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Bound states in the continuum for an array of quantum emitters
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We study the bound states in the continuum for a system of n two-level quantum emitters, coupled with a
one-dimensional photon field, when a single excitation is shared among the different components of the system.
The emitters are equally spaced at fixed positions. We first consider the approximation of distant emitters and
exhibit degenerate eigenspaces of bound states corresponding to resonant discrete values of the energy. We
then consider the full form of the eigenvalue equation, in which the effects of the finite spacing and the field
dispersion relation become relevant, yielding significant nonperturbative effects that can lift some degeneracies.
We explicitly solve the cases n = 3 and n = 4 emitters.
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I. INTRODUCTION

The physics of effectively one-dimensional (1D) systems is
recently attracting increasing attention, thanks to the unprece-
dented possibilities offered by modern quantum technolo-
gies [1]. A number of interesting and versatile experimental
platforms are available nowadays to implement an efficient
dimensional reduction and enable photon propagation in 1D.
These schemes differ in scope and make use of diverse phys-
ical systems, such as optical fibers [2,3], cold atoms [4–6],
superconducting qubits [7–13], photonic crystals [14–18], and
quantum dots in photonic nanowires [19,20], the list being far
from exhaustive. Light propagation in these systems is char-
acterized by different energy dispersion relations and inter-
action form factors, yielding drastically dimension-dependent
features that heavily affect dynamics, decay, and propagation
[21,22].

Although the physics of single quantum emitters in waveg-
uides is well understood [4,12,23–26], novel phenomena arise
when two [27–39] or more [17,18,21,23,25,40–57] emitters
are present, since the dynamics is influenced by photon-
mediated quantum correlations. In this and similar con-
texts, sub- and super-radiant states often emerge. However,
while standard (Dicke) super-radiance effects occur at light
wavelengths much larger than typical interatomic distances
[58–61], considering wavelengths comparable to the inter-
atomic distance brings to light a number of interesting quan-
tum resonance effects [62].

In this article, we will apply the resolvent formalism [63]
to study the existence of single-excitation bound states in the
continuum in a system of n quantum emitters. In these states,
the excitation is shared in a stable way between the emitters
and the field, even though the energy would be sufficient
to yield photon propagation. The case of n = 2 emitters has
already been considered in both the one- and two-excitation
sectors [29,64]. Here we extend the results to general n, under
the assumption of large interatomic spacing compared to the
inverse infrared cutoff of the waveguide mode. We will then
consider how the corrections to such approximation crucially

affect the physical picture of the system, by explicitly an-
alyzing the cases of n = 3 and n = 4 emitters, and briefly
reviewing the case n = 2.

The paper is structured as follows. In Sec. II we in-
troduce the physical system, the interaction Hamiltonian,
and the relevant parameters. In Sec. III we outline the
general properties of bound states in the continuum. In
Sec. IV we analyze and discuss the eigenvalues in the
continuum and the corresponding eigenspaces. In Sec. V
we comment on the existence of nonperturbative eigenstates
that emerge when the interatomic spacing is smaller than a
critical value, depending on the number n. In Sec. VI we
summarize our main results.

II. PHYSICAL SYSTEM AND HAMILTONIAN

We shall consider a system of n two-level emitters, equally
spaced at a distance d and characterized by the same exci-
tation energy ε. Henceforth, we shall occasionally refer to
the emitters as “atoms.” The ground and excited state of
each emitter will be denoted by |gj〉 and |e j〉, respectively,
with j = 1, . . . , n. The emitter array is coupled to a struc-
tured one-dimensional photon continuum (e.g., a waveguide
mode), characterized by a dispersion relation ω(k) � 0, with
k ∈ R, and represented by the canonical field operators b(k)
and b†(k), satisfying [b(k), b†(k′)] = δ(k − k′). In absence of
interactions, the Hamiltonian of the system reads

H0 = ε

n∑
j=1

|e j〉〈e j | +
∫

dk ω(k)b†(k)b(k). (1)

When the total Hamiltonian H = H0 + Hint is considered, the
interacting dynamics generally does not preserve the total
number of excitations,

N =
n∑

j=1

|e j〉〈e j | +
∫

dk b†(k)b(k), (2)
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FIG. 1. The system: n two-level emitters placed at a relative
distance d and characterized by excitation energy ε.

unless a rotating-wave approximation is applied. In this case,
the interaction Hamiltonian reads

Hint =
n∑

j=1

∫
dk[F (k)ei( j−1)kd |e j〉〈g j |b(k) + H.c.], (3)

where F (k)ei( j−1)kd is the form factor describing the strength
of the coupling of the jth emitter standing at x = ( j − 1)d
with a photon of momentum k, and H can be diagonalized in
orthogonal sectors characterized by a fixed eigenvalue of N .
The system is sketched in Fig. 1.

The zero-excitation sector, N = 0, is spanned by the
ground state of H0, |G(n)〉 ⊗ |vac〉, with

|G(n)〉 =
n⊗

j=1

|g j〉 (4)

and |vac〉 being the vacuum photon state and b(k)|vac〉 = 0
for all k’s.

In this article, we will focus on the search of bound states
in the one-excitation sector, N = 1, whose vectors have the
form

|�1〉 =
n∑

j=1

a j

∣∣E (n)
j

〉 ⊗ |vac〉 + |G(n)〉 ⊗
∫

dk ξ (k)b†(k)|vac〉,

(5)
with∣∣E (n)

j

〉 = |g1〉 ⊗ · · · ⊗ |g j−1〉 ⊗ |e j〉 ⊗ |g j+1〉 ⊗ · · · ⊗ |gn〉.
(6)

In particular, we will consider a photon continuum with a
massive dispersion relation

ω(k) =
√

k2 + m2, (7)

and a form factor

F (k) =
√

γ

2πω(k)
, (8)

determined by the p · A interaction of QED [63], with γ a
coupling constant with the dimensions of squared energy.

The Hamiltonian H = H0 + Hint, defined by the dispersion
relation (7) and by the form factor (8), depends on the four
parameters ε, m, d , and γ , all with physical dimension.

III. BOUND STATES IN THE CONTINUUM

We are interested in bound states in the continuum of the
one-excitation sector, that is, eigenstates with energy E > m.
By considering the Hamiltonian H = H0 + Hint, defined by
(1) and (3), and the expansion of the state vectors (5), the

eigenvalue equation in the one-excitation sector reads

(ε − E )a j = −
∫

dk e−i( j−1)kd F (k)∗ ξ (k)

[ω(k) − E ]ξ (k) = −
n∑

	=1

a	 ei(	−1)kd F (k). (9)

From the second equation,

ξ (k) = −
n∑

	=1

a	 ei(	−1)kd F (k)

ω(k) − E
, (10)

one infers that, since ξ (k) must be normalizable for a bound
state, the vanishing of the denominator, occurring when
ω(k) = E , i.e., at k = ±k̄, with

k̄(E ) =
√

E2 − m2, (11)

for E > m, must be compensated by the vanishing of the
numerator at the same points. Therefore, the atomic excitation
amplitudes and the energy eigenvalue of bound states in the
continuum necessarily satisfy the constraint

n∑
	=1

a	e±i(	−1)k̄d = 0. (12)

By using the expression (10), one obtains the relation

(ε − E )a j =
∫

dk
n∑

	=1

a	 ei(	− j)kd |F (k)|2
ω(k) − E

, (13)

involving only the atomic excitation amplitudes and the eigen-
value E . Equation (13) can be expressed in the compact form

G−1(E ) a = 0, (14)

with a = (a1, a2, . . . , an)T and G−1 the inverse propagator
matrix in the single-atomic-excitation subspace, generally
defined for a complex energy z by

G−1(z) = (ε − z)1 − 
(z), (15)

where the self-energy matrix 
 has elements


 j	(z) =
∫

dk
|F (k)|2
ω(k) − z

e−i( j−	)kd . (16)

The self-energy and the inverse propagator are well defined
for nonreal arguments and have a discontinuity across the
continuum spectrum z ∈ [m,∞), where generally


(E + i0) − 
(E − i0) 	= 0, E ∈ [m,∞), (17)

with 
(E ± i0) = limδ↓0 
(E ± iδ).
Therefore, the equality of the upper and lower boundary

value is a necessary condition for (14) to be well defined
and, a fortiori, for E to be an eigenvalue. Finally, notice that
Eq. (14) always admits a trivial solution, which correspond,
due to (10), to the null vector. If G−1(E ) is well defined, then
the equation

det G−1(E ) = 0 (18)

provides a necessary and sufficient condition for E to be an
eigenvalue with a nontrivial solution a 	= 0, providing the
atomic excitation amplitudes of the corresponding eigenstate.
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FIG. 2. Integration contour in the complex k plane for the com-
putation of the self-energy matrix 
(z). The integral on the (blue)
contour along the real axis is evaluated as the sum of the integrals on
the circle enclosing k̄ (pole contribution) and along the cut (im, i∞)
(cut contribution).

The integrals that define the elements of the self-energy in
(16) can be evaluated for z = E ± i0 with E > m by analytic
continuation in the complex k plane, yielding


 jl (E ± i0) = ±iγ

k̄(E )
[e±i| j−l|k̄(E )d ± i b| j−l|(E )], (19)

where the first term derives from integration around one of the
poles at k = ±k̄ and the second one,

b j (E ) = k̄(E )

π

∫ ∞

m
dκ

e− jκd

√
κ2 − m2

E

E2 + κ2 − m2
, (20)

from integration around one of the branch cuts, (im, i∞)
or (−i∞, im), of the analytic continuation in the complex
k plane. The original and modified integration contours are
shown in Fig. 2. Notice that the functions b j are real for
E > m.

In the case j = 0, the integral can be evaluated analytically
and yields

b0(E ) = − 1

π
ln

(
E − √

E2 − m2

m

)
. (21)

In the general case, the cut contribution must be evaluated
numerically. However, a relevant property follows from the
definition (20),

|b j (E )|
|b0(E )| � exp(− jmd ) for E > m, (22)

implying that, for md � 1, the terms b j>0 can be neglected as
a first approximation.

In the following, we will show that, interestingly, the
inclusion of such terms in the analysis on one hand entails
selection rules that remove the degeneracy of bound states in
the continuum and, on the other hand, displaces by orders
O(e−md ) the energies, resonance distances, and amplitudes
that satisfy the constraint in Eq. (12).

The photon eigenfunction (10) in the position representa-
tion reads

ξ (x) = −
∫

dk
F (k)

ω(k) − E

n∑
	=1

a	e−ik[x−(	−1)d]

=
n∑

	=1

a	 ξ1(x − (	 − 1)d ) (23)

with

ξ1(x) = −
∫
−dk

F (k)

ω(k) − E
e−ikx

=
√

γ E

k̄
[sin(k̄|x|) − η(x)], (24)

where
∫− denotes integration with the principal value prescrip-

tion and

η(x) = 1

2π

k̄√
2E

∫ ∞

m
dκ

e−κ|x|
4
√

κ2 − m2

√
κ2 − m2 − E

E2 + κ2 − m2
(25)

is the O(e−mx ) cut contribution. Notice that the principal value
prescription

∫− is required in the definition of ξ1 for E > m,
while the integral in ξ (x) is regularized by the constraint (12).

IV. EIGENVALUES AND EIGENSTATES

A. Block-diagonal representation of the propagator

Given the form (14) of the eigenvalue equation for the
atomic amplitude vector a and the dependence of the propaga-
tor on the interatomic distance d and the transition energy ε,
it is convenient to introduce the matrix An(θ, χ, b), depending
on n + 1 real parameters, θ, χ ∈ R, b ∈ Rn−1, and defined as

[An(θ, χ, b)] j	 =
⎧⎨
⎩

1 + iχ, for j = 	

ei| j−	|θ + ib| j−	|, for j 	= 	

, (26)

with j, 	 = 1, . . . , n, that is,

An(θ, χ, b) =

⎛
⎜⎜⎜⎜⎜⎝

1 + iχ eiθ + ib1 ei2θ + ib2 . . .

eiθ + ib1 1 + iχ eiθ + ib1 . . .

ei2θ + ib2 eiθ + ib1 1 + iχ . . .

ei3θ + ib3 ei2θ + ib2 eiθ + ib1 . . .
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠.

(27)

The inverse propagator reads

G−1(E ) = − iγ

k̄(E )
An(θ (E ), χ (E ), b(E )), (28)

with

θ (E ) =k̄(E )d, (29)

χ (E ) =ε − E

γ
k̄(E ) + b0(E ), (30)

and k̄(E ), b j>0(E ), and b0(E ) as defined in (11), (20), and
(21), respectively.

The matrix An can be recast in block-diagonal form by
exploiting the invariance of the Hamiltonian with respect
to spatial reflections at the midpoint x = (n − 1)d/2, trans-
forming the local-excitation basis |E (n)

j 〉 in (6) by the unitary
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transformation

Un

∣∣E (n)
j

〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∣∣E (n)
j

〉
−
∣∣E (n)

n− j

〉
√

2
for j � n

2∣∣E (n)
j

〉
for j = n+1

2∣∣E (n)
j

〉
+
∣∣E (n)

n− j

〉
√

2
for j � n

2 + 1

. (31)

The action of such a transformation, which is also real and
symmetric, on the components in the local basis can be
expressed for even n = 2h and odd n = 2h + 1 in terms of
the h × h identity matrix 1h and the “exchange” matrix Jh

(i.e., the matrix with ones on the counterdiagonal as the only
nonvanishing elements) as

Un = 1√
2

(
1h −Jh

Jh 1h

)
(32)

and

Un = 1√
2

⎛
⎝1h 0 −Jh

0
√

2 0
Jh 0 1h

⎞
⎠, (33)

respectively. The transformation Un generalizes the change
from the local basis to the Bell basis for n = 2 emitters [29].

In the new representation, the self-energy and the propaga-
tor turn out to be block diagonal:

UnAnU
†
n = A−

n ⊕ A+
n , (34)

where A−
n (θ, χ, b) is the �n/2� × �n/2� matrix acting on the

antisymmetric amplitude vectors of the emitters, with

a j = −an+1− j, j = 1, . . . , n, (35)

and A+
n (θ, χ, b) is the �n/2� × �n/2� matrix acting on the

symmetric amplitude vectors,with

a j = an+1− j, j = 1, . . . , n. (36)

Therefore, the eigenvalue equation (14) can be reduced to
the quest for nontrivial solutions of the two decoupled linear
systems

A±
n (θ (E ), χ (E ), b(E )) a± = 0. (37)

Eigenvectors with no reflection symmetry are allowed only
if the same energy E is an eigenvalue for both systems (37)
for the same set of parameters ε, m, d , and γ . Examples of
eigenstates with definite symmetry, whose relevance will be
discussed in the following, are shown in Fig. 3.

Throughout this section, we will first analyze bound states
by neglecting O(e−md ) terms in the self-energy and then
discuss the consequences of including all the b j>0 terms in
the cases n = 2, 3, 4.

B. Large spacing approximation

When md is large, the terms b j , with j > 0, in the self-
energy are exponentially suppressed and will be neglected as
a first approximation, namely

b = 0. (38)

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Atomic excitation amplitudes aj , with 1 � j � n, repre-
sented as (red) bars localized at the emitter positions, and field wave
functions ξ (x), represented as solid (blue) lines, for different bound
states in the continuum of a system of n = 3 [(a) and (b)] and n = 4
[(c)–(f)] emitters with md = 7 and γ /m2 = 10−2. In panel (a), a1 =
−a3 and a2 = 0; in panel (b), a1 = a3 and a2/a1 � 2; in panel (c),
a1 = a4, a2 = a3 and a1/a2 � −(1 + √

5)/2; in panel (d), a1 = a4,
a2 = a3 and a1/a2 � (

√
5 − 1)/2; in panel (e), a1 = a2, a3 = a4 and

a2 = −a3; in panel (f), a1 = a4, a2 = a3 and a1/a2 � 0.25.

Both matrices A±
n (θ, χ, 0) are singular if and only if

θ = νπ (ν ∈ N ), and χ = 0. (39)

The former condition,

k̄ = νπ

d
, (40)

selects the possible eigenvalues in terms of the spacing d ,

E = Eν (d ) =
√

ν2π2

d2
+ m2, (41)

which will be called resonant energies in the following. Notice
that (40) implies that the emitters should be at a distance d
which is an exact multiple of half wavelengths of the trapped
photon λ̄ = 2π/k̄, that is, d = νλ̄/2.

The second condition in (39),

ε = Eν (d ) − γ d

νπ
b0[Eν (d )]

= Eν (d ) + γ d

νπ
ln

[
Eν (d )

m
− νπ

md

]
, (42)

provides a constraint involving the excitation energy, the spac-
ing, and the order ν of the resonance. Equation (42) defines a
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discrete family of curves in the (ε, d ) plane, identifying the
values ε for which a bound state in the continuum exists.

The emitter configurations associated with the eigenvalues
(41) satisfy the constraint (12), which yields two different
conditions according to the parity of the resonance. For even
ν, for all the eigenvectors, the atomic excitation amplitudes
must sum to zero,

n∑
j=1

a j = 0; (43)

while for odd ν one obtains
n∑

j=1

(−1) ja j = 0. (44)

Hence, each eigenvalue Eν (d ) is characterized by an (n − 1)-
fold degeneracy. It is worth observing that, since both matrices
A±

n are characterized by the same singularity conditions at
this level of approximation, the same eigenvalue can occur
in both the symmetric and antisymmetric sector. In such
cases, the bound states are not characterized by a well-defined
symmetry.

The photon wave function associated with the eigenstates
can be derived according to Eq. (23), considering E = Eν (d ).
Neglecting the η contribution in (24), the single-emitter con-
tribution to the field is given by the oscillating function

ξ1(x) ∝ sin

(
νπ |x|

d

)
, (45)

whose half-wavelength coincides with d/ν. The photon wave
function in the same approximation thus reads

ξ (x) ∝
n∑

	=1

a	 sgn[x − (	 − 1)d] sin
(νπx

d

)
(46)

for even ν and

ξ (x) ∝
n∑

	=1

a	 (−1)	−1sgn[x − (	 − 1)d] sin
(νπx

d

)
(47)

for odd ν. The field has nodes at the emitter positions x =
jd and in both cases, due to the conditions (43) and (44),
respectively, it vanishes identically for x < 0 and x > nd and
is therefore confined inside the emitter array.

Finally, it is worth observing that all possible n-emitter
eigenstates can be obtained as linear combinations of two-
emitter eigenstates at different positions. However, we will
show in the following that O(e−md ) effects, however small,
remove this degeneracy, and imply selection rules related to
the reflection symmetry of the atomic eigenstates.

C. Full form of the self-energy

The degeneracy obtained in the previous subsection by
approximating the self-energy by setting b = 0 is lifted by
considering the terms b j , with j > 0. We now discuss in
detail this phenomenon. The effect of these terms can be
summarized in the following points:

(i) At given d and Eν (d ), only one of the two matrices
A±

n (νπ, χ [Eν (d )], b[Eν (d )]), namely the one for which

A±
n (νπ, 0, 0) = 0, (48)

continues to be singular for some values of ε and γ . The
matrix satisfying the property (48) is the antisymmetric one
for odd n and the one with symmetry (−1)ν+1 for even n.
Details on this general result are given in the Appendix.

(ii) The values of χ (E ) [and hence of ε, through Eq. (42)]
corresponding to the eigenstates with energy Eν (d ) will de-
pend on the eigenstate. For any fixed ε, only one stable state
with energy Eν (d ) can generally be found, with the orthogonal
states becoming unstable (although possibly long lived).

(iii) If A±
n (νπ, 0, 0) does not satisfy condition (48), then

A±
n (νπ, χ [Eν (d )], b[Eν (d )]) is in general no longer singular.

However, the corresponding stable states do not entirely dis-
appear but undergo a slight change in their amplitude and
energy, which is now displaced with respect to Eν (d ). Such
states must be studied numerically.

Here, we will explicitly examine these effects in the three
cases of n = 2, 3, 4 emitters. Moreover, we shall focus on
eigenstates connected by continuity to the resonant bound
states discussed in the previous subsection and postpone to
Sec. V the study of strong-coupling eigenstates, distant from
the resonant values, and characterized by extremely high
energies, E/m � 102.

1. n = 2 emitters

With respect to the inclusion of the cut terms b in the
self-energy, n = 2 represents an oversimplified case, since
the linear systems A±

n (θ, χ, b) reduce to single equations,
and the singularity conditions read

A±
2 (θ, χ, b1) = 1 ± eiθ + i(χ ± b1) = 0, (49)

corresponding to eigenstates in which the emitter excitation
amplitudes exactly satisfy

a2 = ±a1. (50)

The peculiarity of n = 2 lies in the fact that the condition
θ = νπ , with odd ν in the symmetric sector and even ν in the
antisymmetric sector, still holds for both symmetries, yielding
a resonant eigenenergy (41). The second condition in (39) is
generalized to

χ = (−1)νb1, (51)

so that the emitter excitation energy is constrained by

ε = Eν (d ) − γ d

νπ
{b0[Eν (d )] − (−1)νb1[Eν (d )]}. (52)

In this case, the inclusion of b1 = O(e−md ) in the self-energy
does not shift energies away from the resonant values and
does not remove any degeneracy, since the symmetric and
antisymmetric eigenstates already occurred for different ν’s
[29].

2. n = 3 emitters

For a system of three emitters, the eigenvalue equation
breaks down into a single equation for the antisymmetric
sector and a system of two equations for the symmetric sector.
In the former case, the eigenvalues are determined by the
solution of

A−
3 (θ, χ, b) = 1 − e2iθ + i(χ − b2) = 0. (53)
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As in the n = 2 case, the real part of the above equation is
sufficient to ensure that the resonance condition θ = νπ , here
with any ν ∈ N, is still valid, and the corresponding energy
must be resonant (41). The constraint on ε for the existence
of an antisymmetric eigenstate, with the atomic excitation
proportional to (|E (1)

3 〉 − |E (3)
3 〉)/

√
2, is now determined by

the equation

χ = b2, (54)

which yields

ε = Eν (d ) − γ d

νπ
{b0[Eν (d )] − b2[Eν (d )]}. (55)

Instead, in the symmetric sector, where the eigenenergies
are determined by the equation

0 = det A+
3 (θ, χ, b)

= det

[
1 + iχ

√
2(eiθ + ib1)√

2(eiθ + ib1) 1 + e2iθ + i(χ + b2)

]
, (56)

one can easily check that there are no solutions for θ = νπ

with integer ν, as their existence would imply at least one of
the conditions b2(E ) = ±3

√
b1(E )2 ± 2b1(E ). Actually, the

energy of the symmetric bound state in the continuum

E = Eν (d ) + (−1)ν
k̄[Eν (d )]

d Eν (d )
b1[Eν (d )] + O(e−2md ) (57)

is shifted by an amount of O(e−md ) with respect to
the resonant value Eν (d ), corresponding to a shift δθ �
(−1)νb1[Eν (d )] in the phase. The values of (ε, d ) at which
the symmetric bound states occur can now be derived from
the condition

χ (E ) = 2(−1)νb1[Eν (d )] + O(e−2md ), (58)

with E given by (57). For the lowest-order resonances ν =
1, one can observe that the energy of the symmetric state is
shifted downward with respect to the value E1(d ), that is exact
for the antisymmetric state. This effect is evident in Fig. 4, in
which the behavior of the eigenvalues corresponding to bound
states in the continuum for both parity sector is represented in
terms of d . The trajectories of the bound states are displayed
in Fig. 5.

While the excitation amplitudes of antisymmetric bound
states are constrained to the values

a2 = 0, a3 = −a1, (59)

the amplitudes of the symmetric states depend on the param-
eters and on the magnitude of the cut contributions. If the
terms b j>0 are neglected, then the symmetric bound state is
characterized by

a3 = a1, a2 � 2(−1)ν+1a1, (60)

with the second value sensitive to O(e−md ) corrections when
the b j’s are included. These states are represented in Figs. 3(a)
and 3(b), for some values of the parameters d and γ . In the
following section, we will find that bound states with different
amplitudes, not connected by continuity to the ones described
above, can emerge in the case ε � m, a regime in which,
however, the validity of the one-dimensional approximation
on which our model is based becomes questionable.

FIG. 4. Spectral lines in the (E , d ) plane for a system of n = 3
equally spaced emitters. Solid (red) lines correspond to antisym-
metric configurations, while dashed (blue) lines to symmetric ones.
For larger values of the distance, the curves follow with excellent
approximation the resonant values in Eq. (41). For md � 2, the
difference between the eigenvalues of the lowest-energy symmetric
and antisymmetric state becomes appreciable.

A relevant parameter that characterizes the features of
bound states in the continuum is the total probability of atomic
excitations,

p = a†a = 1 −
∫

dk|ξ (k)|2, (61)

that “measures” how the single excitation is shared between
the emitters and the field. In this case, the probabilities p(3)±

ν

for the symmetric (+) and antisymmetric (−) eigenstates read

p(3)+
ν �

[
1 + 2γ dEν

3
(
E2

ν − m2
) + γ

π (Eν + m)

]−1

, (62)

p(3)−
ν �

[
1 + 2γ dEν

E2
ν − m2

+ 2γ

π (Eν + m)

]−1

, (63)

up to order O(e−md ).
As in the case of n = 2 emitters [29], the emitter excitation

decreases with coupling and distance and increases with en-
ergy. In Fig. 6 we show the probabilities for the symmetric
and antisymmetric states with ν = 1, computed from the
approximate expressions (62) and (63) as a function of d and
γ . In the whole parameter range, the approximate expressions
provide, even for small md , a very good estimate of the exact
values, which differ by less than 10−3 in the symmetric case
and less than 2.5 × 10−2 in the antisymmetric case.

3. n = 4 emitters

For a system made up of n = 4 emitters, the eigenvalues
in both symmetry sectors are determined by the singularity
conditions of the 2 × 2 matrices

A±
4 =

[
1 ± eiθ + i(χ ± b1) eiθ ± e2iθ + i(b1 ± b2)

eiθ ± e2iθ + i(b1 ± b2) 1 ± e3iθ + i(χ ± b3)

]
.

(64)
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(a)

(b)

FIG. 5. Behavior of the bound-state energies E in the vicinity of
the resonant values E1(d ) (upper panel) and E2(d ) (lower panel) for
n = 3, as a function of ε. In both panels, the trajectories for symmet-
ric (dashed blue lines) and antisymmetric states (solid red lines) are
shown with the arrows pointing toward increasing emitter separation
d . Notice that the antisymmetric bound state corresponds in both
cases to the resonant energy, while the energy of the symmetric state
approaches the resonant value as d increases (as ε decreases).

If the cut contributions are neglected, b = 0, then the singu-
larity conditions yield θ = νπ and χ = 0 as in (39), and two
complementary pictures emerge according to the parity of ν.
For even ν, the three-dimensional subspace corresponding to
the eigenvalue Eν (d ) is spanned by the whole antisymmetric
sector and by the symmetric state with

a1 = −a2 = −a3 = a4. (65)

For odd ν, the eigenspace of Eν (d ) is still three dimensional,
spanned by the whole symmetric sector and by the antisym-
metric state with

a1 = a2 = −a3 = −a4. (66)

When the b j>0 terms are included, there are still eigenstates
with resonant energy Eν (d ) in the antisymmetric sector for
even ν and in the symmetric sector for odd ν. In the for-
mer case, such states occur when the parameters (ε, d, γ , m)

(a) (b)

FIG. 6. Total atomic excitation probability p = a†a , for n = 3
emitters, for the symmetric (left panel) and antisymmetric bound
states with energy close to E1(d ). In panel (a), a3 = a1 and a2/a1 �
2; in panel (b), a3 = −a1 and a2 = 0. The color scale is reported
above the plots. We used the expressions (62)–(63).

satisfy

[χ (Eν ) − b1(Eν )][χ (Eν ) − b3(Eν )] = [b1(Eν ) − b2(Eν )]2,

(67)

which yields the two antisymmetric eigenstates characterized,
at the lowest order in b j , by the amplitudes

a1 = −1 ± √
5

2
a2 = 1 ± √

5

2
a3 = −a4 (68)

and the atomic excitation probabilities

p(4)
ν (α) �

[
1 + α

γ dEν

E2
ν − m2

+ γ

π (Eν + m)

]−1

, (69)

where the value of α is found to be

α = 9 ± √
5

5 ± √
5
. (70)

In the case of odd ν, if the parameters satisfy

[χ (Eν ) + b1(Eν )][χ (Eν ) + b3(Eν )] = [b1(Eν ) + b2(Eν )]2,

(71)

then one finds symmetric eigenstates with E = Eν (d ), ampli-
tudes

a1 = −1 ± √
5

2
a2 = −1 ± √

5

2
a3 = a4, (72)

and atomic excitation probabilities p(4)
ν (α) in (69), with

α = 13 ± √
5

5 ± √
5

. (73)

These states are represented in Figs. 3(c)–3(f) for some values
of the parameters d and γ . The atomic probabilities of the four
classes of eigenstates defined by Eqs. (68)–(72) are shown in
Fig. 7.

The states defined by the amplitudes (65) and (66) persist
as eigenstates even after the introduction of the cut inte-
gration terms, b 	= 0. However, their energies and the ratios
between local amplitudes are shifted by a quantity O(e−md )
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(a) (b)

(c) (d)

FIG. 7. Total atomic excitation probability p = a†a , when n =
4, for the eigenstates defined by Eqs. (68)–(72), characterized by a
resonant energy E1(d ) (upper panels), and for the two stable states
(66) and (75), with E < E1(d ) (lower panels). In panel (a) a1 = a4,
a2 = a3, and a1/a2 � −(1 + √

5)/2; in panel (b), a1 = a4, a2 = a3,
and a1/a2 � −(1 − √

5)/2; in panel (c), a1 = −a4, a2 = −a3, and
a1
a2

� 1; in panel (d), a1 = a4, a2 = a3, and a1/a2 � 0.33. The color
scale is reported above the plots.

with respect to Eν (d ) and to the values in Eqs. (65) and
(66), respectively. Specifically, at a fixed distance d , the
antisymmetric state with amplitudes connected by continuity
to (66) is characterized by an eigenvalue E < Eν (d ), slightly
smaller than the resonant value. The total atomic probabilities
corresponding to states in this class is given by p(4)

ν (α) in (69),
with

α = 1, (74)

with even ν, for the symmetric state, and odd ν, for the
antisymmetric one.

A numerical analysis of the determinant of the matrices
(64) reveals the existence of a new class of nondegenerate
bound states, characterized, in the distance range 2 � md �
6, by the amplitudes

a1 = a4, a2 = a3 � 3a1, (75)

with energy close to Eν (d ) for odd ν, and

a1 = −a4, a2 = −a3 � −3a1, (76)

with energy close to Eν (d ) for even ν. The energy of such
states is shifted with respect to the resonant values. In par-
ticular, one of the symmetric states (75) is characterized by
an eigenvalue slightly smaller than E1(d ), which makes it the

FIG. 8. Spectral lines in the (E , d ) plane for a system of n = 4
equally spaced emitters. The solid (red) lines correspond to anti-
symmetric configurations, while dashed (blue) lines to symmetric
ones. As in the n = 3 case, the approximation of the resonant values
in Eq. (41) becomes more and more effective for larger values of
the distance. For md � 2, the difference between the eigenvalues
of the lowest-energy symmetric and antisymmetric states becomes
appreciable, with a symmetric state characterized by the amplitudes
(75) being related to the lowest eigenvalue at a fixed md .

lowest-energy bound state in the continuum for a system of
n = 4 emitters at a fixed spacing d , as can be observed in
Fig. 8. The states (75) and (76) are characterized by an emitter
excitation probability p(4)

ν (α) in (69), with

α = 3
5 . (77)

The behavior of the lowest-energy bound states in the contin-
uum is shown in detail in Fig. 9.

V. HIGH-ENERGY EIGENSTATES

Condition (18), which determines the eigenvalues of the
system, is a complicated equation in E , featuring the functions
θ (E ), χ (E ), and b(E ). In the previous section, we have
analyzed the solutions that can be connected by continuity to
the resonant energies (41) in the limit e−md → 0. However, the
nonpolynomial character of Eq. (18) can generally gives rise
to new solutions at finite d , which are unrelated to the resonant
eigenvalues and eigenspaces. In particular, this phenomenon
is facilitated for very small md , when the magnitude of all the
b j>0 is relevant and comparable to that of b0.

Figures 10 and 11 display general features of such non-
perturbative states, for n = 3 and n = 4 emitters, respectively.
These features are confirmed for higher n. At a sufficiently
high value of the distance, all the eigenvalues are connected by
continuity to the resonant energies Eν (d ), with ν ∈ Z+. When
distance decreases, additional eigenvalues start appearing in
the (E , d ) plane, between Eν (d ) and Eν+1(d ), immediately
branching in two distinct eigenvalues, whose energy increases
when distance is further decreased. The observed processes of
pair formation in the cases n = 3, 4 occur roughly at the same
value of d . To quantify the range in which the phenomenon
occurs we define the critical distance d (n)

c as the value which
marks the appearance of the first eigenstate of this class
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(a)

(b)

FIG. 9. Behavior of the bound-state energies E in the vicinity of
the resonant values E1(d ) (upper panel) and E2(d ) (lower panel) for
n = 4 as a function of ε. The two variables have been accordingly
rescaled to show the most relevant details in the two panels. The
solid (blue) and dotted (brown) lines, that are in practice superposed,
are relative to the states defined by the amplitudes (72), the dashed
(green) lines describe the energy of the states (66) in the upper panel
and (65) in the lower panel, while the dot-dashed (red) lines coincide
with the energy of the configurations (75) in the upper panel and (76)
in the lower panel. In all curves, the arrows point toward increasing
distance d . While the energy of states (72) are equal to the closest
resonant value for all spacings, the eigenvalues related to the other
states approach the resonant energies as d increases.

between E1(d ) and E2(d ). We obtain the values mdc = 0.063
for n = 3 emitters and mdc = 0.052 for n = 4 emitters. Notice
that no state of this kind is observed with energy below E1(d ).
The value of energy Ec corresponding to the critical distance
is Ec/m � 79 for n = 3 and Ec/m � 101 for n = 4. Thus,
independently of the values of the parameters ε and γ , the
energy of such states exceeds the mass m by at least two orders
of magnitude, an energy range in which the validity of our
model, at least in a waveguide QED context, is far from being
ensured. However, as one can observe from Table I, the critical
energy decreases to an order 10 for larger systems.

The nonperturbative eigenvalues always correspond to
symmetric eigenstates, with a photon half-wavelength that is
far from multiple integers of the interatomic spacing, as can

(a) (b)

(c) (d)

(e)

(f)

FIG. 10. Nonperturbative high-energy eigenstates for n = 3.
(a) Energy trajectory of the pair of eigenstates with energy between
E1 and E2 in the (ε, E ) plane (in units of E2), with the arrows
pointing toward increasing values of md . At md = mdc = 0.063, the
two eigenvalues coalesce and disappear. (b) Field probability density
|ξ (x)|2 corresponding to the critical case. [(c) and (d)] Field prob-
ability density |ξ (x)|2 for the pair of bound states corresponding to
the (very) small distance md = 10−2. (e) Spectral lines in the (E , d )
plane, with solid (red) lines representing antisymmetric states and
dashed (blue) lines representing the symmetric ones; three branching
points of eigenvalue pairs are visible. (f) Emitter excitation energies
of the lowest-energy nonperturbative eigenstate pair as a function of
d for γ /m2 = 10−2.

be observed in both Figs. 10 and 11. From the expression
(10) one infers that, in such high-energy states, the field wave
function is suppressed and the single excitation is almost
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(a) (b)

(c) (d)

(e)

(f)

FIG. 11. Nonperturbative high-energy eigenstates for n = 4.
(a) Energy trajectory of the pair of eigenstates with energy between
E1 and E2 in the (E , ε) plane (in units of E2), with the arrows
pointing toward increasing values of md . At md = mdc = 0.052,
the two eigenvalues coalesce and disappear. (b) Field probability
density |ξ (x)|2 corresponding to the critical case. [(c) and (d)] Field
probability density |ξ (x)|2 for the pair of bound states corresponding
to the (very) small md = 10−4. (e) Spectral lines in the (E , d ) plane,
with solid (red) lines representing antisymmetric states and dashed
(blue) lines representing the symmetric ones; three branching points
of eigenvalue pairs are visible. (f) Emitter excitation energies of the
lowest-energy nonperturbative eigenstate pair as a function of d for
γ /m2 = 10−2.

entirely shared by the emitters. Finally, for n > 4, we have
found the existence of more than one pair of nonperturbative
eigenstates between Eν and Eν+1.

TABLE I. Critical values of the distance dc at which the non-
perturbative eigenvalue pair between the resonant energies E1 and
E2 appears, and corresponding energy Ec, for arrays with different
number of equally spaced emitters.

n 4 6 8 10 12

m dc 0.05 0.18 0.26 0.30 0.33
Ec/m 101 28 20 16 15

VI. CONCLUSIONS

We have studied the existence and main features of bound
states in the continuum for a multiemitter system in a one-
dimensional configuration. We have found that, remarkably,
finite-spacing effects can lift degeneracies, affecting eigen-
states, eigenvalues and the physical model that features spe-
cific bound states. Future research will be devoted to the study
of degeneracy lifting and the ensuing collective effects in
systems with a large number of emitters.
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APPENDIX A: GENERAL PROPERTIES OF THE
EIGENVALUE EQUATION

The method used to characterize resonant bound states
for a system of n emitters in the case of general n is based
on the decomposition (37) in decoupled parity sectors. In
Sec. IV B, we proved that, neglecting the b j>0 terms, the
eigenvalue equation reduces to χ (E ) = 0, yielding (n − 1)-
times degenerate eigenvalues Eν (d ), with ν ∈ Z+, corre-
sponding to eigenvectors whose atomic excitation amplitudes
are constrained by (43) or (44) according to the sign (−1)ν .
Here, we prove that the resonant energies Eν (d ) persist as
exact eigenvalues even after the introduction of cut integration
terms, for some value of the excitation energy ε.

The reduction to a block-diagonal form provided by the
transformations (32) and (33) enables one to recast the eigen-
value equation into the decoupled problems

det (A±
n [θ (E ), χ (E ), b(E )]) = 0. (A1)

For definiteness, let us first consider the case of even n = 2h.
Let us introduce for convenience the quantities

βν
j =

{
χ [Eν (d )] if j = 0
b j[Eν (d )] if j > 0 (A2)

and the real and symmetric matrices

Aν
q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

βν
0 βν

1 βν
2 . . . βν

q−1

βν
1 βν

0 βν
1 . . . βν

q−2

βν
2 βν

1 βν
0 . . . βν

q−3

...
...

...
. . .

...

βν
q−1 βν

q−2 βν
q−3 . . . βν

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A3)
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Bν
q,p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

βν
q βν

q−1 βν
q−2 . . . βν

q−p

βν
q−1 βν

q−2 βν
q−3 . . . βν

q−p−1

βν
q−2 βν

q−3 βν
q−4 . . . βν

q−p−2

...
...

...
. . .

...

βν
q−p βν

q−p−1 βν
q−p−2 . . . βν

q−2p

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A4)

and C±
q as the q × q matrix characterized by the elements

[C±
q ] j	 = (±1) j+	. (A5)

If ν is even, then

−iA−
2h(νπ, χ [Eν (d )], b[Eν (d )]) = Aν

h − Bν
2h−1,h−1 (A6)

and

−iA+
2h(νπ, χ [Eν (d )], b[Eν (d )]) = Aν

h + Bν
2h−1,h−1 − 2iC+

h ,

(A7)

while, for odd ν,

−iA+
2h(νπ, χ [Eν (d )], b[Eν (d )]) = Aν

h + Bν
2h−1,h−1 (A8)

and

−iA−
2h(νπ, χ [Eν (d )], b[Eν (d )]) = Aν

h + Bν
2h−1,h−1 − 2iC−

h .

(A9)

Fixing E = Eν (d ) and considering the expression of χ (E ),
Eq. (A1) can be generally recast in the form

det(M − ε1) = 0, (A10)

implying that Eν (d ) is an eigenvalue of the system if and only
if ε is the real eigenvalue of some matrix M. From the ex-
pressions (A6)–(A8), one can notice that, in the antisymmetric
sector for even ν and in the symmetric sector for odd ν, the
matrix M is Hermitian, entailing the existence of n values
of ε, real and generally distinct, corresponding to physical
systems in which a bound state with energy Eν (d ) is present.
Those values of ε collapse to a single degenerate value in the
e−md → 0 limit. In the cases (A7)–(A9), instead, M is not
Hermitian, its the eigenvalues are generally no longer real, and
the bound-state energies displace from the resonant values.

The case of odd n = 2h + 1 is slightly different. There, for
all resonance orders ν, in the antisymmetric sector

−iA−
2h+1(νπ, χ [Eν (d )], b[Eν (d )]) = Aν

h − Bν
2h,h−1, (A11)

leading to a condition (A10) with a Hermitian M, which
implies that all the Eν (d ) are eigenvalues corresponding to
antisymmetric bound states for generally different physical
systems. On the other hand, the matrix M corresponding to
all resonances in the symmetric sector is never Hermitian,
since it features an imaginary and symmetric contribution
proportional to C±

h+1.

APPENDIX B: UNSTABLE STATES

The resolvent formalism, employed in the main text to evaluate the existence and properties of bound states, also provides
information on the lifetime of unstable states. The step required to perform this kind of analysis in the analytic continuation of
the self-energy to the second Riemann sheet



(II)
j	 (z) = 
 j	(z) − 2iγ√

z2 − m2
cos [| j − 	|θ (z)], (B1)

where z is a complex energy. The lifetimes of unstable states are determined by the solutions zp = Ep − iγp/2 of the equation

det
{

[G(II)]−1
(

Ep − i
γp

2

)}
= 0 with γp > 0, (B2)

with

[G(II)]−1(z) = (z − ε)1 − 
(II)(z). (B3)

We are now going to consider the properties of the complex poles of the propagator.

1. n = 3 emitters

The block-diagonalization procedure applied to a system of three emitters implies the singularity conditions:

χ (z) = − i

2
[2 + e−2iθ (z)] − b2(z)

2
± 1

2

√
f3[θ (z), b(z)], (B4)

for symmetric states, and

χ (z) = b2(z) − i[1 − e−2iθ (z)], (B5)

for antisymmetric states, with

f3(θ, b) = 8b2
1 + b2

2+16ib1e−iθ −8e−2iθ + 2ib2e−2iθ − e−4iθ . (B6)
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(a) (b) (c)

FIG. 12. Pole trajectories in the lower half-plane of complex energy for n = 3 (a) and n = 4 [(b) and (c)]. The parameters are set to
md = 15 and γ /m2 = 2π × 10−4, while ε varies between m and 1.4m. Solid (red) lines are associated with symmetric eigenstates, while
dashed (purple) lines refer to antisymmetric states. In the insets, we report the ratios between the first derivatives dIm(zp)/dRe(zp) related
to two different curves, both approaching the real axis (i.e., corresponding to a stable bound state) at the same point, corresponding to the
lowest-energy resonance in the plots. Notice that, close to the resonance points, the imaginary parts of the unstable poles scale linearly with n.

Introducing the functions R3(θ, b) = Re[ f3(θ, b)], S3(θ, b) = Im[ f3(θ, b)], the real and imaginary part of roots of the complex
poles for the two blocks read

E+
p ≈ ε + γ

2k̄(E+
p )

⎧⎪⎪⎨
⎪⎪⎩2b0(E+

p ) + b2(E+
p ) + sin [2θ (E+

p )] ∓

√√√√R3(θ, b) +
√

R2
3(θ, b) + S2

3 (θ, b)

2

⎫⎪⎪⎬
⎪⎪⎭ (B7)

γ +
p

2
≈ γ

2k̄(E+
p )

⎧⎪⎪⎨
⎪⎪⎩2 + cos [2θ (E+

p )] ±

√√√√−R3(θ, b) +
√

R2
3(θ, b) + S2

3 (θ, b)

2

⎫⎪⎪⎬
⎪⎪⎭, (B8)

E−
p ≈ ε + γ

k̄(E−
p )

{b0(E−
p ) + b2(E−

p ) + sin [2θ (E−
p )]}, (B9)

γ −
p

2
≈ γ

k̄(E−
p )

{1 − cos [2θ (E−
p )]}, (B10)

with k̄(E ) = √
E2 − m2. The behavior of the complex poles of the propagator for n = 3 is reported in panel (a) of Fig. 12.

2. n = 4 emitters

The singularity condition for the symmetric and antisymmetric blocks in the n = 4 system read

χ (z) = − i

2
[2 + e−iθ (z) + e−3iθ (z)] − b1(z) + b3(z)

2
± 1

2

√
f +
4 [θ (z), b(z)], (B11)

χ (z) = i

2
[−2 + e−iθ (z) + e−3iθ (z)] + b1(z) + b3(z)

2
± 1

2

√
f −
4 [θ (z), b(z)], (B12)

respectively, with

f +
4 (θ, b) = 4(b1 + b2)2 + (b1 − b3)2 + i(10b1 + 8b2 − 2b3)e−iθ

+ i(5i + 8b1 + 8b2)e−2iθ + i(8i − 2b1 + 2b3)e−3iθ − 2e−4iθ − e−6iθ , (B13)

f −
4 (θ, b) = 4(b1 − b2)2 + (b1 − b3)2 + i(10b1 − 8b2 − 2b3)e−iθ

+ i(5i − 8b1 + 8b2)e−2iθ − i(8i + 2b1 − 2b3)e−3iθ − 2e−4iθ − e−6iθ , (B14)

where we have defined R±
4 (θ, b) = Re[ f ±

4 (θ, b)], S±
4 (θ, b) = Im[ f ±

4 (θ, b)]. In this way approximate decoupled solutions are

E+
p ≈ ε + γ

2k̄(E+
p )

⎡
⎢⎢⎣2b0(E+

p ) + b1(E+
p ) + b3(E+

p ) + sin (θ ) + sin (3θ ) ∓

√√√√R+
4 (θ, b) +

√
R+2

4 (θ, b) + S+2
4 (θ, b)

2

⎤
⎥⎥⎦, (B15)

γ +
p

2
≈ γ

2k̄(E+
p )

⎡
⎢⎢⎣2 + cos (θ ) + cos (3θ ) ±

√√√√−R+
4 (θ, b) +

√
R+2

4 (θ, b) + S+2
4 (θ, b)

2

⎤
⎥⎥⎦, (B16)

023834-12



BOUND STATES IN THE CONTINUUM FOR AN ARRAY OF … PHYSICAL REVIEW A 100, 023834 (2019)

(a) (b)

FIG. 13. Trajectories of poles with real part between E1(d ) and E2(d ) in the complex lower half-plane, for different values of md in a
system of n = 3 (left) and n = 4 (right). The emergence of nonperturbative eigenstates is related to the pole trajectory touching the real axis at
a critical distance. Below the critical distance, the trajectories are tangent to the real axis in two points.

E−
p ≈ ε + γ

2k̄(E−
p )

⎡
⎢⎢⎣b0(E−

p ) − b1(E−
p ) − b3(E−

p ) − sin (θ ) − sin (3θ ) ∓

√√√√R−
4 (θ, b) +

√
R−2

4 (θ, b) + S−2
4 (θ, b)

2

⎤
⎥⎥⎦, (B17)

γ −
p

2
≈ γ

2k̄(E−
p )

⎡
⎢⎢⎣2 − cos (θ ) − cos (3θ ) ±

√√√√−R−
4 (θ, b) +

√
R−2

4 (θ, b) + S−2
4 (θ, b)

2

⎤
⎥⎥⎦, (B18)

with k̄(E ) = √
E2 − m2. The behavior of the complex poles of the propagator for n = 4 in the symmetric and antisymmetric

sectors is shown in Figs. 12(b) and 12(c).
We finally comment on the phenomenon of emergence of nonperturbative eigenstates for small values of md . Such poles

appear when one of the complex poles with negative imaginary part in the second Riemann sheet approaches the real axis (see
Fig. 13). Due to the analytic properties of the resolvent, there is a symmetric pole of the analytic continuation



(III)
j	 (z) = 
 j	(z) + 2iγ√

z2 − m2
cos [| j − 	|θ (z)] (B19)

in the upper half-plane. At d = dc the two poles collide and coalesce at a point of the real axis. By further decreasing the spacing
d , the two poles split up along the real axis and increase their energy difference.
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