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Decoherence versus entropy in neutron interferometry
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We analyze the coherence properties of polarized neutrons, after they have interacted with a magnetic field
or a phase shifter undergoing different kinds of statistical fluctuations. We endeavor to probe the degree of
disorder of the distribution of the phase shifts by means of the loss of quantum-mechanical coherence of the
neutron. We find that the notion of entropy of the shifts and that of decoherence of the neutron do not
necessarily agree. In some cases the neutron wave function is more coherent, even though it has interacted with
a more disordered medium.
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[. INTRODUCTION medium and of a “decoherence parameter” that will be de-
fined for the neutron density matrix.

The notion of decoherence has attracted increasing atten-
tion in the literature of the past few yedik,2]. The loss of
quantum-mechanical coherence undergone by a quantum The Wigner quasidistribution functiof] can be defined
system, as a consequence of its interaction with a given erin terms of the density matrig as
vironment, can be discussed in relation to many different
physical phenomena and has deepened our comprehension of W(x,K)= if déeKé(x+ £12] p|x— £12), (1
fundamental issues, disclosing unexpected applications as 2m

well as innovative technology. _ wherex and p=#k are the position and momentum of the

Neutron physicgneutron optics in particulathas played  particle. One easily checks that the Wigner function is nor-
an important role in this context, both on theoretical andmalized to unity and its marginals represent the position and
experimental grounds. Nonclassical states are readily obmomentum distributions

tained, for instance by splitting and then superposing wave

packets in an interferomet¢B] or different spin states in a Trp:f dxdkWx,k)=1, (2)
magnetic field4,5], and are of great significance in the in-
vestigation of fundamental quantum-mechanical properties.
The aim of this paper is to investigate the coherence features
of neutron wave packets, by making use of the Wigner func-
tion [6], in analogy with concepts and techniques that are P(k)=<k|p|k>=f dxW(x,k). 4)
routinely used in quantum opti¢Z]. The studies of the past

few years have shown that nonclassical states are vulnerabidotice that

Il. PRELIMINARIES

P(X)=<X|p|X>=f dkW(x,k), ()

to statistical fluctuation$8,9]: the analysis of situations in Trp?
which these states display robustness during the interaction f dxd kV\(x,k)2=2—. (5)
with noisy environments is therefore of great practical inter- 7
est. In this paper we will consider a one-dimensional systéme

The main motivation of this work is to use the coherenceextension to three dimensions is straightforwaadd assume
properties of the wave function as a “probe” to check thethat the wave function is well apprOX|mated by a Gaussian,
degree of disorder of an environment. A similar idea was 2
first proposed, as far as we know, in the context of quantum (X=Xo)" .

Irst prop ’ asw W, In th ext of quantu w(x)=<x|¢)=ﬁex - Tikex
chaos and Feynman integr@l]. One might naively expect (2mw5%)14 45
that a neutron ensemble suffers a greater loss of quantum
coherence by interacting with an increasingly disordered en- (k—ko)?
i . intuiti : - B(K)= (K| )= ——gex — ——— —i(k—ko)xo
vironment: intuitively, a more disordered environment 52\ 1/ 52
o= (27 6y) 46y

should provoke more randomization of the phase of the wave
function, which in turn implies more quantum decoherence. 252\ 4 _
As we shall see, this is not always true: some of the results to —( ) exd — 8%(k—ko)?—i(k—ko)Xol, (7)
be discussed below are rather counterintuitive and at vari-
ance with naive expectation. In some cases, the neutron wawghere (x) and ¢(k) are the wave functions in the position
function ismore coherenteven though it has interacted with and momentum representation, respectivélys the spatial
a more disorderednedium. This statement can be given aspread of the wave packe},6=3, X, is the initial average
precise quantitative meaning in terms of the entropy of theposition of the patrticle, andy,=7%kj its average momentum.

. (6)
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The two functions above are both normalized to 1: normalNotice that, forA+0, it is not normalized to unitfysome
ization will play an important role in our analysis and will neutrons end up in the extraordinary chanmeflected com-
never be neglected. The Wigner function for the stéjeand ~ ponenj] and that forA=0 (no phase shiftgrone recovers
(7) is readily calculated Eq. (8).
A similar result is obtained when a polarizéshy, +vy)
neutron crosses a magnetic field aligned along an orthogonal
exd —28%(k—ko)?]. (8)  direction (say, +2z). The total neutron energy is conserved,
but due to Zeeman splitting the two spin states in the direc-
tion of the B field have different kinetic energies and travel
In this paper, we will focus on two physical situations. In thewith different speeds. This is a situation typically encoun-
first one, a polarized neutron acquires a phase dhitither  tered in the so-called longitudinal Stern-Gerlach effigdt
by going through a phase shifter or by crossing a magneti@nd in neutron spin-echo experimeft$ (except that we are
field parallel to its spin. In the second one, a polarized neunot considering the second half of the evolution, with an
tron is divided in two branch waves, either in an interferom-0ppositeB field that recombines the two spin stateAn
eter or by crossing a magnetic field perpendicular to its spin€xperimental realization of this situation was investigated
The latter situation is physically most interesting, for it VEry recently[11]. If the initial wave function is
yields nonclassical states, whose coherence properties are of

great interest. [P)=|pe|+)=|he

1 X—Xg)?
W(x,k)= ;exp{ - %

(11)

1 i

—|+),+ —=|-), ],
\/El >Z \/§| >Z)
A. Single Gaussian where|+), (a=X,y,z) represents spin up/down in direc-

If a Gaussian wave packet undergoes a phase shifte tion «, the final state in the position representation, after
resulting Wigner function reads crossing theB field, reads

LA
X3

1
(XW)= =y

V2

— 2 i A
W(X,k,A)=%exr{—w ®|+>Z+E¢(X_E)®|_>Z'
25 w

If only the + y-spin component is observétpostselection”

Physically, this is achieved either by placing a phase shiftepf the initial spin componeritL2]), the probability amplitude
in the neutron path, or by injecting a polarized neutron in a5
constant magnetic field parallel to its spin. In both cases, the 1 A
total energy of the neutron is conserved. In the latter case, if W+ X|P)= > X— E” (13
the field has intensitid and is contained in a region of length
L, the neutron kinetic energy in the field changesAly= and the Wigner function is readily computed as
—|u|B, where|u| is the neutron magnetic mon21ent. This 1
entails a change in average momentk= muB/%“k, and mag _ = 98201 1 )2
a phase shift proportional th=LAk/k,. When it leaves the WXk, A) 47Texp[ 20°(k=ko)’]
field, the neutron acquires again the initial kinetic energy. AL2
X—Xo— E)

268°

exd —28%(k—ko)?].
©)

¥ Ty

A
X+§

B. Double Gaussian X1 expl —

Consider now a neutron wave packet that is split and then
recombined in an interferometer, with a phase shifter placed A
in one of the two routes. The Wigner function in the ordinary X=Xo+ 2
channel(transmitted componentis readily computed: +exp| —

WNt(x,k,A)

) R i i PINY
:Eexq_zéQ(k_ko)Z] €x 252 COS ) . ( )

p( (X—Xo+A)2
Xlexp ———| +ex

This result is slightly different from Eq10), because in this
case both spin components undergo a phase shiff/p).
p( B (X—Xo)z) Once again, fod =0 (no magnetic fiellone reobtains Eq.
2 (8).
20 We stress that in both cases the neutron wave packet has

A2 a natural spread,= \/8%+ (%t/2ms)? (due to its free evolu-
X=Xot = tion for a timet=mL/7k,); however, this additional effect

+2expp ———— | cogkA) |. (100  will be neglected, because, as proved in Appendix A, it is not

26° relevant for the loss of quantum coherence.

2682
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Fluctuating W@@
phase shift /s ///’"'\\\
I

FIG. 1. If the phase shift fluctuates, each wave packet acquires ¢
different shift. This is pictorially represented in the figure, where
different outgoing wave packets are displayed, each associated witl
a single neutror{“event”). The average Wigner function is given
by Eg. (20).

Ill. FLUCTUATING PHASE SHIFT

The previous analysis refers to a rather idealized case, ir
which every neutron in the beam acquires a constant phas
shift. This is clearly not a realistic situation, for it does not
take into account the statistical fluctuations of Béeld or
of the shifter in the transverse section of the beam. If, for any
reason, the phase shift fluctuates, the neutron beam will

T
S
(a) (b)
FIG. 3. Wigner functions for different values of the standard
(b) deviationo in Eqg. (18). (a) Double Gaussian in an interferometer
(24). (b) Double Gaussian in a magnetic fie(@8). From top to
bottom, =0, 0.6, 1.2, and 1.8 A. The values of the other param-
eters arex,=0, ko=1.7 A", 6=1.1 A, andA,=16.1 A. Posi-
tion x and momentunk are measured in A and &, respectively.
Notice the strong suppression of interference at large values of mo-
mentum, both ina) and(b). In case(a) only one of the two Gaus-
sians interacts with the fluctuating phase shifter; moreover, the in-
terference term in Eq24) depends orx and the oscillating part of
(c) the Wigner function is bent towards the negativaxis.

will be affected accordingly. We shall consider the case of
“slow” fluctuations, in the sense that each neutron crosses
an approximately statiB field (or a phase shifter of uniform

FIG. 2. Decoherence parameter vs coherence length of the waJ&N9thL), but the intensity of the fieldor the length of the
packet5(A) and standard deviation of the fluctuatiar(A). (@  Shiften varies for different neutrons in the beaifferent
Gaussian wave packefb) Double Gaussian in an interferometer, “€vents”). We will suppose that every neutron undergoes a
with Ag=16.1 A.(c) Double Gaussian in a magnetic field, with shift A that is statistically distributed according to a distribu-
Ap=16.1 A.Inall case&,=1.7 A~1. Observe thatin caga) the  tion law w(A). The collective “degree of disorder” of the
decoherence parameter is a monotonic functioa @dr every value  shifts A can be given a quantitative meaning in terms of the
of 8, while this is not true for case®) and(c). Notice also that in  entropy,
case(b) the decoherence parameter never reaches Lufﬁw}o: this
is due to the fact that only one Gaussién one branch of the
interferometer undergoes statistical fluctuatiofsee Fig. 8)].

sz—f dAW(A)IN(W(A)). (15)
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On the other hand, the average Wigner function reads 1. Single Gaussian

Consider now a neutron described by a Gaussian wave
packet. If the phase shiff fluctuates according to E¢18),
Wm(X,k)Zf dAwW(A)W(x,k,A) (16)  the average Wigner function is readily computed by Eqgs.
(16), (9), and(18),

and represents a partially mixed state. The coherence prop- 1 52
erties of the neutron ensemble can be analyzed in terms of a ~~ W(X,k)=— Wexd— 26%(k—ko)?]
(o

decoherence parametgt 3],

(X—Xo+Ag)?
Xexg ————5 (20)
Ttp? 277f dxdkW,(x,k)2 2(6°+0%)
=1- Wzl_ 7. (A7 andits marginal¢3) and (4) are easily evaluated,
P dedkwn(x,k)>
oL p[_ (Xt 80|
(0= mrod) 2(82+02) |’

This quantity measures the degree of “purity” of a quantum
state: it is maximum when the state is maximally mixed 552
(Trp?<Trp) and vanishes when the state is pure pTr P(k)= \/—exp[—252(k—ko)2]. (22)
=Trp): in the former case the fluctuations dfare large and 77
the quantum-mechanical coherence is completely lost, whil
in the latter caseA does not fluctuate and the quantum-
mechanical coherence is perfectly preserved. The paramet
(17) was introduced within the framework of the so-called
“many Hilbert space” theory of quantum measurements
[8,2] and yields a quantitative estimate of decoherence. Th lized to 1
related quantity Ts—Trp? (which might be called the ”OrTrEa 'Zg °h : €t o iicall
“idempotency defect) was first considered by Watanabe | et deco erence parame can be analytically
[14] many years ago. A measure of information for a quan-eva uated,
tum system has been recently introduced, which is related to 52
¢ and is more suitable than the Shannon entrid}. e=1— \/—— (23)
One might naively think that the two quantiti€&sand & 5+ o2
should at least qualitatively agree: in other words, the loss of ) ) .
quantum-mechanical coherence should be larger when tr&nd is a monotonic function af for every value ofé. This
neutron beam interacts with fluctuating shifts of larger enPehavior is in qualitative agreement with that of the entropy
tropy. Such a naive expectation turns out to be incorrect. Ourl9. As expected, a more entropic distribution of phase

purpose is to investigate this problem. To this end, it is useshifts entails a greater loss of quantum-mechanical coherence
ful to consider some particular cases. for the neutron ensemble. The behavioreofs § and o is

shown in Fig. 2a).

Riotice that the momentum distributiq@?) is unaltered and
identical to| ¢(k)|? in Eq. (7): obviously, the energy of each
fieutron does not change. Observe, on the other hand, the
additional spread in positiod’ = \/6°+ ¢ (Fig. 1) and no-

gce that the Wigner function and its marginals are always

A. Gaussian noise 2. Double Gaussian in an interferometer

We first assume that the shifts fluctuate around their Consider now the double Gaussian stété), obtained
averageA, according to a Gaussian law: when a neutron beam crosses an interferometer. The average

Wigner function(16) reads
p[ (A—Ap)?
exp ————

20?

W(A)= , (19

WX, k) =

exf —282(k—Kg)?] p[ X2
expg — —
4 252

whereo is the standard deviation. The ratidA g is simply
equal to the rati®B/B, (or SL/L), 6B(SL) being the stan-

dard deviation of the fluctuating magnetic fiel@éngth of 52 (x+Ag)2
phase shifterand By (L) its average. The entropy of Eq. + 2 5 €xp —
+o

(18) is readily computed from Eq15), 2(8%+ o?)
Ao)? 262 2
S=1In(2med?) (19 X+ | +k50
2( 52+ 0—2
and is obviously an increasing function of 4
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k?a?
262A,— x0? 1+ex;{ - cos{kAo)}.
X €O k—z) : (24) (25

o
2
2(5+4

where we seky=0 for simplicity. Its marginalg3) and (4)
can both be computed analytically; in particular, the momen
tum probability distribution reads

As one can see from Fig(8®, interference is exponentially
suppressed at high valueslofind the oscillating part of the
Wigner function is bent towards the negativexis. This is
due to thex dependence of the cosine term in E24), which

52 . . . .
P(k)= /Eexr{—zﬁ(k—ko)z] entails different frequencies for different values of The

decoherence parametel7) reads
1|1 1. [ 62 . [ &
e=1—-—A9 = PR P
4N? | 4 5+ o? 45%+20°

A
exg —————|+ex
45%+ 202

2k36%0?
258%+ o?

1 [ & A3+ 4K36%02 4koA 62 5 A3+ 4k26%0? 8KoA 62
- expg — co expg —
2N\ V46407 2(46%+0?) 46°+ 0% 48°+0” 45+ 0 48%+ o
52 (26%2+ 0?)(A3+4K36%02) AkoA o 5%(48°+307) 26
— expg — (0] ,
N2{165%+ 128%°02+ o* 166%+ 126%02+ o* 166%+ 126%02+ o*
where the normalization
1 8 A2+48%0%K3 52
sz dxdkW,(x,K)==| 1+ sexp| — 5 co§ ——KgAg (27
? o2+ = 8 o2+ = 2+
4 4 4

represents the probability of detecting a neutron in the ordinary channel. The explicit expr@&iah the decoherence

parameter is involved and difficult to understand. Thereferis, shown in Fig. 2b) as a function o5 and o for fixed values

of kg andA,: somewhat surprisingly, for some values&feven though the noise increases, the decoherencaecreases.
Observe also that never reaches unitg<2. This is due to the fact that one of the two Gaussians does not undergo any

fluctuations(there is a fluctuating phase shifter in only one of the two routes of the interferontéierefore, a part of the

Wigner function is not affected by noise, as one can see in F#&). B/e shall comment again on the peculiar features of

a while.

3. Double Gaussian in a magnetic field

If we consider a polarized neutron beam interacting with feld perpendicular to its spin, EqL4) yields

2 2 2 (X_ &Y 2 (X‘F& 2
WIS A):ex;{—25 (k—ko)?] & o — 2 N & oxg 2
T 4 2+ 2 ol 62+ 2 52+ 2 ol 62+
4 4 4 4
X2 20_2
+2 ex;{— Py i cogkAy) ¢ . (28

This Wigner function has the sankemarginal(25) as the previous on@lthough thex marginals are different Also in this
case, one observes a strong suppression of interference at large values of mop@ehitytd, but without thex dependence
in the cosine. See Fig.(B). In this case, the decoherence paramé&l@) reads
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) 1 52 A2+ 4k36%02 8koA 52 1 | &
e=1-———\/—F——exp — co -——\ =
4AN? N 46%+ o2 45°+ o? 45°+ %) 4N? N 482+ 52
ol 1 A3 .\ 4kz 602 4 & A3+ 4k36%0? 8KoA 62 29
exp ————= exp —————=||——= ———F=——=€exXp — co .
46°+o° 48°+c®) | N?88°+q° 86%+0” 85°+0”

Again, the explicit expression of the decoherence parameter
is complicated and depends on several physical parameters;

Wm(x,k):f dAW(A)W(x,k,A)
it is therefore convenient to concentrate on a particular case.

An experimental realization of a fluctuating shiétccording
to a given statistical layis easier with the magnetic-field

1
=?detW(x,k,A(t)) (T large. (32

arrangement discussed in Sec. Il B. Let us therefore consider

the experimenf11], in which a polarized {y) neutron en-
ters a magnetic field, perpendicular to its spin, of intensit
By=0.28 mT, confined in a region of length=57 cm.
The average neutron wave numberkig=1.7x10° m™!
and its coherence lengtfuefined by a choppgris 6=1.1

X 1071% m. By traveling in the magnetic field, the two neu-
tron spin states are separated by a distangg
=2muBoL/%%k3=16.1x10"*° m, one order of magnitude
larger thans. The behavior ot in Eq. (29) is shown in Fig.
2(c) for these experimental values: observe that #r
=3 A, & is nota monotonic function ofr: in other words,
for some values of the parameters, even though the noise
increases, the decoherencedecreases. This is at variance
with the behavior of the entropyl9 and with what one

might naively expect. We conclude that, in general, both for
a double Gaussian in an interferometer and in a magneti

field, the behavior ok does not agree with that of the en-
tropy.

B. Sinusoidal fluctuations with increasingly less rational
frequencies

We stress thaA is treated like a random variable, although,

ystrictly speaking, the underlying process is deterministic.

However, this is not a conceptual difficulty: in practice, one
just treats the neutron ensemble in an experimental run with-
out looking at the correlations among different neutrons. The
same effects on the neutron ensemble would be obtained by
first generating a random varialleuniformly distributed in
(0,T), then constructing the additional random variatdle
according to Eq(30), and finally accumulating all neutrons

in the experimental run. In this way, different neutrons are
uncorrelated. The distribution law of the shift30) can be
obtained by means of B field,

B(t)=Bg+ By[sin(Qt) +sin(r;Qt)]. (33

%s in the preceding section, we assume tBats a slowly
varying function of time, so that each neutron experiences a
static field during its interaction. Observe that the scheme
proposed in Eqs(30)—(32) is not difficult to realize experi-
mentally. On the other hand, it would be complicated to
obtain the same distribution of shifts with a phase shifter

In order to shed some more light on the results of theblaced in one of the two routes of an interferometer.
preceding subsection, let us consider a different example, We will study the coherence properties of the neutron
which is more convenient for an experimental perspectiveb€am when it crosses a magnetic field made up of two “in-
Suppose that the phase shift changes according to the lawcreasingly less rational” frequencies, by choosing

A(t)=Ap+Aq[sin(Qt)+sin(r;Q1)], (30
wheret is time, ) is a frequency much smaller thar /L,
the inverse time of flight of the neutron in the shifter’s re-
gion, A, is the mean phase shifh,(<A,) is the “fluctua-
tion” width (see beloy, andr; (0<r;<1) is a real number.
For the neutron ensembléhe bean, the shifts will be dis-
tributed according to the law

w(A)=f dtf(t) S(A—A(1)), (31)

wheref(t) is the probability density function of the stochas-
tic variablet. In our case,f(t)=21/T in (0,T), whereT
(>Q7Y) is a sufficiently large time interval. In such a case,
by making use of Eq(31), the Wigner function can be ex-
pressed as an ergodic average,

f (34)
ri= ,
! fii1
wheref; are the Fibonacci numbers
fj+1:fj+fj_1 (fozflzl). (35)

This particular choice is motivated by theaive) expectation

that an oscillating magnetic fiel®3) composed of mutually
less rational frequencies should provoke more decoherence
on the neutron ensemble. Once again, this expectation will
turn out to be incorrect. The ratid84) tend to the golden
mean(the “most irrational” numbel{16]) asj increases,

-1
2 .

j—oo
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TABLE I. Entropy and decoherence.

i r S e (single Gaussign ¢ (double Gaussign
1 § 16165 0.52894 0.59545
. 2 % 17398 0.53166 0.62478
’ ‘ 3 ¢ 17458 0.53199 0.63184
4 2 19051 0.53173 0.62695
A A a5 & 19434 0.53173 0.62695

[

A

4

w
ey
4 -2 2 4

(c)

which is easily obtained by Eq$15) and (31) (using the

I valueT=f;, 27/Q for the numerical evaluation

The decoherence parameter is computed from (Ed),
d first with the Wigner functior(9) (single Gaussignand then

i with the Wigner function(14) (double Gaussian in a mag-
. netic field: in both formulas, we used E@32) and setA|

0.7 =16.1x10"19 m, A;=2x10"1° m, and the same numeri-
cal values of the preceding subsectionkgrand § [11]. Our

results are summarized in Table | and Fig. 5.

T2 7 4 We notice that, although fgr=1, . . . ,5,Sis a monotoni-

() cally increasing function of the Fibonacci number in the se-
quence,e reaches a maximum fdrj=§ (.e.,j=3). Itis
remarkable that the maximum is obtained for the same Fi-
bonacci ratio in both casesingle and double Gaussian
Once again, the behavior of entropy and decoherence is
qualitatively different. Figure 5 should be compared to Fig.

2: it is worth noting that in the case analyzed in this section,
unlike in Sec. Il A, the behavior of entropy and decoherence
does not agree even when the neutron state is a single Gauss-

ian (namely, a “classical” state

U:HLU
-4 -2
(
A
!

| MHMUM

4A -4 -2

(d) (e

FIG. 4. Phase shifh in Eq.(30) and distribution functionwv(A)

in Eq. (32), for different values of;: (a) r1=%; (b r2=§; (©rs
=2 ) r,=3; @ rs=3; (F) r.=(y5—-1)/2. In each figureA,
=2 (we setA,=0 for clarity of presentation above, phase shift
A(t); below, distribution functiorw(A). Notice that, by increasing
j (index of the Fibonacci sequencehe two frequencies become
mutually “less rational,” the phase shith(t) becomes more ir-
regular, and its distribution functiow(A) more uniform.(The en-
tropy behaves accordingly, increasing fpe1,...,5 [see Fig.
5(a)]). Notice that the number of divergences of the distribution
function increases witlj; as shown in Appendix B, in thg=o°
limit, the distribution becomes continuous with only ofegarith-

mic) divergence il =0 and can be expressed as an elliptic integral
(B6).

¢
A E A

|
|

|
|
|

A
4
w
¥
2 4
b)
A
4
w
2 4
)

IV. CONCLUSIONS

Decoherence is a very useful concept that has recently
been widely investigated and has turned out to be very pro-
lific. It is intuitively related to the loss of “purity” of a
In general, one cannot obtain an analytic expression for thquantum-mechanical state and can be given a quantitative
probability density function31); however, an accurate nu- definition, as in Eq(17). However, we have seen that the
merical evaluation oWv(A) is possible: for every finite value yery notion of decoherence is delicate: in particular, it is not
of j, r; is a rational number, so that one can integrate(Bf).  correct to think that a quantum system, by interacting with an
over the intervall =f;, ;277/Q). In Fig. 4, we show the re- jncreasingly “disordered” environment, will suffer an in-
sults of our numerical analysis. The distribution function creasing loss of quantum coherence. Our analysis has been

w(A) has a finite number ofintegrable divergences in itS o formed by assuming that each neutron, during an experi-
interval of definition; as the order in the Fibonacci sequencé) y g ' 9 P

becomes higher, the number of divergences in the interval

grows. In thej—o limit, i.e., for the golden mearr., 19 o assl e 0.63 P
=(y/5—1)/2, it is possible to apply the theorem on averages 18 / 0531 / 0.62 /’

for the ergodic motion on a tory47] and find an analytical — Sszal | Sosll |/
expression ofv(A) in terms of an elliptic integral of the first / 0,509 / g0l |

kind (see Appendix B The resulting distribution is a smooth ' o1

function with only one(integrable divergence inA=0 and T2 3 435 12345 12345

is plotted in Fig. 4f). J g J

By applying the same technique utilized for the numerical () ®) (c)
evaluation ofw, the entropy is computed according to the  F|G. 5. (a) Entropy(37) vsj (index in the Fibonacci sequence
formula (b) Decoherence parametél7) vs j: case of a single Gaussiait)
Decoherence parametét?) vs j: case of a double Gaussian in a
magnetic field. Notice that, while the entropy is an increasing func-
tion of j for j=1,...,5, thedecoherence parameter displays a
maximum atj =3, both for a single and a double Gaussian.

1
s=—f dAW(A)In(W(A))=—fdetIn[w(A(t))],
(37
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mental run, interacts with a constant magnetic field: the neu- [H,,H,(«)]=iC with [H,,C]=[H;(a),C]=0,
tron beam, on the average, undergoes decoherence. This (A2)
v e oo g ereC 51 General ancpertanderdent o). 50 it
beginning of Sec. lll B, this regime is easy to achieve experi-(ﬁ: 1)
mentally in the limitQ2<v,/L, where() is a characteristic g~ itlHo*+Hy(a)] = git?Cl2g—itHog—itH () (A3)
frequency of the fluctuation andvg/L) ! is the time of _ _ _ _
flight of the neutron in the phase shifter or in the magneticconsider now the density matrix at tinie
field. This approximation also simplifigoth conceptually p(t)=e tHotHi(@)] ; gitlHotHa(a)] (A4)
and technically our theoretical analysis, without, however, ] o . ]
having a substantial influence on our general conclusions. Wherepq is the initial density matrix. From EqA3),
is worth stressing, in this respect, that the decoherence pa- (t):eitzclze—itHOe—itHl(a) gitH1(a)gitHog—it?Cr2
rameter, defined in Eq17), depends on the interaction and Pa Po (A5)
not on the free Hamiltonian, at least in the physical situations
investigated herésee Appendix A and the average over yields
Our quantitative definition of decoherence depends, asit _ . '

should, on the very characteristics of the experimental setup:  p(t)=g't C’ze"‘HO(f daw(a)e tHi(@) p eltH ()
the decoherence parameter is defined in terms of the average
Wigner function(or equivalent.ly the Qensity matpivof the XeitHOefitZCIZ, (A6)
neutron ensemble, after the interaction with the apparatus.
An experimental check of the features of the Wigner func-Wherew(a) is the distribution function and the bar denotes
tions discussed in this paper would require its tomographi@verage. Therefore,
observation. Similar techniques are commonly applied in BY7ey P ey
quantum optic$18] and would be available in neutron optics Tp(V]=Tpin(V], (A7)
as well, in particular for the experimental arrangement diswhere p;,; is the density matrix in the following interaction
cussed in Sec. Il B. However, we think that a better com-picture:

rehension of the effects analyzed in this paper could prob- . 2 - 2 : ;
gbly be achieved by studying]/ the margirﬁ)&t?r possibl)? pin(1) = !0 CEp (1) @7 MO TIC2= @ i) p peltia(e),
some other tomographic projectijoaf the Wigner function (A8)
and the visibility of the interference pattern. Additional work This proves that the trace of the average density matrix does
is in progress in this direction. From an experimental pernot depend on the free evolution. The resi#7) can be
spective, an analysis of decoherence effects along the guidgeneralized to any function of the average density matrix,
lines discussed here would be challenging: although the con- J— N
cepts of decoherence and entropy are intuitively related, they T f(p()]=Tr f(pin(1))]. (A9)
display some interesting differences. If properly understoodyhis shows that the decoherence parameter defined in Eq.
those situations in which allarger noise yields a more coher 17) does not depend on the free evolution:
ent quantum ensemble might lead to unexpected applica-
tions. E=28int, (A10)

as claimed at the end of Sec. Il. This result can be applied to
the case studied in Sec. Ill, wheky=p?/2m,H,=— u-B,

We thank H. Rauch and M. Suda for useful comments anénd the parameter is the intensity of the magnetic fieHd
I. Guarneri for an interesting remark. The numerical compu<{whose direction is supposed consjaiotice that we are
tation was performed on the “Condor” pool of the Italian considering wave packets that interact with a constant and
Istituto Nazionale di Fisica NucleaféNFN). This work was  homogeneous fiel from the initial timet=0 to the final
realized within the framework of the TMR European Net-time t=mL/#% kg, so that conditior{A2) is fulfilled. The case
work on “Perfect Crystal Neutron OpticsS(ERB-FMRX-  of a neutron wave packet in an interferometer is analogous, if
CT96-0057. we assume that the phase shifter simply yields a pkage
tical potential approximation
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APPENDIX A:

We prove that the decoherence parametef, under APPENDIX B:

rat_her general conditions, does not depehd on the free evo- We compute here the distribution functiqB1) when

lution of a quantum system. Let the Hamiltonian of a quan'f(t)=1/'|’ and A(t) changes according to ECB0), in the |

tum system be = |imit (36). The functionw(A) has a finite number of
H=Hy+H(a), (A1) (integrable divergences in its interval of definition. Notice

that, as the order in the Fibonacci sequence becomes higher,

whereH, andH, are the free and interaction Hamiltonians, the number of divergences in the interval grows and the nu-

respectively, andr is ac number(that can fluctuate accord- merical evaluation of the distribution function becomes more

ing to a given statistical layw We assume that difficult. Let us introduce the two-component vector

052108-8



DECOHERENCE VERSUS ENTROPY IN NEUTRON . ..

¢ () =(¢1,92)=wjt, where w;=(Q,r;Q). (B1)

The vectorg; performs aquasjperiodic motion on the two-
dimensional torug?. In particular, for evenfinite value ofj
the frequencies are dependent, i®;/w,;=r;eZ, and the
orbits are closed. For larger valuesjpthe number of wind-
ings in a period increases and the length of the periodic orb
becomes larger. In thg—oo limit, the two frequencies be-

come independent and the resulting motion on the 2-toru
becomes ergodic: the trajectory is everywhere dense and unii

formly distributed onT2. In this case, according to the theo-
rem on averagegl7], the time average of every integrable
function f(¢) (whereep=¢.,) coincides with its space aver-
age, i.e.,

1JT 1 jzw fzqr
lim=| dtf(e(t))= d do,f(e).
fim =, (e(1) 2mile 9], dez (@)
(B2)
Applying Eq. (B2) to the function
fl@)=6(A—Aq[sing;+sing,]), (B3)

we obtain

w(A)= lim

T—oo

17T
Tf dtS(A — A4 [sin(Qt)+sin(r,.Qt)])
0

J’27T
0

2w
deq
0

1
(2m)?

de26(A—Aq[sing;+sing;])

PHYSICAL REVIEW @8 052108

1 (+1
=—J dsPg(s)Pg(A/A;—S), (B4)
Ay)
wherePg is the sine distribution
t Po9=o | des(s—sing)=—— (B5)
[ S)=-—— S—Sing)=——.
s 2mJo ¢ ¢ mJ1l—s?
\fter some algebraic manipulation, one finds
2 1 A2
W(A)= ——F| arcsit————,\/1—| — ,
770y A 24,
\/1+-—
2A,
(B6)

whereF (3, vy) is the elliptic integral of the first kindl19],

1
V1-— yzsinza.

The limiting distribution function(B6) is plotted in Fig. 4f).

Observe that in Figs. (4—4(f), the number of diver-
gences increases so quickly that, in fhec limit (golden
mean), w(A) becomes a smooth function with only ofie-
tegrable  divergence in A=0 [indeed w(A)
~In(8A,/|A])/7?A, for A—0]. In this sense, Bernet al.
coined the epigram “stochasticity is the ubiquity of catastro-
phe” [20]. (Incidentally, notice the similarity of Fig. 4 with
Fig. 12 of[20].)

B
F(ﬁ,7)=fo da (B7)
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