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The class of incoherent operations induces a preorder on the set of quantum pure states, defined by the
possibility of converting one state into the other by transformations within the class. We prove that if two
n-dimensional pure states are chosen independently according to the natural uniform distribution, then the
probability that they are comparable vanishes as n → ∞. We also study the maximal success probability of
incoherent conversions and find an explicit formula for its large-n asymptotic distribution. Our analysis is based
on the observation that the extreme values (largest and smallest components) of a random point uniformly
sampled from the unit simplex are distributed asymptotically as certain explicit homogeneous Markov chains.
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I. INTRODUCTION

The use of probability models and integral geometry to
explain generic aspects of quantum states is now a well-
established point of view and there are multiple lessons to
learn from this approach [1–9]. The next logical step is to use
the same set of probabilistic ideas to describe generic aspects
of quantum resource theories. However, the difficulties in
describing the generic or typical aspects of resource theories
using probabilistic models remain considerable.

Perhaps the first question of this flavor arose in the resource
theory of entanglement. After exposing a precise connection
between the algebraic notion of majorization [10] and con-
vertibility among pure states by local operations and classical
communications (LOCC), Nielsen [11] made the remark that
the set of pure states of a bipartite system has a natural order
relation, induced by the majorization relation on their local
spectra. This relation is not total: not all quantum states can be
compared, i.e., connected by a LOCC transformation. Nielsen
conjectured that for a bipartite system, the set of pairs of pure
states that are LOCC convertible has relative volume asymp-
totically zero in the limit of large dimension: most quantum
pure states are incomparable! He offered a probabilistic argu-
ment to justify the conjecture; shortly after, another heuristic
explanation based on integral geometry was put forward in
Ref. [12].

As far as we know, the only rigorous result around
this question is the proof that for an infinite-dimensional
system, the set of pairs of LOCC-convertible pure states
is nowhere dense [13] (this statement though does not
imply the conjecture). Recently, we have made some
progress on Nielsen’s conjecture by an extensive numer-
ical analysis of the volume of LOCC-convertible pairs
of pure states [14]. The results support the conjecture,

provide some nontrivial quantitative measure of the volume
of LOCC-convertible states, and suggest valuable connections
with random matrix theory.

It is natural to ask whether the property of generic in-
comparability is a general feature shared by other quantum
resource theories. Our attempt to answer this question starts
from investigating this circle of ideas for the class of quantum
incoherent operations (IOs) [15–24]. This choice is not arbi-
trary: the resource theory of coherence is sufficiently simple to
be tractable and yet shares the connection with the algebraic
notion of majorization that appears in the most interesting
resource theories [25,26].

It is the purpose of this paper to present a complete
analysis for the resource theory of coherence and indicate
what might in the future be extended to other resource
theories.

The structure of the paper is as follows. In Sec. II, we
recall the definitions of incoherent, strictly incoherent and
dephasing covariant incoherent operations, and the connection
between incoherent convertibility and the majorization rela-
tion. In Sec. III, we present the distributions of the smallest
and largest components of random pure quantum states; these
are the main probabilistic properties relevant to our analysis.
Section IV contains the main results: the set of comparable
states in the resource theory of coherence has volume zero
in the limit of large dimension n → ∞ (this is the analog
of Nielsen’s conjecture in the theory of entanglement); this
problem is related to the persistence probability of a non-
Markovian random walk and we give numerical estimates on
the rate of decay to zero; in the limit n → ∞, the maximal
success probability of incoherent conversion between two
random independent pure states has a nontrivial asymptotic
distribution that we characterize completely. We conclude the
paper with some final remarks in Sec. V.
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II. RESOURCE THEORIES OF COHERENCE

Recall that a resource theory is defined by (i) a set of
free states and (ii) a class of free or allowed operations. In
this paper, we consider the resource theories of coherence
introduced and studied by Åberg [27], Baumgratz et al. [15],
Winter and Yang [18], and Chitambar and Gour [19,20].

A. Free states and free operations

We denote by Hn a complex Hilbert space of dimension n,
and by Sn the corresponding set of states ρ (density matrices:
ρ � 0, trρ = 1). Fix a basis {|i〉}n

i=1 in Hn to be called the
incoherent basis. The choice may be dictated by physical
considerations (for example, the eigenbasis of a particular
observable).

The set of free states in the resource theory of coherence is
the set of incoherent states In ⊂ Sn defined as

In :=
{
ρ ∈ Sn : ρ =

n∑
i=1

pi|i〉〈i|
}
, (1)

i.e., density matrices which are diagonal in the incoherent
basis. Notice that In is the image of Sn under the decohering
map, i.e., In = D(Sn), where

D(ρ) :=
n∑

i=1

〈i|ρ|i〉|i〉〈i|. (2)

The specification of the free states alone does not completely
determine a resource theory. It is indeed necessary to specify a
class of free operations. For the resource theory of coherence,
a number of different alternatives has been proposed, each
yielding a different resource theory (see, e.g., Refs. [19,20]).
Here we focus on three possible choices of free operations that
allow for a criterion for convertibility between pure states in
terms of the majorization relation.

Recall that any quantum channel that is a completely pos-
itive and trace preserving (CPTP) map E : Sn → Sn can be
characterized in terms of a Kraus representation,

E (ρ) =
∑

α

Kα (ρ) =
∑

α

KαρK†
α , (3)

where Kα (·) = Kα (·)K†
α , and {Kα} is a set of (nonuniquely

determined) operators on Hn, with
∑

α K†
αKα = I. We can

then define three classes of CPTP maps on Sn, representing
three possible choices of free operations.

Definition 1. A quantum channel E is said to be an IO if it
can be represented by Kraus operators {Kα} such that

D(Kα (|i〉〈i|)) = Kα (|i〉〈i|) (4)

for all α, and for all the elements |i〉 of the incoherent basis.
Note that if E is an IO,

ρ ∈ In ⇒ Kα (ρ) ∈ R+In, for all α. (5)

This restriction guarantees that, even if one has access to indi-
vidual measurement outcomes α of the instrument {Kα}, one
cannot generate coherent states starting from an incoherent
one. Notice that Eq. (4) can be interpreted as a requirement
of commutation between the decohering operation D and the
operation Kα when acting on the set of incoherent states

In. One can also further restrict the allowed operations by
requiring the validity of such commutativity on the whole set
of states Sn.

Definition 2. A quantum channel E is said to be a strictly
incoherent operation (SIO) if it can be represented by Kraus
operators {Kα} such that

D(Kα (ρ)) = Kα (D(ρ)) (6)

for all α, and for all ρ ∈ Sn.
One can also consider a third class of IOs that satisfy the

commutativity relation with D at a global level rather than at
the level of Kraus operator representations.

Definition 3. A quantum channel E is said to be a dephas-
ing covariant incoherent operation (DIO) if

D(E (ρ)) = E (D(ρ)) (7)

for all ρ ∈ Sn.
It is clear that SIO � IO and SIO � DIO, while the classes

IO and DIO are incomparable [19,20]. It has been shown that
transformations between pure states (i.e., rank-one projec-
tions ψ = |ψ〉〈ψ |, with 〈ψ |ψ〉 = 1) are fully governed by the
same majorization criteria [17,21,24]. Therefore, although the
three classes IO, SIO, and DIO are different from each other,
they are operationally equivalent as far as pure-to-pure state
transformations are concerned. We also mention that all these
classes are subclasses of the maximally incoherent operations
(MIOs), which is the largest possible class of operations not
generating coherent states starting from incoherent ones [27].
However, our results do not apply to this class, since (as
far as we know) pure state conversions under MIOs are not
characterized by a majorization relation.

B. Convertibility criterion and majorization relation

First, we need to introduce some notation. In this paper,
�n−1 is the unit simplex, i.e., the set of n-dimensional proba-
bility vectors. For a vector x, we denote by x↓ the decreasing
rearrangement of x, with x↓

j � x↓
k for j < k. If x, y are two

vectors, we say that x is majorized by y — and write x ≺ y —
if

k∑
j=1

x↓
j �

k∑
j=1

y↓
j (8)

for all k = 1, . . . , n. For pure states ψ = |ψ〉〈ψ | ∈ Sn, we
write

δ(ψ ) := (|ψ1|2, . . . , |ψn|2) ∈ �n−1, (9)

where ψ j = 〈 j|ψ〉, i.e., the diagonal of the density matrix ψ ,
in the (fixed) incoherent basis.

The following results expose the connection between the
resource theories of coherence and the majorization relation.

Theorem 1 ([17,21,24]). A pure state ψ can be trans-
formed into a pure state ψ ′ under IO, SIO, or DIO if and only
if δ(ψ ) ≺ δ(ψ ′).

This theorem allows us to endow the set of pure states on
Hn with a natural preorder relation: we will write ψ ≺ ψ ′
whenever δ(ψ ) ≺ δ(ψ ′).
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Theorem 2 ([21]).For two pure states ψ and ψ ′, the maxi-
mal conversion probability under IO is given by

�(δ(ψ ), δ(ψ ′)), (10)

with �(·, ·) being defined on pairs of probability vectors with
n nonzero components as

�(x, y) = min
1�k�n

∑n
j=k x↓

j∑n
j=k y↓

j

. (11)

Theorem 2 is the IO counterpart of an analogous result
obtained by Vidal [28] for LOCC conversions. Note that
�(δ(ψ ), δ(ψ ′)) = 1 if and only if ψ ≺ ψ ′. The theorem still
holds if the class IO is replaced by SIO or DIO as a conse-
quence of Theorem 1.

Summing up, the three classes of IOs considered are equiv-
alent for manipulation of pure states, and they are all governed
by majorization relations. In this paper, we only consider pure
state transformations. For simplicity, we will always refer to
the class IO, but all the results also hold for SIO and DIO.

III. RANDOM PURE STATES

Let ψ be a random pure state in Sn distributed according to
the unitarily invariant measure. In the incoherent basis {|i〉},

ψ =
∑

i j

ψiψ j |i〉〈 j|,

where (ψ1, ψ2, . . . , ψn) is uniformly distributed in the n-
dimensional complex unit sphere,

∑
j |ψ j |2 = 1.

Hence, the random vector δ(ψ ) =
(|ψ1|2, |ψ2|2, . . . , |ψn|2) is uniformly distributed in the
simplex �n−1:

pδ(ψ )(x) = (n − 1)!1x∈�n−1 . (12)

If μ is a uniform point in �n−1, i.e., distributed according
to (12), then the component μk is typically O(1/n). The ex-
treme components lie instead on very different scales. The
largest components μ

↓
1 , μ

↓
2 , . . . are of size ln n/n with fluc-

tuations of O(1/n); the smallest components μ↓
n , μ

↓
n−1, . . .

are on the much smaller scale 1/n2, with fluctuations of
O(1/n2). We now give a precise asymptotic descriptions of
the extreme statistics of the uniform distribution on �n−1:
they are distributed as time-homogenous Markov chains with
explicit (and remarkably simple) transition densities. We must
say that the uniform distribution on the simplex is one of
the favorite topics in integral geometry [29] and its rele-
vance in quantum applications has been already highlighted
in the past [1,30]. The following result is probably folklore
but we could not trace it in the literature. We report it here
since it is crucial for the next analysis. The proof is given in
Appendix B.

Proposition 1. Let μ = (μ1, μ2, . . . , μn) be a uniform
point in �n−1. Denote by μ↓ the decreasing rearrangement
of μ. Then, for any fixed integer k � 1, the following hold as
n → ∞:

(i) The rescaled vector of the smallest components
(n2μ

↓
n− j+1)1� j�k converges in distribution to (V1,V2, . . . ,Vk ),

where (Vj ) j�1 is a Markov chain with initial and transition

FIG. 1. Middle: The n components of a uniform point μ in �n−1

lie in the unit interval [0,1]. Top: For large n, the smallest components
μ↓

n , μ
↓
n−1, . . . , μ

↓
n−k+1 after a proper rescaling behave statistically

as the first k points of a Poisson process (Vj ) j�1 with exponential
spacings. Bottom: The largest components μ

↓
1 , μ

↓
2 , . . . , μ

↓
k after a

proper rescaling behave statistically as the first k points of a Poisson
process (Wj ) j�1 with double-exponential (or Gumbel) spacings.

densities given by

fV1 (v) = exp(−v)1v�0,

fVj+1|Vj (u|v) = exp(v − u)1u�v. (13)

(ii) The rescaled vector of the largest components (nμ
↓
j −

ln n)1� j�k converges in distribution to (W1,W2, . . . ,Wk ),
where (Wj ) j�1 is a Markov chain with initial and transition
densities given by

fW1 (w) = exp(−e−w − w),

fWj+1|Wj (u|w) = exp(e−w − e−u − u)1u�w. (14)

Note that, by the Markov property, we can write the joint
density of (V1, . . . ,Vk ),

fV1,...,Vk (v1, . . . , vk ) = exp (−vk )10�v1�v2�···�vk , (15)

and the joint density of (W1, . . . ,Wk ),

fW1,...,Wk (w1, . . . ,wk )

= exp (−w1 − w2 − · · · − wk − e−wk )1w1�w2�···�wk . (16)

The next lemma gives a concrete realization of the Markov
chains (Vj ) j�1 and (Wj ) j�1 in terms of discrete-time contin-
uous random walks. In the following, (Xj ) j�1 is a sequence
of independent exponential random variables with rate 1, i.e.,
P(Xj � x) = 1 − exp(−x).

Lemma 1. Let (Vj ) j�1 and (Wj ) j�1 be the Markov chains
defined in (13) and (14), respectively. Then,

(Vj ) j�1
D= (X1 + · · · + Xj ) j�1, (17)

(Wj ) j�1
D= (−ln(X1 + · · · + Xj )) j�1, (18)

where
D= denotes equality in distribution.

See Fig. 1 for a pictorial illustration of Proposition 1 and
Lemma 1.
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IV. VOLUME OF THE SET OF IO-CONVERTIBLE STATES

In 1999, Nielsen [11] conjectured that the relative volume
of pairs of LOCC-convertible bipartite pure states vanishes
in the limit of large dimensions. The precise statement of
the conjecture is that for two independent random points in
the simplex with a distribution of random matrix type (see
Sec. V B below), the probability that they are in majorization
relation is asymptotically zero. Here we pose a similar ques-
tion in the theory of coherence: Is it true that most pairs of
pure n-dimensional quantum states are not IO convertible if n
is large? The answer is yes.

A. Asymptotics n → ∞
Theorem 3. Let ψ and ψ ′ be independent random pure

states in Sn. Then,

lim
n→∞ P(ψ ≺ ψ ′) = 0.

Proof. We use the shorter notation μ := δ(ψ ) and μ′ :=
δ(ψ ′). It turns out to be convenient to write the majorization
relation μ ≺ μ′ as

n∑
i=n− j+1

μ
↓
i �

n∑
i=n− j+1

μ
′↓
i , for all j = 1, . . . , n (19)

by using the normalization condition
∑n

i=1 μ
↓
i = ∑n

i=1 μ
′↓
i .

The idea of the proof, inspired by Ref. [31], is to show that

lim
k→∞

lim
n→∞ P[μ,μ′ meet the first k conditions in (19)] = 0.

From Proposition 1,

(μ↓
n , μ

↓
n−1, . . . , μ

↓
n−k+1) is asymptotic to

(
n−2Vj

)
1� j�k,

as n → ∞. By Lemma 1, we have the representa-

tion (Vj ) j�1
D= (X1 + · · · + Xj ) j�1. Analogous representation

holds for the k smallest components of μ′ with their own

sequence (V ′
j ) j�1

D= (X ′
1 + · · · + X ′

j ) j�1
. Consider the proba-

bilities (1 � k � n):

πn,k := P

(
n∑

i=n− j+1

μ
↓
i �

n∑
i=n− j+1

μ
′↓
i , for all 1 � j � k

)
.

Of course,

πn,n = P(μ ≺ μ′) and πn,n � πn,k .

By taking the limit n → ∞, we get

pk := lim
n→∞ πn,k = P

(
j∑

i=1

Vi �
j∑

i=1

V ′
i , for all 1 � j � k

)
.

It is clear that

0 � lim sup
n

πn,n � lim
k→∞

pk .

Hence, to prove that πn,n → 0 as n → ∞, it is enough to show
that pk → 0 as k → ∞. The sequence Ṽk := (Vk − V ′

k ) =∑k
j=1 X̃ j , k � 1 is a time-discrete continuous random walk

with independent steps X̃ j := (Xj − X ′
j ) distributed accord-

ing to the two-side exponential density (1/2) exp(−|x|). The

process Ik := ∑k
j=1 Ṽj , k � 1 is the corresponding integrated

random walk (IRW). Hence, pk is the so-called persistence
probability above zero of the IRW,

pk = P

(
min

1� j�k
I j � 0

)
. (20)

The proof that the persistence probability of the IRW asymp-
totically vanishes,

pk → 0, as k → ∞, (21)

follows from the Lindeberg-Feller central limit theorem and
the Kolmogorov 0-1 law, and is given in Appendix C. �

It might seem that, having to deal with independent and
identically distributed (i.i.d.) variables X̃ j , the proof that pk →
0 is straightforward. Note however, that the IRW (Ik )k�1 is
not Markov (Ik depends on all variables X̃ j , j � k) and this
explains why some analysis is required.

We should also mention that (21) is a direct consequence
of several persistence results for IRW [32–34], i.e., asymptotic
estimates for the sequence pk in (20). For our purposes how-
ever, we do not really need the precision of those asymptotic
statements and this is the reason for including in Appendix C
a proof of (21) based on elementary probability.

The proof strategy in Theorem 3 is based on bounding
πn,n by a sequence pk independent on n, and therefore gives
no information on the rate of decay of πn,n to zero. Some
insights can be obtained from the perspective of persistence
probabilities as discussed in the next section.

B. Majorization, persistence probabilities and the arcsine law

We next turn our attention to the convergence rate of
P(ψ ≺ ψ ′) to 0. For two random pure states ψ,ψ ′ in Sn, the
vector δ̃ = (δ̃k )1�k�n with

δ̃k = δ(ψ ′)↓k − δ(ψ )↓k (22)

defines a continuous random walk (Sk )0�k�n, started at S0 :=
0, with steps δ̃k’s,

Sk :=
k∑

j=1

δ̃ j 1 � k � n. (23)

Note that Sn = 0 (the process is a random bridge). The
majorization condition can be interpreted as the persistence
(above zero) of the random walk. Hence,

P(ψ ≺ ψ ′) = P

(
min

1�k�n
Sk � 0

)
.

Persistence probabilities for random processes have been
widely studied in statistical physics and probability. Cer-
tain exactly solvable models (that include symmetric random
walks, classical random bridge, IRWs, etc.), and numerical
study of many other models, showed that in the general case
the persistence probability above zero decays algebraically as
bn−θ , for large n. The so-called persistence exponents θ of a
process is typically very difficult to compute explicitly if the
process is not Markov, although θ is believed to be distribution
free within a universality class.
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FIG. 2. The probability of incoherent convertibility P(ψ ≺ ψ ′)
for ψ and ψ ′ independently chosen from the uniform distribution on
pure states of Sn. The fit (dotted line) confirms an algebraic decay
(24) with exponent θ = 0.4052. Here n = 2, 4, 8, . . . , 1024.

It is therefore natural to expect that P(ψ ≺ ψ ′) also decays
to zero as a power of n. In Fig. 2 we show the results of numer-
ical estimates of P(ψ ≺ ψ ′) (obtained from 106 realisations of
ψ , ψ ′) for increasing values of n. The plot in logarithmic scale
shows quite convincing evidence that

P(ψ ≺ ψ ′) ∼ bn−θ . (24)

The value of the persistence exponent obtained from a numer-
ical fit is θ = 0.4052, with σθ = 0.0028.

Note that the process (Sk )0�k�n is not Markov, and quite
different from most familiar discrete-time random processes
(the steps δ̃k’s in (22) are neither i.i.d, as in a classical random
walk, nor distribution invariant under permutations, as in a
classical random bridge). One can nevertheless try to compute
certain statistics related to the persistence of Sk , for instance,
the time spent above zero. Denote this time by Nn := #{k � n :
Sk � 0}. For classical symmetric random walks, the statistics
of Nn is universal, and its limit is the well-known arcsine law
[35]. Surprisingly, numerical results (see Fig. 3) show that the
fraction of time spent above 0 by Sk is also asymptotically
described by the arcsine law:

lim
n→∞ P

(Nn

n
� t

)
= 2

π
arcsin

(√
t
)
. (25)

C. Limit distribution of the maximal success probability
of IO-conversion

The maximal success probability of IO conversion of state
ψ into ψ ′ is �(μ,μ′), where μ = δ(ψ ), μ′ = δ(ψ ′) are the
diagonal entries of ψ , ψ ′ (Theorem 2). Theorem 3 can be
rephrased as the statement that if μ,μ′ are independent uni-
form points in �n−1, then

P(�(μ,μ′) = 1) → 0, as n → ∞.

In our previous work [14] on the LOCC convertibility for
random states, we conjectured a connection between the

FIG. 3. Probability distribution of Nn, the time spent by the pro-
cess (Sk ) above zero, compared with the arcsine law. Here n = 32.

asymptotic fluctuations of the smallest component of random
probability vectors λ, λ′ and the scaling limit of the variable
�(λ, λ′), when λ, λ′ are independent spectra of fixed-trace
Wishart random matrices. Translated in this setting, the pre-
cise statement is that, if for some scaling constants an, bn, the
variable

an
μ↓

n

E[μ↓
n ]

+ bn (26)

has a nontrivial limit in distribution, then, with the same
constants,

P(an�(μ,μ′) + bn � p) (27)

has a nontrivial limit as n → ∞.
The smallest component μ↓

n = δ(ψ )↓n has probability den-
sity

pn(x) = n2(1 − nx)n−110�x�1/n.

The average and variance of μ↓
n are

E[μ↓
n ] = 1

n(n + 1)
, var[μ↓

n ] = 1

n(n + 1)2(n + 2)
.

Hence, the fluctuations of μ↓
n relative to the mean are asymp-

totically bounded, var[μ↓
n ]

1
2 /E[μ↓

n ] = O(1), and therefore we
can take an = 1 and bn = 0 in (26). The conjectural statement
(27) in this case says that the distribution function

Fn(p) = P(�(μ,μ′) � p) (28)

should have a scaling limit. Indeed, we found numerically
that, for large n, the function Fn(p) tends to a limit distribution,
as shown in Fig. 4.

Here we push further our previous conjecture and we
propose that as n → ∞, the distribution of the random vari-
able �(μ,μ′) is determined by the asymptotic behavior of
the smallest components of μ, μ′ only. Any fixed block
of the order statistics n2μ

↓
n− j+1, j = 1, . . . , k is asymptotic

to the first k components of a Poisson process (Vj ) j�1; sim-
ilarly, n2μ

↓
n− j+1 is asymptotic to its own independent copy
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FIG. 4. Distribution Fn(p) for various values of n versus the limit
distribution F∞(p) (distribution functions computed from numerical
simulations).

(V ′
j ) j�1. Hence, we conjecture that �(μ,μ′) is asymptotically

distributed as

�∞(V,V ′) := inf
k�1

∑k
j=1 Vj∑k
j=1 V ′

j

, (29)

where (Vj ) j�1 and (V ′
j ) j�1 are two independent copies of a

Poisson process with rate 1 (i.e., point processes with in-
dependent exponential spacings). In formulas, if we denote
by F∞(p) := P(�∞(V,V ′) � p) the distribution function of
�∞(V,V ′), we claim that

lim
n→∞ Fn(p) = F∞(p). (30)

We report in Fig. 4 the result of numerical simulations of
�(μ,μ′) and �∞(V,V ′) on samples of 5 × 105 pairs of
random probability vectors μ, μ′ in �n−1, and pairs of
random processes V and V ′. The agreement between the cor-
responding distributions Fn(p) for large n, and F∞(p) is quite
convincing of the correctness of (29) and (30).

V. CONCLUDING REMARKS

A. Likelihood of comparability in algebraic combinatorics

In this paper, we proved that the probability that two in-
dependent random points uniformly distributed in the unit
simplex are in the majorization relation is asymptotically zero
as n → ∞. A similar question in the discrete setting was
posed back in 1979 by Macdonald [36, Ch.1.1, Ex.18]: For
two integer partitions of n, chosen uniformly at random, and
independently, is it true that the probability that they are in ma-
jorization relation (a.k.a. dominance order) is zero as n → ∞?
In 1999, Pittel [31] proved the positive answer to Macdonald’s
question. In the proof of Theorem 3 we emulated the main
ideas exposed in Ref. [31]. We mention, however, a simplifica-
tion that occurs in the continuous setting. Pittel considered the
first k conditions for majorization involving the k largest com-
ponents of random integer partitions. They are asymptotic to

Markov chains (Wj ) j�1 of Lemma 1 with double-exponential
spacings. In the continuous setting of random points in the
simplex, it is fairly easy to obtain the asymptotics of the
smallest components. Hence, here we considered instead the
first k conditions (19) involving the smallest components of
μ↓, and this reduces the problem to the persistence probability
of an IRW Ik = ∑k

j=1

∑ j
i=1 X̃i, where the increments X̃i have

two-sided exponential distribution. This choice makes the
analysis simpler compared to the discrete setting for integer
partitions.

B. Entanglement theory and LOCC convertibility

There is a difference between the statement proved in The-
orem 3 for the theory of coherence and Nielsen’s conjecture
for entanglement theory. The LOCC-convertibility criterion
for bipartite systems is the majorization relation for spectra of
reduced density matrices. In the random setting, those spectra
are not uniformly distributed in the simplex; instead, they
follow a random-matrix-type density in �n−1,

pRMT(x) = cn,m

∏
1�i< j�n

(xi − x j )
2

n∏
k=1

xm−n
k 1x∈�n−1 ,

where n and m are the dimensions of the subsystems (see Ref.
[14, Eq. (30)]). In particular, for a point distributed according
to pRMT, it is no longer true that the largest/smallest com-
ponents are asymptotically described by point processes with
independent spacings (their statistics is given instead by scal-
ing limits at the edges of random matrices, known as Airy and
Bessel point processes), and this complicates considerably the
analysis.

We also note that the proof that P(μ ≺ μ′) → 0 as n → ∞
presented here can be adapted to the case where μ,μ′ are
independent copies of points in the unit simplex picked ac-
cording to a more general Dirichlet distribution:

pDir(α)(x) = �(nα)

�(α)n

n∏
k=1

xα−1
k 1x∈�n−1 .

It would be interesting to see if this distribution appears natu-
rally in the theory of random quantum states.

C. Other resource theories

Majorization criteria also play an important role in other
resource theories, such as the resource theory of purity, which
is also closely connected to the resource theory of coherence
(see e.g., Ref. [37]). It would be interesting to investigate the
applicability of our methods to these other scenarios, even
beyond the pure state case.
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APPENDIX A: ORDER STATISTICS OF I.I.D. RANDOM VARIABLES AND MARKOV PROPERTY

We collect here a series of more or less known results about order statistics of independent random variables. In the following,
X1, X2, . . . are i.i.d. random variables with distribution function F (x) := P(X1 � x). We always assume that they have a density
f (x) = F ′(x).

For a finite family X1, X2, . . . , Xn, the order statistics X ↓
k , k � n, are the rearrangements of the variables in nonincreasing

order, i.e., X ↓
1 � X ↓

2 � · · · � X ↓
n . Of course, the order statistics are not i.i.d. random variables.

Under the previous assumptions on the distribution of the Xi’s, the order statistics have a density. The following lemma gives
the explicit formulas that we need for our calculations.

Lemma 2. Let X1, X2, . . . , Xn as above. Then,
(i) The density of X ↓

k is

fX ↓
k

(xk ) = n!

(n − k)!(k − 1)!
F (xk )n−k f (xk )(1 − F (xk ))k−1. (A1)

(ii) The joint density of (X ↓
k , X ↓

l ), for k � l is

fX ↓
k ,X ↓

l
(xk, xl ) = n!

(n − l )!(l − k − 1)!(k − 1)!
F (xl )

n−l f (xl )(F (xk ) − F (xl ))
l−k−1 f (xk )(1 − F (xk ))k−1 (A2)

for xk � xl , and zero otherwise.
(iii) The joint density of the k largest variables (X ↓

1 , X ↓
2 , . . . , X ↓

k ) is

fX ↓
1 ,X ↓

2 ,...X ↓
k

(x1, x2, . . . , xk ) = n!

(n − k)!
f (x1) f (x2) · · · f (xk )F (xk )n−k (A3)

for x1 � x2 � · · · � xk � 0 and zero otherwise.
(iv) The joint density of the k smallest variables (X ↓

n−k+1, . . . , X ↓
n−1, X ↓

n ) is

fX ↓
n−k+1,...,X

↓
n−1,X

↓
n

(xn−k+1, . . . , xn−1, xn) = n!

(n − k)!
(1 − F (xn−k+1))n−k f (xn−k+1) · · · f (xn−1) f (xn) (A4)

for xn−k+1 � xn−k+2 � · · · � xn � 0 and zero otherwise.
Proof. The proof is rather elementary (see, e.g., Ref. [38]). We sketch only the proof of part (i) to give a flavor of the type of

arguments involved. The probability that X ↓
k is in xk is the probability that, among X1, . . . , Xn, one is in xk [this gives a factor

f (xk )]; exactly (k − 1) are larger than xk (this gives the factor (1 − F (xk ))k−1); the remaining (n − k) variables are smaller than
xk (corresponding to the factor F (xk )n−k). There are n

(n−1
k−1

)
ways to partition the n variables in that manner.

Proposition 2. Let X1, X2, . . . , Xn be as above. Then,
(i) The vector (X ↓

1 , X ↓
2 , . . . , X ↓

n ) forms an inhomogeneous (finite) Markov chain with initial density

fX ↓
1

(x) = nF (x)n−1 f (x) (A5)

and transition densities given by

fX ↓
k+1|X ↓

k
(y|x) =

⎧⎨⎩(n − k)
F (y)n−k−1

F (x)n−k
f (y) if y � x

0 otherwise.
(A6)

(ii) The vector (X ↓
n , X ↓

n−1, . . . , X ↓
1 ) forms an inhomogeneous (finite) Markov chain with initial density

fX ↓
n

(x) = n(1 − F (x))n−1 f (x) (A7)

and transition densities given by

fX ↓
n−k |X ↓

n−k+1
(y|x) =

⎧⎨⎩(n − k)
(1 − F (y))n−k−1

(1 − F (x))n−k
f (y) if y � x

0 otherwise.
(A8)

Proof. We prove part (i). The density (A5) is a specialization of (A1). For k � l , the conditional density of X ↓
l given X ↓

k is

fX ↓
l |X ↓

k
(xl |xk ) =

fX ↓
k ,X ↓

l
(xk, xl )

fX ↓
k

(xk )
= (n − k)!

(n − l )!(l − k − 1)!

F (xl )n−l

F (xk )n−k
(F (xk ) − F (xl ))

l−k−1 f (xl ) (A9)
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for xk � xl and zero otherwise. In particular, for l = k + 1, we get (A6). Similarly, from (A3), we have, for all x1 � x2 � · · · �
xk ,

fX ↓
k+1|X ↓

1 ,X ↓
2 ...,X ↓

k
(xk+1|x1, x2, . . . , xk ) =

fX ↓
1 ,X ↓

2 ,...X ↓
k+1

(x1, x2, . . . , xk+1)

fX ↓
1 ,X ↓

2 ,...X ↓
k

(x1, x2, . . . , xk )
= (n − k)

F (xk+1)n−k−1

F (xk )n−k
f (xk+1) (A10)

for xk+1 � xk and zero otherwise. Hence, we have proved that

fX ↓
k+1|X ↓

1 ,X ↓
2 ...,X ↓

k
(xk+1|x1, x2, . . . , xk ) = fX ↓

k+1|X ↓
k

(xk+1|xk ). (A11)

Mutatis mutandi we can prove part (ii).
Remark 1. The previous formulas for the densities can be rephrased in terms of the distribution functions:

FX ↓
1

(x) =
∫ x

−∞
fX ↓

1
(z)dz = F (x)n, (A12)

FX ↓
k+1|X ↓

k
(y|x) =

∫ y

−∞
fX ↓

k+1|X ↓
k

(z|x)dz =
(

F (min(y, x))

F (x)

)n−k

, (A13)

FX ↓
n

(x) = 1 −
∫ +∞

x
fX ↓

n
(z)dz = 1 − (1 − F (x))n, (A14)

FX ↓
n−k |X ↓

n−k+1
(y|x) = 1 −

∫ ∞

y
fX ↓

n−k |X ↓
n−k+1

(z|x)dz = 1 −
(

1 − F (max(y, x))

1 − F (x)

)n−k

. (A15)

APPENDIX B: PROOF OF PROPOSITION 1

Proof. We first recall a standard representation for the uniform distribution in �n−1 in terms of i.i.d. exponential random
variables, and the classical asymptotic distributions of the extreme values for exponential random variables.

Lemma 3. Let X1, X2, . . . be independent exponential random variables with rate 1, i.e., P(X � x) = 1 − e−x. Then, the vector

(μ1, μ2, . . . , μn) :=
(

X1∑n
i=1 Xi

,
X2∑n
i=1 Xi

, . . . ,
Xn∑n
i=1 Xi

)
(B1)

is uniformly distributed in �n−1.
Lemma 4. If F (x) = 1 − e−x, then

lim
n→∞ 1 − (1 − F (u/n))n = 1 − exp(−u) (exponential distribution), (B2)

lim
n→∞ F (ln n + u)n = exp(−e−u) (Gumbel distribution). (B3)

Let μ = (μ1, μ2, . . . , μn) defined as in (B1) be a uniform point on �n−1. Combining Proposition 2, Remark 1, and the
formula (B2), we see that for any fixed k � 1,

(nX ↓
n , nX ↓

n−1, . . . , nX ↓
n−k+1)

converges in distribution to the first k components (V1,V2, . . . ,Vk ) of the time-homogeneous Markov chain (Vj ) j�1 with density
of V1 and transition density

fV1 (v) = exp(−v)1v�0, fVj+1|Vj (u|v) = exp(v − u)1u�v,

respectively. To show the convergence for the order statistics of μ, we simply observe that the vector

(n2μ
↓
n− j+1)1� j�k =

(
n∑n

i=1 Xi
nX ↓

n− j+1

)
1� j�k

has the same limit distribution of (nX ↓
n− j+1)

1� j�k
. (Recall that E[

∑n
i=1 Xi] = n; hence the factor n−1 ∑n

i=1 Xi converges to 1 by

the law of large numbers.)
Similarly, from Proposition 2, Remark 1, and the asymptotic formula (B3), we deduce that

(X ↓
1 − ln n, X ↓

2 − ln n, . . . , X ↓
k − ln n)

converges in distribution to the first k components (W1,W2, . . . ,Wk ) of the time-homogeneous Markov Chain (Wj ) j�1 with
density of W1 and transition density

fW1 (w) = exp(−e−w − w), fWj+1|Wj (u|w) = exp(e−w − e−u − u)1u�w,
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respectively. Denote by μ↓ the decreasing rearrangement of μ. For any k, we want to show that

(nμ
↓
1 − ln n, nμ

↓
2 − ln n, . . . , nμ

↓
k − ln n)

converges in distribution to (W1,W2, . . . ,Wk ). We write

(nμ
↓
j − ln n)1� j�k =

(
n∑n

i=1 Xi

(
X ↓

j − ln n
) +

(
n∑n

i=1 Xi
− 1

)
ln n

)
1� j�k

,

and we want to show that this vector has the same limit distribution of (X ↓
j − ln n)

1� j�k
, as n → ∞. The factor n−1 ∑n

i=1 Xi

converges to 1 by the law of large numbers. For all ε > 0,

P

(∣∣∣∣ n∑n
i=1 Xi

− 1

∣∣∣∣ >
ε

ln n

)
= P

(
n∑

i=1

Xi <
n ln n

ln n + ε
or

n∑
i=1

Xi >
n ln n

ln n − ε

)

= P

(
n∑

i=1

Xi < n − nε

ln n + ε
or

n∑
i=1

Xi > n + nε

ln n − ε

)

� P

(∣∣∣∣∣
n∑

i=1

Xi − n

∣∣∣∣∣ > min
{ nε

ln n + ε
,

nε

ln n − ε

})
.

Recall that var[
∑n

i=1 Xi] = n. Assuming n > exp(ε), and using Chebyshev’s inequality, we can estimate

P

(∣∣∣∣ n∑n
i=1 Xi

− 1

∣∣∣∣ >
ε

ln n

)
� var[

∑n
i=1 Xi](

nε
ln n+ε

)2 = 1

nε2
(ln n + ε)2.

Hence, ( n∑n
i=1 Xi

− 1)ln n converges to 0 in probability as n → ∞.

APPENDIX C: VANISHING OF THE PERSISTENCE PROBABILITY ABOVE ZERO OF THE IRW.
PROOF OF CLAIM (21) IN THEOREM 3

We want to prove that the persistence probability asymptotically vanishes:

lim
k→∞

P

(
min

1� j�k
I j � 0

)
= 0.

Notice that

lim
k→∞

P

(
min

1� j�k
I j � 0

)
= P

(
inf
k�1

Ik � 0

)
� P

(
lim inf

k→∞
Ik � 0

)
= P

(
lim inf

k→∞
Ik

kln k
� 0

)
.

Therefore, it is sufficient to show that

P
(

lim inf
k→∞

Ik

k ln k
� 0

)
= 0, (C1)

and this follows from the Lindeberg-Feller central limit theorem as we outline now.
Denote by A the event in (C1).
Claim 1. P(A) ∈ {0, 1}.
The proof of the Claim is almost verbatim the proof given by Pittel [31]. For the event

A =
{

lim inf
k→∞

Ik

k ln k
� 0

}
,

we want to show that P(A) ∈ {0, 1}. The key observation here is that the probability of the event A does not depend
on the variables of X̃1, X̃2, . . . , X̃J , no matter how large, albeit finite, J is. Indeed, let Ṽk (J ) = ∑k

j=J+1 X̃ j , for k > J and

Ik (J ) = ∑k
j=J+1 Ṽj (J ) for k > J as well. Then,

Ik − Ik (J ) =
k∑

j=1

Ṽj −
k∑

j=J+1

Ṽj (J ) =
k∑

j=1

jX̃k− j+1 −
k−J∑
j=1

jX̃k− j+1 =
k∑

j=k−J+1

jX̃k− j+1.

Therefore, almost surely

lim
k→∞

1

k ln k
|Ik − Ik (J )| = 0, for all J.
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So, denoting

AJ =
{

lim inf
k→∞

Ik (J )

k ln k
� 0

}
,

we can write for the symmetric difference A�AJ of the events A and AJ ,

P(A�AJ ) = 0, for allJ.

Now observe that AJ is measurable with respect to (X̃ j ) j>J . (Informally, the event AJ does not involve the first J variables
X̃1, . . . , X̃J ). Then, writing a.a. for almost always and i.o. for infinitely often,

A∞ = lim inf
J

AJ =
⋃
J�1

⋂
m�J

Am = {AJ a.a.}

is a tail event, and

P(A�A∞) = P(A ∩ Ac
∞) + P(Ac ∩ A∞) = P(A ∩ Ac

J i.o.) + P(Ac ∩ AJ a.a.)

�
∑
J�1

[P(A ∩ Ac
J ) + P(Ac ∩ AJ )] =

∑
J�1

P(A�AJ ) = 0.

By the Kolmogorov 0-1 law, P(A∞) ∈ {0, 1}, so from the previous calculation we obtain P(A) ∈ {0, 1}, as well.
Given Claim 1, we can now complete the proof if we show that P(A) < 1. By the definition of A, to do so it suffices to show

that

lim
k→∞

P
( Ik

k ln k
� −b

)
< 1, (C2)

for a constant b > 0. Writing Ik = ∑k
j=1 jX̃k− j+1, it is a routine matter to compute

E[Ik] = 0, var[Ik] = 2
k∑

j=1

j2 = k(k + 1)(2k + 1)

3
= O(k3).

From this, one can check that the sequence Ik satisfies the Lindeberg-Feller conditions, and thus Ik/
√

var[Ik] converges in
distribution to the standard Gaussian variable as k → ∞. Hence,

P
( Ik

k ln k
� −b

)
= P

(√
var[Ik]

k ln k

Ik√
var[Ik]

� −b

)
k→∞−→ 1√

2π

∫ ∞

0
e−x2/2dx = 1

2
< 1.

�
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