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Hidden non-Markovianity in open quantum systems
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We show that non-Markovian open quantum systems can exhibit exact Markovian dynamics up to an arbitrar-
ily long time; the non-Markovianity of such systems is thus perfectly “hidden,” i.e., not experimentally detectable
by looking at the reduced dynamics alone. This shows that non-Markovianity is physically undecidable and
extremely counterintuitive, since its features can change at any time, without precursors. Some interesting
examples are discussed.
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I. INTRODUCTION

The recent advance in quantum technology brought with
it a renewed interest in the study of quantum noise. Never
before have we built such complex high-dimensional quantum
systems, which naturally come with spatially and temporally
correlated noise, and never before have we demanded such
purity in quantum dynamics required for scalable quantum
computation. Simplistic error models no longer suffice to
achieve optimal performance [1].

A particular noise feature, the analysis of the Markovian-
ity (or lack thereof) of the system, is of primary interest. A
continuous process is said to be Markovian if its evolution at
any future time is determined unambiguously from the current
state, rather than by the full history of the system that led it
to the present state. The lack of Markovianity is inherently
linked with the two-way exchange of information between the
system and the bath; a Markovian description is legitimate,
even if only as an approximation, whenever the observed time
scale of the evolution is much larger than the correlation time
that characterizes the interaction between system and bath.
Non-Markovianity is a complex phenomenon which affects
the system both in its dynamical and informational features;
several nonequivalent definitions of non-Markovianity, each
focusing on particular aspects of memory, have been given.
For a recent review we refer to Ref. [2].

Non-Markovianity was discussed in a variety of physical
systems and experimental platforms, such as cold atoms [3,4],
superconducting qubits [5,6], photonic crystals [7,8], waveg-
uide quantum electrodynamics [9–12], optical fibers [13],
all-optical setups [14–17], and photonic waveguides [18,19],
the list being far from exhaustive. Most of these systems
are well described by a paradigmatic theoretical model: the
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spin-boson model, consisting of a two-level quantum system
(qubit) interacting with a boson bath, the resulting rich phe-
nomenology being ascribable to the structure of the bath and
its interaction with the qubit.

Here we define a quantum evolution �t to be Markovian if
it is described by a quantum dynamical semigroup,

�t = e−tL, (1)

with a time-independent generator L [20,21]. This narrow
definition of Markovianity is a common core of many of the
inequivalent definitions in the literature, although it is worth
pointing out that such a definition does not capture the effect
of time-dependent driving and other interventions [22].

The question if a fixed-time quantum operation �t0 (“snap-
shot”) can be embedded into a Markovian evolution e−t0L was
initiated in Ref. [23] and, remarkably, shown to be an NP-hard
problem [24]. On the other hand, if more information, say the
whole time evolution �t for a time window 0 � t1 < t < t2,
is provided, it appears to be easy to decide Markovianity,
simply by checking if the generator −�−1

t
d
dt �t exists and has

time-independent Lindblad structure.
The main point of our contribution is to show that this is

incorrect: deciding Markovianity remains hard for arbitrarily
large windows. Without further knowledge on the environ-
ment or interventions on the dynamics it is, in fact, physically
undecidable. See Fig. 1.

Recently, Tufarelli and co-authors [5] showed that there
are systems which behave approximately Markovian up to a
critical time T , and non-Markovian thereafter. Although for
time windows which do not exceed T it is harder to assess
non-Markovianity in such systems, they will still exhibit pre-
cursors (in the spirit of Ref. [25]) of non-Markovianity due
to the coarse graining of the Markovian approximation. That
is, there will be slight deviations from the exact semigroup
structure which reveal and anticipate the non-Markovianity at
later time.

In this article we will, however, show that in fact the
spin-boson model can give rise to qubit evolutions which are
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ρ(t) = e−tLρ

ρ(t) = ?

FIG. 1. If a pure Markovian evolution is observed up to a time
t = T , will the dynamics be Markovian for t > T (dashed line) or
might the dynamics deviate from Markovianity (solid line)?

exactly Markovian up to some critical time T , without any
precursor deviation of its dynamics. Since T can be arbi-
trarily large, we conclude that Markovianity of a quantum
evolution cannot be assessed, even in the simplest case of a
two-dimensional quantum system (qubit), by simply looking
at the dynamics in a finite, however large, time window, as
shown in Fig. 1.

In order to do so, we construct explicitly a full family of
non-Markovian quantum channels, for a qubit interacting with
a given boson bath, whose dynamics is indistinguishable from
the one induced by an exactly Markovian evolution up to a
finite time. The reduced evolution of the qubit is characterized
by the following master equation:

ρ̇(t ) = −iε(t )[Hq, ρ(t )] − γ (t )LD(ρ(t )), (2)

with ρ(t ) = �t (ρ) being the density matrix of the qubit at
time t , LD being the Lindblad superoperator [20,21] associ-
ated with an amplitude-damping channel, Hq the Hamiltonian
of the qubit, and γ (t ), ε(t ) being two real functions that only
depend on the characteristics of the coupling between system
and bath.

In general, the quantum channel solving the master equa-
tion (2) will satisfy the semigroup property �t+s = �t�s at
all times t, s � 0 only if the coupling is engineered in such a
way that γ (t ) and ε(t ) are constant functions, which, as will
be explained later, can only be obtained with an (essentially)
unique choice of the coupling. However, there are infinitely
many ways to engineer the coupling in such a way that the
semigroup property is satisfied only up to a finite time T :

�t+s = �t�s for all t, s � 0, t + s � T, (3)

with T itself only depending on the choice of coupling. This
can be obtained by choosing it in such a way that the reduced
dynamics of the system satisfies Eq. (2) with γ (t ) and ε(t )
being constant only up to t = T . Such a system is by def-
inition non-Markovian, but its non-Markovianity is hidden:
no observation at times t � T will detect any deviation from
Markovianity.

In fact, we show that this phenomenon can occur even in
the extreme case of non-Markovian systems, that is, spatially
confined systems. Even though the Hamiltonian will have a
discrete spectrum and therefore the system will display recur-
ring dynamics [26] and (partial) quantum revivals [27,28], by

an appropriate choice of the coupling, its dynamics can be
made perfectly Markovian for all times less than T , as if the
system were spatially unbounded. The system will start ex-
hibiting an oscillatory behavior, typical of a discrete spectrum,
only after the time T .

II. THE MODEL

We consider a qubit with ground state |1〉 and excited state
|0〉 at energy ω0, interacting with a boson quantum bath with
creation and annihilation operators b†

ω and bω satisfying the
commutation relations [bω, b†

ω′ ] = δ(ω − ω′). The Hamilto-
nian has the form H = H0 + Hint , where

H0 = ω0Hq ⊗ 1 + 1 ⊗ HB (4)

is the free Hamiltonian with

Hq = |0〉〈0| , HB =
∫

dω ω b†
ωbω (5)

being the Hamiltonians of the qubit and the field, respectively.
The qubit-field interaction has the form

Hint = σ+ ⊗ B(g) + σ− ⊗ B(g)†, B(g) =
∫

dω g(ω)∗bω,

(6)
where σ+ = |0〉〈1|, σ− = |1〉〈0|, and the function g(ω), the
form factor, weights the strength of the interaction of the qubit
with a boson of energy ω. Interaction (6) has a rotating-wave
form: a boson with wavefunction g(ω) is created if the qubit
undergoes the transition |0〉 → |1〉, and is annihilated if the
qubit is excited |1〉 → |0〉. As a consequence, the excitation
number

N = σ+σ− +
∫

dω b†
ωbω (7)

is conserved, [N, H] = 0, so that the sectors with given exci-
tation number are invariant under the evolution. In particular,
the component of the Hamiltonian in the one-excitation sector,
known as the Friedrichs-Lee model [29,30], has very rich
mathematical properties that have been extensively studied in
Refs. [31,32].

We focus on the reduced dynamics induced by this Hamil-
tonian on a state ρ ⊗ |vac〉〈vac| by tracing out the bath, with
the vector |vac〉 being the vacuum of the boson field charac-
terized by bω |vac〉 = 0 for all ω. Define

ρ(t ) = �t (ρ) = trbath(e−itHρ ⊗ |vac〉〈vac| eitH ). (8)

It can be shown that ρ(t ) is given by [33]

ρ(t ) =
(|a(t )|2ρ00 a(t )ρ01

a(t )∗ρ10 ρ11 + (1 − |a(t )|2)ρ00

)
, (9)

where a(t ) is a complex function with a(0) = 1, |a(t )| � 1
that is solely determined by the coupling function |g(ω)|2 and
the energy of the state |0〉 (see the Appendix). Physically, a(t )
is the survival amplitude of the state |0〉.

The density matrix ρ(t ) satisfies the master equation (2)
with

LD(ρ) = −σ−ρσ+ + 1
2 {σ+σ−, ρ}, (10)
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Hq = |0〉〈0|, and the functions γ (t ) and ε(t ) being defined via

a(t ) = e− ∫ t
0 ds ( γ (s)

2 +iε(s)). (11)

In general, this system will not satisfy the semigroup property
unless we select g(ω) in such a way that γ (t ) and ε(t ) are
constant. This can be accomplished by taking a flat form
factor, i.e.,

|g(ω)|2 = γ0

2π
, (12)

for some γ0 > 0: the qubit couples with the same strength to
all frequencies of the boson field. Although the Hamiltonian
is singular in such a case, and expressions (4)–(6) are only
formal, in the Appendix we prove that they yield a bona
fide unitary evolution of the total system (the corresponding
Hamiltonian H is self-adjoint [31]). In fact, the qubit density
matrix ρ(t ) satisfies Eq. (2) with γ (t ) = γ0 and ε(t ) = ε0 both
being constant, where ε0 = ω0 + δω0 is the dressed energy of
the excited state |0〉 in interaction with the boson field [31],
thus

a(t ) = e−( γ0
2 +iε0 )t , (13)

and, in particular, the channel satisfies the semigroup property
at all times t, s � 0; i.e., it is Markovian.

However, we can choose the coupling g(ω) in such a way
that a(t ) is exactly exponential only up to a finite time T ,
and is no longer exponential afterwards; see Fig. 1. In such
a way, Eq. (3) holds and we obtain a non-Markovian system
whose non-Markovianity is, however, hidden: no experiment
performed within the time horizon T will be able to detect any
deviation from the exponential law. This can be accomplished
by choosing a periodic coupling |g(ω)|2, whose Fourier series
reads

|g(ω)|2 = γ0

2π

(
1 + 2

∞∑
n=1

cn cos(nT ω)

)
. (14)

The damping function a(t ) corresponding to this coupling is
evaluated in the Appendix and reads

a(t ) = e−(iε0+ γ0
2 )t +

∞∑
n=1

e−(iε0+ γ0
2 )(t−nT )

×φn(γ0(t − nT )) θ (t − nT ), (15)

where θ is the Heaviside step function; this function is ex-
actly exponential up to t = T , while nonexponential terms
start adding up at times nT , for n = 1, 2, . . . . In detail, here
φn(x) is a polynomial of degree n whose coefficient can be
analytically computed in terms of the coefficients cn.

Physically, the above behavior is a consequence of the
time-energy uncertainty relation

�t �ω � 1
2 (16)

(a general property of the Fourier transform). Any mea-
surements performed within the time window [0, T ] cannot
resolve energy differences �ω below 1/(2T ). Therefore, the
observation of the decay in a time window of width T will de-
pend on a coarse graining of the form factor. A coarse-grained
periodic coupling will be indistinguishable from a flat one
if the resolution is larger than its periodicity, hence the first

line in Eq. (15). Only for times larger than T the system will
start to resolve the finer details of a nonflat coupling and the
underlying non-Markovianity will start to become manifest
via the additional terms in the second line of Eq. (15).

In the following we furnish two explicit examples of form
factors g(ω) for which all terms in Eq. (15) can be evaluated
explicitly.

III. TWO EXAMPLES

The simplest nontrivial example can be obtained by setting,
in Eq. (14),

c1 = −α

2
, cn = 0 for all n � 2, (17)

for some |α| � 1; in this case, |g(ω)|2 is a sinusoidal function
whose amplitude is maximal for α = ±1 and null for α = 0.
Physically, the choice α = 1 can be associated with a quan-
tum emitter coupled with a semi-infinite waveguide with a
perfect mirror at one end. In such a case non-Markovianity
can be explained by the presence of a delay due to a finite
propagation speed: the information is transferred from the
emitter to the photon, which moves away from the emitter,
bounces back from the mirror at a finite distance, and returns
to the emitter after a finite time T . Therefore, the evolution
is described by a delay differential equation (DDE), which
was first obtained through some approximations in Ref. [3],
while the non-Markovianity of the system was thoroughly
investigated in Refs. [5,10] via non-Markovianity measures.
The case α = 0 corresponds again to a flat coupling, and thus
to a Markovian evolution at all times.

All polynomials φn(x) in Eq. (15) have the simple form

φn(x) = 1

n!

(αx

2

)n
, (18)

(see Appendix) and thus the function a(t ) can be evaluated
at all times (see Fig. 2). The results can be summarized as
follows. With respect to the pure exponential decay at α = 0,
the decay will be either enhanced or slowed down depending
on the values of the parameters α, ε0, and γ0, and, in particular,
for any fixed α the decay will be slowest when g(ε0) is small-
est, i.e., when ε0T = 2νπ for some integer ν. In particular,
if α = 1 and ε0 = 2νπ , a(t ) does not decay at all: a bound
state is obtained. In the physical implementation of the model
in waveguide QED, the emitter is at a distance of an integer
number of half wavelengths from the mirror and the photon
is trapped between emitter and mirror. The departure from
Markovianity is thus maximal.

Another instance of periodic coupling for which a(t ) can
be computed exactly is obtained by setting, in Eq. (14),

cn = e−βn (19)

for some β � 0. If β = 0, this is a comb of Dirac functions
placed at integer values of the energy, while for β > 0 it is a
“smoothed” comb. A physical implementation of the discrete
case β = 0 can be obtained by considering a closed-loop
waveguide or a one-dimensional optical cavity: indeed, when
confining the boson field in a finite space, the emitter will
only interact with a countable set of boson states. Interestingly
enough, the DDE for β = 0 was already obtained in 1983
by Milonni and co-authors [34] in a different framework, and
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FIG. 2. Survival amplitude a(t ) corresponding to a periodic cou-
pling with Fourier coefficients as given in Eq. (17), with α = 1 and
ε0T = 0, π/3, 2π/3, π (mod 2π ).

has been rediscovered afterwards a couple of times. The flat
coupling is recovered in the opposite limit β → +∞.

Again, with this class of couplings the dynamics is exactly
computable at all times (see Appendix): Eq. (15) holds with

φn(x) = e−βn
n∑

m=1

(
n − 1

m − 1

)
(−x)m

m!
, (20)

implying that the non-Markovian contributions to the survival
amplitude have the same functional expression for all β, up
to a total weight e−βn which suppresses such contributions as
n grows, provided that β > 0. As a result, the larger β, the
quicker such contributions “switch off,” whereas for small β

those contributions are non-negligible for a longer time. In
particular, in the limit β → ∞ all non-Markovian contribu-
tions vanish and we recover the exponential decay at all times.
In the opposite limit β → 0, where the coupling is discrete, no
exponential suppression of such contribution happens and we
have recurring dynamics with revivals at all times as shown in
Fig. 3.

IV. CONCLUSIONS

In this article we show that no finite-time measurement
can establish Markovianity of an open quantum system: the
non-Markovianity may indeed be hidden, in the sense that
non-Markovian effects may only switch on after some time

0 1 2 3 4
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0.8
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t/T

|a(
t)
|2

FIG. 3. Survival amplitude a(t ) corresponding to a periodic cou-
pling with Fourier coefficients as given in Eq. (19), with β = 0,
ε0T = 0, and γ0T = 4.

threshold. To show this, we have considered a model of in-
teraction between a qubit and a boson bath which reduces to
an amplitude-damping channel for the former, with a survival
amplitude which can be tuned by properly choosing the form
factor of the coupling; whenever the latter is a periodic func-
tion, non-Markovian effects will only arise after a finite time.
Remarkably, such corrections can be computed exactly: two
particular examples have been discussed.
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APPENDIX

1. The model

We consider a qubit, with ground and excited states |1〉 and
|0〉, respectively, interacting with a bosonic quantum bath at
zero temperature. The microscopic Hamiltonian is H = H0 +
Hint , where

H0 = ω0Hq ⊗ 1 + 1 ⊗ HB (A1)

and

Hq = σ+σ− = |0〉〈0| , HB =
∫

dω ω b†
ωbω, (A2)

are the qubit Hamiltonian and the bath Hamiltonian, respec-
tively, while

Hint = σ+ ⊗ B(g) + σ− ⊗ B†(g) (A3)

is the interaction Hamiltonian with

σ+ = σ
†
− = |0〉〈1| , B(g) =

∫
dω g(ω)∗bω, (A4)
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and bω and b†
ω are the bosonic annihilation and creation

operators, satisfying the canonical commutation relations
[bω, b†

ω′ ] = δ(ω − ω′), [bω, bω′ ] = 0. That is,

H = ω0 |0〉〈0| ⊗ 1 + 1 ⊗
∫

dω ω b†
ωbω

+ |0〉〈1| ⊗
∫

dω g(ω)∗bω + |1〉〈0| ⊗
∫

dω g(ω)b†
ω.

(A5)

Here g(ω) is a complex function that weights the strength of
the interaction; the interaction term is constructed in such a
way that a boson is created if the qubit undergoes the transi-
tion |0〉 → |1〉, and is annihilated if the qubit undergoes the
transition |1〉 → |0〉. The excitation number

N = σ+σ− ⊗ 1 + 1 ⊗
∫

dω b†
ωbω (A6)

is conserved, [N, H] = 0; thus, the eigenspaces of N with
eigenvalues 0, 1, 2, . . . are reducing subspaces for the Hamil-
tonian H which splits into a direct sum of operators. The
eigenspace corresponding to the eigenvalue N = 0 is one
dimensional and is spanned by the vector |1, vac〉 := |1〉 ⊗
|vac〉, while the eigenspace corresponding to the eigenvalue
N = 1 (one-excitation sector) is the linear span of the vec-
tors |0, vac〉 := |0〉 ⊗ |vac〉 and |1, ω〉 := |1〉 ⊗ b†

ω |vac〉. The
latter subspace is isomorphic to C ⊕ L2(ω) and the restric-
tion of H to it is known as the Friedrichs-Lee Hamiltonian
[32]; its properties are extensively studied in the references
pointed out in the main text. The eigenspaces with higher
excitation numbers are spanned by states with at least one
photon. For example, the two-excitation sector is spanned by
|0〉 ⊗ b†

ω |vac〉 and |1〉 ⊗ b†
ωb†

ω′ |vac〉.
We assume that the initial state of the bath is the vacuum,

|vac〉. Thus, we focus on the reduced dynamics induced by
Hamiltonian (A5) on a state ρ ⊗ |vac〉〈vac|, by tracing out the
bath. We evaluate the following quantity:

ρ(t ) = �t (ρ) = trbath(e−itHρ ⊗ |vac〉〈vac| eitH ), (A7)

with ρ being an arbitrary density matrix of the qubit,

ρ =
1∑

j=0

ρ j� | j〉〈�| =
(

ρ00 ρ01

ρ10 ρ11

)
(A8)

with

ρ = ρ∗, ρ � 0, tr(ρ) = ρ00 + ρ11 = 1. (A9)

As such, the evolved density matrix ρ(t ) reads

ρ(t ) =
1∑

j,�=0

ρ j� trbath(e−itH | j, vac〉〈�, vac| eitH ), (A10)

where | j, vac〉 := | j〉 ⊗ |vac〉, for all j = 0, 1. Consequently,
we need to compute

e−itH |0, vac〉 , e−itH |1, vac〉 (A11)

for all t , i.e., the evolution of |0, vac〉 and |1, vac〉 under the
action of the Hamiltonian H . First of all, notice that

H |1, vac〉 = 0,

H |0, vac〉 = ω0 |0, vac〉 +
∫

dω g(ω) |1, ω〉 ,

H |1, ω〉 = ω |1, ω〉 + g(ω)∗ |0, vac〉 . (A12)

Therefore, the evolution of state |1, vac〉 is trivial,

e−itH |1, vac〉 = |1, vac〉 , (A13)

while the components |1, ω〉 and |0, vac〉 evolve nontrivially,
without mixing with the previous component.

2. Evolution in the one-excitation sector

The Schrödinger equation for a global time-dependent state
of the form

|�(t )〉 = a(t ) |0, vac〉 +
∫

dω c(t, ω) |1, ω〉 (A14)

reads

i ȧ(t ) |0, vac〉 + i
∫

dω ċ(t, ω) |1, ω〉

=
∫

dω (a(t ) g(ω) + ω c(t, ω)) |1, ω〉

+
(

ω0 a(t ) +
∫

dω g(ω)∗c(t, ω)

)
|0, vac〉 , (A15)

finally yielding a system of coupled differential equations in
a(t ) and c(t, ω):

i ȧ(t ) = ω0 a(t ) + ∫
dω′ g(ω′)∗c(t, ω′)

i ċ(t, ω) = g(ω) a(t ) + ω c(t, ω).
(A16)

This is exactly the same differential equation that is obtained
in Ref. [32], albeit in a much more general case, for the
generic state of a Friedrichs-Lee Hamiltonian; in this sense,
as stated in the main text, our system is a “variation” of the
Friedrichs-Lee model [29,30]. The solution of this system was
found explicitly in Ref. [33]. In particular, by choosing as an
initial condition the state |�(0)〉 = |0, vac〉, i.e., a(0) = 1 and
c(0, ω) = 0, and by taking the Fourier-Laplace transform, for
z ∈ C with Im z > 0,

â(z) = i
∫ +∞

0
dt eitza(t ),

ĉ(z, ω) = i
∫ +∞

0
dt eitzc(t, ω), (A17)

we get

zâ(z) + 1 = ω0 â(z) + ∫
dω′ g(ω′)∗ĉ(z, ω′)

zĉ(z, ω) = g(ω) â(z) + ω ĉ(z, ω).
(A18)

By plugging the second equation into the first we have

â(z) = 1

ω0 − z − �0(z)
, (A19)

where

�0(z) =
∫

dω
|g(ω)|2
ω − z

(A20)

is the bare self-energy function. The latter is well defined for
Im z > 0 as far as

∫
dω |g(ω)|2/(|ω| + 1) < +∞, which is

the case if the form factor g(ω) is a square-integrable function.
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3. Singular couplings and renormalization

If the form factor g(ω) is not a square-integrable function
[e.g., flat form factor g(ω) = const] the bare self-energy �0(z)
in Eq. (A20) diverges and a renormalization procedure is re-
quired. Such form factors and the corresponding Hamiltonians
will be called singular.

The renormalization procedure consists in expressing the
propagator â(z) in terms of dressed quantities, ω̃0 and �(z),
instead of bare ones, ω0 and �0(z), namely,

â(z) = 1

ω̃0 − z − �(z)
, (A21)

where

ω̃0 = ω0 + δω0, �(z) = �0(z) + δω0, (A22)

with δω0 a suitable (infinite) renormalization constant (see,
e.g., the clear discussion in Ref. [35], Sec. 10.3). By choosing
for convenience the subtraction point at z = i, that is,

δω0 = Re �0(i), (A23)

the dressed self-energy function is

�(z) =
∫

dω |g(ω)|2
(

1

ω − z
− ω

ω2 + 1

)

=
∫

dω |g(ω)|2 1 + ωz

(ω − z)(ω2 + 1)
. (A24)

Notice that the dressed self-energy �(z) in Eq. (A24) is
well defined even for a flat form factor g(ω) = const. In this
case the bare quantities ω0 and �0(z), as well as the energy
shift δω0, diverge, and the microscopic Hamiltonian (A5) is
just a formal expression with an infinite bare qubit energy ω0.
However, the sums in Eqs. (A22) are finite and give a well-

defined dynamics characterized by �(z) [and hence g(ω)] and
by the dressed qubit energy ω̃0 (whose value is independent
of ω0).

Indeed, by transforming back to the time domain one fi-
nally gets

a(t ) = 1

2π i

∫
R+iy

e−izt

ω̃0 − z − �(z)
dz, (A25)

with an arbitrary y > 0.
The above heuristic derivation can be made fully rigorous

[32] and one can show that for every dressed energy ω̃0 ∈ R
and for every form factor g(ω) satisfying the growth condition∫

dω
|g(ω)|2
ω2 + 1

< +∞, (A26)

which includes non-square-integrable singular form factors
(such as the flat one), the Friedrichs-Lee Hamiltonian is self-
adjoint, and thus yields a unitary evolution with a survival
amplitude given by Eq. (A25).

4. Reduced dynamics

We have proved that

e−itH |0, vac〉 = a(t ) |0, vac〉 +
∫

dω c(t, ω) |1, ω〉 , (A27)

with a(t ) given by Eq. (A25). Notice that, since the global
evolution is unitary,∫

|c(t, ω)|2 dω = 1 − |a(t )|2. (A28)

Having evaluated both e−itH |0, vac〉 and e−itH |1, vac〉 [see
Eqs. (A13) and (A27)], we have

e−itH |0, vac〉〈0, vac| eitH = |a(t )|2 |0, vac〉〈0, vac| +
∫∫

dω dω′ c(t, ω)c(t, ω′)∗ |1, ω〉〈1, ω′|

+a(t )
∫

dω c(t, ω)∗ |0, vac〉〈1, ω| + a(t )∗
∫

dω c(t, ω) |1, ω〉〈0, vac| , (A29)

e−itH |1, vac〉〈1, vac| eitH = |1, vac〉〈1, vac| , (A30)

e−itH |0, vac〉〈1, vac| eitH = a(t ) |0, vac〉〈1, vac| +
∫

dω c(t, ω) |1, ω〉〈0, vac| . (A31)

By tracing out the bath we get

trbath(e−itH |0, vac〉〈0, vac| eitH )

= |a(t )|2 |0〉〈0| +
∫

dω |c(t, ω)|2 |1〉〈1| , (A32)

trbath(e−itH |1, vac〉〈1, vac| eitH ) = |1〉〈1| , (A33)

trbath(e−itH |0, vac〉〈1, vac| eitH ) = a(t ) |0〉〈1| , (A34)

and recalling Eqs. (A10) and (A28) we finally get

ρ(t ) = �t (ρ) =
(|a(t )|2ρ00 a(t )ρ01

a(t )∗ρ10 ρ11 + (1 − |a(t )|2)ρ00

)
.

(A35)

Now we define two real functions γ (t ) and ε(t ) such that a(t )
can be rewritten as

a(t ) = exp

(
−

∫ t

0
ds

(γ (s)

2
+ iε(s)

))
, (A36)

from which

ȧ(t )

a(t )
= −γ (t )

2
− iε(t ). (A37)

By a simple computation one gets

γ (t ) = − 2

|a(t )|
d

dt
|a(t )|, ε(t ) = i

sgn(a(t ))

d

dt
sgn(a(t ))

(A38)
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with sgn(z) = z/|z|. Using these functions the derivative of
ρ(t ) reads

ρ̇(t ) =
( −γ (t )ρ00(t )

( − γ (t )
2 − iε(t )

)
ρ01(t )( − γ (t )

2 + iε(t )
)
ρ10(t ) γ (t )ρ00(t )

)
,

(A39)
where ρ00(t ) := |a(t )|2ρ00, ρ01(t ) := a(t )ρ01, ρ10(t ) :=
a(t )∗ρ10, and ρ11(t ) := ρ11 + (1 − |a(t )|2)ρ00. Therefore,
ρ̇(t ) can be written as

ρ̇(t ) = −iε(t )[Hq, ρ(t )] − γ (t )LD(ρ(t )), (A40)

with

Hq = |0〉〈0| , (A41)

and

LD(ρ) = −σ−ρσ+ + 1
2 {σ+σ−, ρ}, (A42)

where, as usual, the square brackets denote the commu-
tator while the curly brackets denote the anticommutator.
Therefore, the quantum channel �t in Eq. (A7) describing
the evolution of the qubit has a generator in the Gorini–
Kossakowski–Lindblad-Sudarshan form,

−iε(t ) adHq −γ (t )LD, (A43)

with time-dependent coefficients ε(t ) and γ (t ), where
adHq (ρ) = [Hq, ρ]. Since adHq and L commute, we have

�t = exp

(
−

∫ t

0
ds (γ (s)LD + iε(s) adHq )

)

= exp(ln(|a(t )|2)LD + i arg (a(t )) adHq ). (A44)

In the case γ (t ) = γ0 = const and ε(t ) = ε0 = const, i.e.,
a(t ) = e−(γ0/2+iε0 )t , we have

�t = e−t (γ0LD+iε0 adHq ) (A45)

and the semigroup property, i.e., �t�s = �t+s for all t, s � 0,
is satisfied and hence the channel is Markovian; this is the
amplitude-damping channel. More generally, the semigroup
property would be satisfied if and only if a(t + s) = a(t )a(s)
for all t, s � 0, which does not hold in general, thus prevent-
ing the channel from being Markovian.

5. Coupling and evolution

Equation (A25) implies that the value of a(t ) is ultimately
determined by the self-energy �(z), which in turn depends on
the square modulus |g(ω)|2 of the form factor via Eq. (A24). In
fact, the correspondence between �(z) and |g(ω)|2 is unique,
as discussed in Ref. [32] and references therein: |g(ω)|2 can
be reconstructed from the self-energy via

|g(ω)|2 = 1

π
lim
δ↓0

Im �(ω + iδ). (A46)

As a first example, by setting g(ω) = √
γ0/2π for some γ0 >

0, we have �(z) = i γ0

2 whenever Im z > 0 and thus, substitut-
ing in Eq. (A25), one immediately obtains

a(t ) = e−( γ0
2 +iε0 )t , (A47)

with ε0 = ω̃0; i.e., a flat coupling yields an exponential decay
of the damping rate a(t ) at all times.

Let us examine the case of a periodic coupling, written in
a Fourier cosine series as

|g(ω)|2 = γ0

2π

(
1 + 2

∞∑
n=1

cn cos nT ω

)
(A48)

for some family of real coefficients {cn}∞n=1 chosen in such a
way that the series is absolutely convergent and positive for
all ω. The corresponding self-energy reads

�(z) = iγ0

2

(
1 + 2

∞∑
n=1

cneinT z

)
, (A49)

which can be verified immediately by Eq. (A46). With this
choice of self-energy, from

â(z) = 1

ε0 − z − �(z)
, (A50)

by a simple calculation we get

â(z) = 1

ε0 − z − iγ0

2

+ iγ0

∞∑
n=1

cneinT z â(z)

ε0 − z − iγ0

2

, (A51)

which implies

a(t ) = e−( γ0
2 +iε0 )t − γ

∞∑
n=1

cn θ (t − nT )

× [a � e−( γ0
2 +iε0 )(·)](t − nT ), (A52)

where θ (t ) is the Heaviside step function, and � is the con-
volution product evaluated at t − nT . From this equation it is
already clear that a(t ) will be exactly exponential up to t = T ;
thereafter, nonexponential corrections will add up.

The solution of this equation can be found by means of a
proper ansatz:

a(t ) = e−(iε0+ γ0
2 )t +

∞∑
n=1

e−(iε0+ γ0
2 )(t−nT )θ (t − nT )

×φn(γ0(t − nT )), (A53)

where φn(x) is some function to be evaluated. By imposing
Eq. (A52) for the function in Eq. (A53), one obtains a solvable
recursion equation in n for the functions φn(x) which finally
yields

φn(x) =
n∑

m=1

b(m)
n

(−x)m

m!
, (A54)

where the coefficients b(m)
n for m = 1, . . . , n are

b(m)
n =

∑
(h1,...,hm )∈Im

n

(
m∏

i=1

chi

)
, (A55)

with Im
n being the set of all ordered m-tuples of strictly positive

integers that sum to n, i.e.,

Im
n = {(h1, . . . , hm) ∈ Nm \ {0} : h1 + · · · + hm = n},

(A56)
that is, the positive integer elements of the m-dimensional
simplex with edge length n. Notice that the cardinality of this
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set is

#
(
Im
n

) =
(

n − 1

m − 1

)
, (A57)

as can be proven through the usual stars-and-bars argument.
By these formulas, we are finally able to compute the polyno-
mials φn(x) for the two examples in the main text.

a. Single nonzero coefficient (sinusoidal measure)

In the case

c1 = −α

2
, cn = 0 ∀n � 2, (A58)

for some |α| � 1, we have only one nonzero coefficient; there-
fore, the only elements which must be taken into account
in the sum are m-tuples in the form (1, 1, . . . , 1), which do
belong to the simplex Im

n if and only if n = m. As a result, the
only nonzero coefficients b(m)

n are those with n = m, with

b(n)
n =

n∏
i=1

c1,α = (−α)n

2n
, (A59)

hence

φn(x) = 1

n!

(αx

2

)n
. (A60)

b. Exponentially decaying coefficients (smoothed Dirac measure)

In the case

cn = e−βn ∀n ∈ N, (A61)

for some β � 0, the coefficients satisfy the property
m∏

i=1

chi = ch1+h2+···+hm (A62)

and hence, by Eqs. (A55) and (A57),

b(m)
n =

(
n − 1

m − 1

)
e−βn, (A63)

thus implying

φn(x) = e−βn
n∑

m=1

(
n − 1

m − 1

)
(−x)m

m!
. (A64)

This implies that the non-Markovian contributions to the sur-
vival amplitude have the same functional expression for all β,
up to a total weight e−βn which suppresses such contributions
as n grows, provided that β > 0; as a result, the larger β, the
quicker such contributions “switch off,” whereas for small β

those contributions are non-negligible for a longer time. In
particular, in the limit β → ∞ all non-Markovian contribu-
tions vanish and we recover the exponential decay at all times.
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