thea, b modes anymore (the two modes
oscillate).

In general and for arbitrary values of all parameters,
the action ofHs can be viewed as a sort of measure-
ment [5,10,11], in the following sense: thea mode per-
forms an observation on thebmode andvice versa, the
photonic states get entangled and information on one
mode is encoded in the state of the other one. For ex-
ample, the conditionΩτ2= π/2 yields an “ideal mea-
surement” of one mode on the other one, for in such
a case the states|1a,0b〉 ↔ |0a,1b〉 evolve into each
other. From this viewpoint, the stabilization regime
just investigated can be considered as a quantum Zeno
effect [6], in that the measurements essentially affect
and change the original dynamics. In fact, if one con-
sidersΩτ2 as the “strength” of the measurement, by
increasing (at fixedΩτ2) the frequency of measure-
ments, i.e., by lettingτ1→ 0, the system moves down
along a vertical line in Fig. 2(b) and enters a region
of stability (Zeno region) from a region of instabil-
ity. (Notice that it is not necessary to consider the
τ1 = 0 limit (“continuous measurement”) in order to
stabilize the dynamics; there is a threshold, given by
the curve in Fig. 2(b), at which stability and instabil-
ity interchange.) Analogously, at fixedΓ τ1, by mov-
ing along a horizontal lineΩτ2→ π/2 the system
enters a region of stability because the measurement
becomes more “effective”: indeed, as emphasized be-
fore,Ωτ2= π/2 is aπ -pulse condition and leads to a
very effective measurement of one mode on the other
one. It is worth stressing that even an instantaneous
measurement (projection) can be obtained by letting
τ2→ 0, while keepingΩτ2 finite (the so-called im-
pulse approximation in quantum mechanics), and in
this case our system yields the standard formulation of
the quantum Zeno effect.

It is interesting (and convenient from an experi-
mental perspective) to consider a single-mode ver-

sion of Hamiltonian (3), in which the down-conversion
process is replaced by a sub-harmonic generation
process (degenerated parametric down conversion).
The single-mode effective Hamiltonian reads

(14)H(t)= ωa†a +Hint(t),

where the interaction Hamiltonians describing the
unstable and stable part of the device are

(15)Hint =


(Γ /2)(a†2e−2iωt + a2e2iωt )

if 0 < t < τ1,

(Ω/2)(a†a + aa†)

if τ1< t < τ1+ τ2,
respectively andHint(t + nT )=Hint(t). By introduc-
ing the slowly varying operatora′ = eiωata, the free
part of Hamiltonian (14) is transformed away and the
Hamiltonian becomes (suppressing again all primes)

(16)H(t)=


Hu≡ (Γ /2)(a†2+ a2)

if 0 < t < τ1,

Hs≡ (Ω/2)(a†a + aa†)

if τ1< t < τ1+ τ2,
under which the equation of motioṅa = −i[a,H ]
follows.

In terms of the variablesx = (a + a†)/
√

2, p =
−i(a− a†)/

√
2 the Hamiltonians read

(17)Hu= Γ
2

(
x2− p2), Hs= Ω

2

(
x2+ p2).

These Hamiltonians are identical to the two-mode
versions (6) describing the decoupled mode(x+,p+),
apart from the substitutionΓ → −Γ . Hence, the
stability condition is given again by Eq. (12), which
is even inΓ . Also in this case one can talk of quantum
Zeno, but the “measurement” is performed by the
single mode on itself.

It is interesting to discuss a possible experimen-
tal realization of the two situations considered in
this Letter. The experimental arrangement sketched in
Fig. 3(a) corresponds to the two-mode (nondegener-
ate) case, whereas that sketched in Fig. 3(b) to the
single-mode (degenerate) case. In Fig. 3(a) a type II
down-conversion process generates two orthogonally
polarized beams of down-converted light of the same
frequency. The two beams are mixed using a polar-
izing beamsplitter PBS. The stable part of the evolu-
tion of the system is realized by two successive passes
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Fig. 3. Experimental setup. (a) Possible experimental realization of Hamiltonian (1)–(2). NL, nonlinear crystal; Mi (i = 1,2), semitransparent
mirrors; Di , detectors; PBS, polarizing beamsplitter. (b) Possible experimental realization of Hamiltonian (14)–(15). NLi (i = 1, . . . ,N),
nonlinear crystals; PSi , phase shifters; D3, detector. The dotted lines indicate which elements are computer controllable.

of the beams through the beamsplitter. Its reflection
coefficient, and henceΩτ2, is adjusted by rotating it.
Mirrors and semitransparent mirrors keep sending the
beams through the crystal many times. A successful
stabilization of the unstable system is manifested in
the decrease of the rate of photon registrations at de-
tectorsD1,D2 at a certain position of the beamsplit-
ter PBS. A different setup is sketched in Fig. 3(b),
whereN processes of subharmonic generation take
place inN nonlinear crystals with controlled phase
shifters in between them. For appropriately chosen
phase shiftsθi = (Ωτ2 + Ci) mod 2π , whereCi are
N − 1 phase shifts intrinsic to the actual experimen-
tal arrangement (given by distances between crystals,
etc.), the generation of the subharmonic wave is sup-
pressed.

In order to give a reasonable estimate of the value of
the coupling constantΓ , consider that, due to the cor-
respondence principle, the gain of classical and quan-
tum parametric amplifiers must be the same; therefore
one can use the well-known classical formula for the
nonlinear coupling parameterΓc governing the space
evolution inside the nonlinear medium, which in MKS
units reads

(18)Γ 2
c =

η3

2
χ(2)2ωaωbIp.

Here η is the impedance of the medium,χ(2) is
the second-order susceptibility,ωa and ωb are the
frequencies of modesa and b, respectively, andIp

is the intensity of the pump beam. The following
numerical values could be typical for a performed
experiment:η ≈ 220 �, χ(2) ≈ 2 × 10−23 C V−2,
ωa = ωb ≈ 3 × 1015 s−1 and Ip ≈ 105 W m−2.
Hence the nonlinear coupling parameter is of the order
of Γc ≈ 0.1 m−1. Reasonable lengths of nonlinear
crystals are of the order ofl ≈ 10−2 m, so that the
dimensionless product of interest can be estimated to
be about

(19)Γ τ1= Γcl ≈ 0.001.

This means that the down-converted beam(s) ought to
pass the nonlinear region many times in order to show
an explosive increase of its (their) intensity(ies). This
could be achieved by placing the nonlinear crystal in
a resonator as shown in Fig. 3(a). However, in order
to observe a significant change of the dynamics of the
process in question due to the performed stabilization,
a few passes might already turn out to be sufficient.

In conclusion, we have discussed a striking quan-
tum-optical analogue of a well-known classical un-
stable system. By interspersing the nonlinear regions
with regions of suitably chosen linear evolution, the
global dynamics of our system can become stable and
the generation of down-converted light can be strongly
suppressed. This behavior has an interesting interpre-
tation in terms of the quantum Zeno effect: by increas-
ing the “strength” of the observation performed by the
a mode on theb mode and vice versa, in the sense dis-
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cussed before, the evolution is frozen and the system
tends to remain in its initial state. This phenomenon
is somewhat counterintuitive: in the setups in Fig. 3,
even though the beams are forced to go through the
crystal many times, no exponential photon production
takes place. The experiment seems feasible and its re-
alization would illustrate an interesting aspect related
to the stabilization of a seemingly explosive behavior.
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