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Beyond the Rabi model: Light interactions with polar atomic systems in a cavity
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The Rabi Hamiltonian, describing the interaction between a two-level atomic system and a single-cavity mode
of the electromagnetic field, is one of the fundamental models in quantum optics. The model becomes exactly
solvable by considering an atom without permanent dipole moments, whose excitation energy is quasiresonant
with the cavity photon energy, and by neglecting the nonresonant (counter-rotating) terms. In this case, after
including the decay of either the atom or the cavity mode to a continuum, one can derive the well-known
phenomenology of quasiresonant transitions, including the fluorescence triplets. In this work we consider the
most general Rabi model, incorporating the effects of permanent atomic electric dipole moments. Based on a
perturbative analysis, we compare the intensities of emission lines induced by rotating terms, counter-rotating
terms, and parity-symmetry-breaking terms in order to identify the parameter regimes in which these different
contributions play a significant role. The analysis reveals that the emission strength related to the existence of
permanent dipoles may surpass the one due to the counter-rotating interaction terms but is usually much weaker
than the emission due to the main, resonant coupling. This ratio can be modified in systems with a reduced
dimensionality or by engineering the energy spectral density of the continuum.
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I. INTRODUCTION

The Rabi model is a fundamental tool in quantum op-
tics. It describes the coupling of a two-level system and a
bosonic field mode [1], extending beyond the simpler Jaynes-
Cummings interaction, in which the creation of a photon
is always accompanied by annihilation of the atomic ex-
citation and vice versa [2]. The Rabi model additionally
accounts for the less intuitive processes of pairwise creation
or annihilation of excitations in the atomic and photonic sub-
systems. The probability of these processes grows with the
light-matter coupling constant and becomes significant in the
so-called ultrastrong coupling regime in which the coupling
constant becomes comparable to the energy of the system [3].
Numerous experimental realizations include superconducting
systems [4,5], quantum wells [6,7], photonic waveguide ar-
rays [8], molecular ensembles [9], cold atoms [10], etc. In
all these systems the extension beyond the Jaynes-Cummings
interaction may lead to considerably different physics: in
particular, to a ground state with a nonvanishing number of
excitations, squeezing dynamic, and a significant modification
of the spectra [1,11,12]. Different approaches to solve the
Rabi model and its extensions are based on exploiting discrete
symmetries [11], Bogoliubov operators [12], polaron transfor-
mation [13,14], the generalized rotating-wave approximation
[15], and perturbative approach [16,17].
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The Rabi model describes light-matter interaction, where
the electromagnetic field induces transitions between the
eigenstates of a two-level atomic system. A particular mecha-
nism is related to a coupling of the electromagnetic radiation
with a transition dipole moment element induced between a
pair of atomic eigenstates. However, simple two-level systems
may display versatile physical features, beyond the traditional
Rabi model: a particular example is a coupling scenario where
the electromagnetic field introduces energy shifts of the eigen-
states rather than transitions between them [18,19]. A simple
realization exploits atomic systems with permanent dipole
moments, such as polar molecules or asymmetric quantum
dots. Due to the interplay of permanent and induced elec-
tric dipole moments, polar systems are a playground where
a richer physics of light-matter interactions can be realized:
polar quantum systems have been proposed for THz radiation
sources [18] based on quantum dots [20] or molecular ensem-
bles [21]. They can be exploited for squeezed light generation
[22,23], and they support light-matter entanglement [24] and
nonlinear optical absorption [19]. Recently, the impact of
spatial asymmetry of a quantum system on its spontaneous
emission properties has been investigated [25].

The aforementioned works are among the plethora of
possibilities provided by asymmetric quantum systems that
simultaneously support light-matter interactions through three
types of terms. These include the Jaynes-Cummings terms
and the counter-rotating terms, both involving transition
dipole moments of the atomic system. The third type of
terms involves permanent dipoles, i.e., nonvanishing expec-
tation values of the dipole moment operator in the atomic
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FIG. 1. Sketch of the system under study: a two-level polar
atomic system in a lossy cavity represented by two semitransparent
mirrors. The nonuniform charge distribution is shown as blurred
clouds: two green clouds at the bottom of the molecule for a higher
concentration of positive charges and in the orange cloud at the top
for the negative charges. The annihilation and creation operators
of the electromagnetic modes are denoted as a, a† for the cavity
(represented as blue wave packets inside the cavity) and r, r† for
the reservoir (red wave packets outside).

eigenstates. For the numerous applications listed above it is
essential to identify conditions in terms of experimentally
tunable model parameters where different contributions sig-
nificantly influence the system’s optical response. This work
aims to study the relative impact of these three contributions
and demonstrate with simple examples the possibility of per-
forming density-of-states engineering. Our analysis follows
the methodology introduced in Ref. [17] but extends it to
include all three interaction mechanisms.

The paper is organized as follows: A two-level atomic
system without inversion symmetry, coupled to a single-mode
electromagnetic field, is introduced in Sec. II. Next, we ap-
ply a perturbative framework to find a ladder of eigenstates
and the corresponding energies in Sec. III. Transitions be-
tween these eigenstates upon coupling with an external lossy
cavity are described in Sec. IV, which ends the analytical
part. Numerical examples of systems with low-to-moderate
light-matter coupling strengths are given in Sec. V. In
Appendix A we discuss the validity of the perturbative
approach, while details of calculations of the spectral distri-
bution of emitted photons are given in Appendix B.

II. HAMILTONIAN OF THE SYSTEM

Let us consider a two-level system with ground and excited
state respectively denoted as |g〉, |e〉, separated by the excita-
tion energy h̄ωa. The system, pictorially represented in Fig. 1,
is described by the set of Pauli operators

σ− = |g〉〈e|, σ+ = |e〉〈g|, (1)

σz = |e〉〈e| − |g〉〈g|. (2)

This system interacts with a single electromagnetic cavity
mode, represented by the field operators a and a†, satisfying
the canonical commutation algebra

[a, a†] = 1, [a, a] = [a†, a†] = 0. (3)

The Hamiltonian H of the coupled system can be divided into
two parts,

H = HJC + V, (4)

with the first term

HJC = h̄ωca†a + h̄ωa

2
σz + h̄gR(σ+a + a†σ−), (5)

known as the Jaynes-Cummings (JC) Hamiltonian [2], that
describes quasiresonant transitions between the atomic ex-
citations and photons. Here, gR is the coupling strength of
the resonant JC term. The results in the following analysis
are independent of the coupling mechanism and the specific
expressions of the coupling constants in terms of microscopic
parameters. In the case of an atom coupled to one mode of a
three-dimensional (3D) rectangular cavity, the coupling con-
stant reads gR = −deg · ε

√
h̄ωc/2ε0V , where deg = 〈e|d|g〉

represents the off-diagonal matrix element of the electric
dipole operator d of the atom, ε is the polarization vector of
the cavity mode, ε0 the vacuum electric permittivity, and V the
cavity volume.

The “perturbation” term V in Eq. (4) accounts for all
the terms that are not represented in the exactly solvable
Jaynes-Cummings Hamiltonian, namely, the counter-rotating
(CR) transitions between atom and cavity excitations and the
terms proportional to the diagonal matrix elements of the
atomic dipole moment:

V = HCR + HAS, (6)

HCR = h̄gR(σ+a† + σ−a), (7)

HAS = h̄[gS (σz + 1) + g′
S (σz − 1)](a + a†), (8)

with

gS = −dee · ε
√

h̄ωc/8ε0V, (9)

g′
S = −dgg · ε

√
h̄ωc/8ε0V, (10)

proportional to the expectation values of the atomic dipole
moment on the excited and ground state, respectively. In this
article, we focus specifically on the case g′

S = 0.
Note that the expectation value of a dipole moment op-

erator described only by off-diagonal elements deg|e〉〈g| +
d∗

eg|g〉〈e| may be nonzero only in the presence of transitions
between the eigenstates that may be induced with the external
electric field; therefore, these elements correspond to induced
transition dipoles. On the other hand, the diagonal element
describes the permanent dipole moment of the excited state.
Notably, permanent dipole moments are sustained by polar
systems, i.e., systems without inversion symmetry [18]. For
this reason, we will refer to the last Hamiltonian term as the
“asymmetry term” or “diagonal term” and mark it with the
AS subscript. Finally, note that while the Hamiltonian HJC

preserves the number of excitations, HAS (HCR) describes a
modification of this number by 1 (respectively 2).

III. PRELIMINARIES: PERTURBATIONS OF THE
JAYNES-CUMMINGS HAMILTONIAN

In the following analysis we will treat V as a perturbation
with respect to the Hamiltonian HJC. The results generalize
and encompass those derived in Refs. [16,17] for more spe-
cific Hamiltonians. The eigenvalues of HJC correspond to the
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FIG. 2. From left to right, the first set of transitions (green)
involves four decay channels from the E (n) to the E (n − 1) manifold
and is allowed by HJC, as expressed in Eq. (29). The next set of five
new transition lines (violet) towards n′ = n and n′ = n − 2 originate
at HAS. Transitions due to the counter-rotating Hamiltonian HCR

(red) connect manifold E (n) to E (n − 3). The three thicker lines are
studied in more detail in Fig. 5.

0th-order perturbation term

Es(0)
n = h̄ωc

(
n − 1

2

)
+ sh̄

√
(ωc − ωa)2

4
+ ng2

R (11)

for n = 0, 1, . . . and s = ±1, and the eigenstates are∣∣n(0)
s

〉 = As
n|g; n〉 + Bs

n|e, n − 1〉, (12)

with

As
n = Es(0)

n − h̄ωc(n − 1) − h̄ωa/2√(
Es(0)

n − h̄ωc(n − 1) − h̄ωa/2
)2 + h̄2g2

Rn
, (13)

Bs
n = h̄gr

√
n√(

Es(0)
n − h̄ωc(n − 1) − h̄ωa/2

)2 + h̄2g2
Rn

. (14)

The pair {|n(0)
s 〉}s=± defines a two-dimensional manifold

EJC(n), which is the set of states with a fixed number of exci-
tations n (see Fig. 2). We denote it with the JC subscript, since

the notion of manifold will be generalized in the perturbed
picture.

In the perturbation Hamiltonian V , the counter-rotating
term HCR is described by the same coupling constant gR

as the interaction term of the unperturbed Hamiltonian HJC.
However, the transition rates due to HCR are much smaller far
from the ultrastrong coupling regime gR � ω. Therefore per-
turbation theory is justified up to moderate coupling strengths
(see Appendix A for quantitative details). We characterize
the modified eigenstates of the time-independent perturbation
theory up to second order, with the wave-function expansion
given by

|ns〉 = ∣∣n(0)
s

〉 + ∣∣n(1)
s

〉 + ∣∣n(2)
s

〉
. (15)

The first-order correction reads∣∣n(1)
s

〉 =
∑
m �=n

∑
α=±

V αs
mn

Esα
nm

∣∣m(0)
α

〉
, (16)

where Esα
nm = Es(0)

n − Eα(0)
m and V αs

mn = 〈m(0)
α |V |n(0)

s 〉, namely,

V αs
mn = h̄gR

(√
n − 1Bs

nAα
n−2δm,n−2

+ √
n + 1As

nBα
n+2δm,n+2

)
+ 2h̄gSBα

mBs
n(

√
n − 1δm,n−1 + √

nδm,n+1). (17)

The above equation shows that the perturbed eigenstates in-
clude states with m = n ± 1 coupled by gS and states with
m = n ± 2 coupled by gR, which follows directly from the
HAS and HCR Hamiltonians. The inclusion of the second-order
correction leads to

|ns〉 =
(

1 − 1

2

∑
k

∑
α=±

(
V sα

nk

Esα
nk

)2
)∣∣n(0)

s

〉

+
∑

k

∑
α=±

(
V αs

kn

Esα
nk

+
∑

l

∑
β=±

V αβ

kl V βs
ln

Esα
nk Esβ

nl

)∣∣k(0)
α

〉
. (18)

Based on the above result, we define the generalized (but
always two-dimensional) manifolds E (n) = {|ns〉}s=±. Ac-
cording to second-order perturbation, the eigenstate |ns〉
includes contributions with different numbers of excitations
{n, n ± 1, . . . , n ± 4}, with the label n referring to the central
component, which yields by far the leading contribution for
weak enough coupling strengths gR,S , for which the theory is
applicable.

The correction V does not perturb the eigenvalues at the
first order, because V sσ

nn = 〈ns|V |nσ 〉 = 0. At the second order,
the energy eigenvalues are Es

n = Es(0)
n + Es(1)

n + Es(2)
n , with

Es(1)
n = 0 and

Es(2)
n =

∑
k �=n

∑
α=±

(
V αs

kn

)2

Esα
nk

. (19)

It is worth stressing that in the resonant and quasiresonant
case, the nondimensional parameters that control the per-
turbative corrections induced by HCR and HAS are of order
gR/(2ωc) and gS/ωc, respectively. Therefore, both corrections
can be arbitrarily small, even in the case gS 	 gR.
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With the expressions (13), (14), and (17)–(19) at hand, we
can now proceed to the main part of our analysis and examine
the emission properties of the investigated system.

IV. FREQUENCY AND WEIGHT OF EMERGING
TRANSITION LINES

A. Outcoupling Hamiltonian

In this section we assume the cavity mirrors to be semi-
transparent so that the cavity mode described by a and a† may
exchange photons with an external reservoir:

Hext = h̄

√
�

2π

∫
dω

√
P (ω)[ar†(ω) + a†r(ω)], (20)

where the operators r(ω) and r†(ω) are related to orthog-
onal reservoir modes with energy h̄ω, and P (ω) is a form
factor that takes into account both the density of states and
the energy dependence of the coupling, with P (ωc) = 1. The
constants are fixed in such a way that � coincides with the
perturbative decay rate of a single-cavity photon towards the
continuum,

�1→0 = 2π

h̄2

∫
dω|〈0; ωR|Hext|1; 0R〉|2δ(ω − ωc) = �, (21)

with |0R〉 standing for the reservoir vacuum, annihilated by all
the r operators, and |ωR〉 = r†(ω)|0R〉 being a generic single-
photon state with a given energy ω, while the transition rate
from the n-photon to the (n − 1)-photon state of the cavity
reads �n→n−1 = n�.

B. Transition rate and emission spectrum

Here we will compute through the Fermi golden rule the
decay rate and final photon energy distribution of the dressed
atom-cavity states found in the previous section. In the pertur-
bative regime, the transition from an initial state |ns〉 to a final
state |n′

s′ 〉, as defined in Eq. (18), corresponds to the transition
frequency

ωss′
nn′ = Es

n − Es′
n′

h̄
(22)

and is determined by the matrix elements

〈n′
s′ ; ωR|Hext|ns; 0R〉 = h̄

√
�

2π
P (ω) 〈n′

s′ |a|ns〉, (23)

which are evaluated on-shell in the expression of the specific
decay rate towards the channel n′

s′ ,

�ss′
nn′ = �|〈n′

s′ |a|ns〉|2P
(
ωss′

nn′
)
, (24)

that contributes to the total decay rate of the initial state,

�n,s =
∑
n′,s′

�ss′
nn′ = �

∑
n′,s′

|〈n′
s′ |a|ns〉|2P

(
ωss′

nn′
)
. (25)

Notice that (i) the above expressions are valid provided that all
the channels are characterized by different transition energies,
otherwise interference effects occur; (ii) the form factor P
must vanish for ω below the threshold for photon emission;
and (iii) the state |ωR〉 in Eq. (23) carries a unit of [ω−1/2],
and P (ω) is dimensionless. The specific and total decay rates

also appear in the frequency distribution of the final photons,
derived in Appendix B,

Sn,s(ω) =
∑
n′,s′

Sss′
nn′ (ω)

= �

2π

∑
n′,s′

|〈n′
s′ |a|ns〉|2P

(
ωss′

nn′
)

(
ω − ωss′

nn′ − 
n,s
)2 + �2/4

, (26)

where Sss′
nn′ (ω) are specific spectral distributions related to a

single decay channel. The spectral distribution is character-
ized by the presence of Lorentzian peaks around the transition
frequencies, all shifted by


n,s = �

2π

∑
n′,s′

|〈n′
s′ |a|ns〉|2P

∫
dω

P (ω)

ω − ωss′
nn′

, (27)

with P
∫

denoting principal value integration. The specific de-
cay rates also determine the weight of each channel. Therefore
the relevance of one channel compared to another one can
crucially depend on the transition energy, through the form
factor:

�ss′
nn′

�ss′′
nn′′

= |〈n′
s′ |a|ns〉|2

|〈n′′
s′′ |a|ns〉|2

P
(
ωss′

nn′
)

P
(
ωss′′

nn′′
) . (28)

For example, the form factor can be characterized by a power-
law behavior for the transition frequencies, P (ω) ∼ ωp, as
it occurs for free-space photons; in this case, lower-energy
channels can be heavily hindered in favor of the higher-energy
ones, despite being characterized by a larger matrix element
of the operator a in Eq. (28). On the other hand, the relevance
of a channel can be enhanced by engineering the continuum
in order to obtain a form factor peaked around the frequency
of interest: this can be done by coherently coupling the cavity
mode with a single mode of a second cavity, broadened by
losses towards free space.

C. Transition matrix element

The crucial quantity for contributions to both the transition
rate �ss′

nn′ and the emission spectrum Sss′
nn′ (ω) is the squared

modulus of the transition element 〈n′
s′ |a|ns〉, which we shall

now study in detail. Firstly, at the 0th order, i.e., without
considering the perturbation Hamiltonian V [Eq. (6)], we find
directly from Eq. (12)∣∣〈n′(0)

s′
∣∣a∣∣n(0)

s

〉∣∣2 = ∣∣cs′s
n

∣∣2
δn′,n−1 (29)

with

cs′s
n = √

nAs
nAs′

n−1 + √
n − 1Bs

nBs′
n−1. (30)

This equation shows that only transitions between two “ad-
jacent” manifolds EJC(n) and EJC(n − 1) are allowed in the
Jaynes-Cummings model, as expected.

The perturbation enriches the emission spectrum, as re-
ported in Fig. 2 : both the permanent dipole moment related to
the asymmetry of the atomic system and the counter-rotating
terms give rise to additional transitions. In mathematical
terms, this is expressed with additional Kronecker-δ terms in
the transition element |〈n′

s′ |a|ns〉|2, accordingly scaled with
the squared coupling constants gS and gR. In the perturbed
expression for |〈n′

s′ |a|ns〉|2, obtained from the eigenstates |ns〉
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in Eq. (18), we consider all the correction terms up to second
order in the coupling strengths gR and gS . Since V ss′

nn = 0, the
perturbed transition matrix element, including the aforemen-
tioned contributions, reads

|〈n′
s′ |a|ns〉|2 = ( f JC)s,s′

n δn′,n−1 + ( f CR)s,s′
n δn′,n−3 + (

f A
1

)s,s′

n
δn′,n + (

f A
2

)s,s′

n
δn′,n−2, (31)

with coefficients

( f JC)s,s′
n =

[
1 −

∑
k

∑
α=±

((
V sα

nk

Esα
nk

)2

+
(

V s′α
n′k

Es′α
n′k

)2)]∣∣cs′s
n

∣∣2

+ 2cs′s
n

∑
k

∑
α,β=±

(
V αβ

nk V βs
kn

Esα
nn Esβ

nk

cs′α
n + V αs′

k−1,n−1

Es′α
n−1,k−1

V βs
kn

Esβ
nk

cαβ

k + V αβ

n−1,kV
βs′

k,n−1

Es′α
n−1,n−1Es′β

n−1,k

cαs
n

)
, (32)

(
f A
1

)s,s′

n = 4n|gS|2
∣∣∣∣∣Bs

n

∑
α=±

Bα
n+1

(
cs′α

n+1

Esα
n,n+1

+ cαs
n

Es′α
n,n+1

)∣∣∣∣∣
2

, (33)

(
f A
2

)s,s′

n
= 4|gS|2

∣∣∣∣∣
∑
α=±

(
cs′α

n+3

Esα
n,n+3

Bα
n+3Bs

n

√
n − 1 + cαs

n

Es′α
n+2,n+1

Bα
n+1Bs

n+2

√
n + 1

)∣∣∣∣∣
2

, (34)

( f CR)s,s′
n = |gR|2

∣∣∣∣∣
∑
α=±

(
cs′α

n+4

Esα
n,n+4

√
n − 1Bs

nAα
n−2 + cαs

n

Es′α
n+3,n+1

√
n + 2Bs

n+3Aα
n+1

)∣∣∣∣∣
2

, (35)

where css′
n , defined in Eq. (30), does not depend on coupling

constant gS .

D. Discussion

The term f JC describes the dominant contribution that
arises from the Jaynes-Cummings model, perturbed by the
second-order corrections. The coefficients f A

1 and f A
2 de-

scribe the transitions induced by the coupling gS of light with
the permanent dipole moment of the excited atomic level.
Interestingly, f A

1 determines the strength of low-energy tran-
sitions, occurring within a fixed manifold E (n). On the other
hand, transitions between the manifolds E (n) and E (n − 2)
are controlled by the terms in f A

2 . Finally, the coefficients
f CR describe the transitions between the manifolds E (n) and
E (n − 3) due to the counter-rotating terms in the perturbation
Hamiltonian. This term arises in parallel with another one,
which would correspond to transitions from the manifold E (n)
to a higher-energy manifold E (n + 1), that are not allowed
in the perturbative regime. Note that the squared transition
elements scale at the first approximation proportionally to
the square of the coupling constants gS/R, depending on the
underlying transition mechanism. Further dependence on the
coupling constant gR is implicit in the Bs

n coefficient.
In this section we have shown that the inclusion of the

perturbation Hamiltonian allows transitions to new mani-
folds. One might argue that closer manifolds are favorite,
as JC transitions involve only adjacent manifolds, yielding a
stronger contribution from the diagonal-coupling rather than
the counter-rotating terms. On the other hand, transitions
at higher frequencies can contribute with a higher intensity
due to the larger form factor P . Therefore, a quantitative
comparison is needed to evaluate the spectrum and properly
characterize the behavior in different regimes.

V. FORM FACTORS AND DOMINANT TRANSITIONS

In this section we analyze the transitions shown in Fig. 2,
with a special emphasis on the ones induced by the perturba-
tion Hamiltonian HAS and HCR. We will investigate relative
emission strengths of transitions that origin from different
Hamiltonian contributions as functions of the coupling con-
stants gR,S .

Figure 2 depicts the 13 allowed transitions from a given
manifold E (n), respectively connecting manifolds E (n) →
E (n − 1) (JC interaction term, set of four green arrows at
the left side), E (n) → E (n) and E (n) → E (n − 2) (AS Hamil-
tonian, set of following five purple arrows), E (n) → E (n −
3) (CR contribution, the last set of four red arrows). The
transition frequencies will naturally depend on the coupling
strength gR, as in the Jaynes-Cummings theory, and weakly on
gS through second-order perturbation [Eq. (19)]. The Jaynes-
Cummings energy structure is shown in Fig. 3 for manifolds
n = 7 to n = 10, both in the resonant ωc = ωa and detuned
case ωc − ωa = 0.2 ωc.

According to Eq. (26), the emission spectrum is approxi-
mately made up of a set of Lorentzian peaks. The structure
is significantly enriched with respect to the typical Jaynes-
Cummings case, with additional peaks emerging due to the
presence of the Hamiltonian terms describing the asymmetric
and counter-rotating contributions. Related photon emission
rates may be comparable in strengths. Thus, the corresponding
emission channels related to these peaks compete for a given
initial excited state, mutually influencing the quantum yield
related to different transitions. In Fig. 4 we separately plot
the spectra for the initial states |10+〉 (solid blue line) and
|10−〉 (dashed orange line), for the resonant case ωa = ωc

and fixed coupling strengths gR = gS = 0.01 ωc. The spectra
are plotted for two different form factors, P ∝ ω2 [Fig. 4(a)]
and P = const [Fig. 4(b)], corresponding respectively to
three- and one-dimensional reservoir geometries in the case
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FIG. 3. Energy spectrum for 7 � n � 10, including the second-order corrections (solid lines), computed for fixed gS/ωc = 0.1 and varying
gR/ωc, for (a) the resonant case ωa = ωc and (b) the off-resonant case (ωc − ωa)/ωc = 0.2. The zeroth-order spectrum (dashed lines) is reported
for comparison. The black dots at around gR = 0.125 ωc indicate the first energy crossings. For coupling constants approaching these values,
the structure of the energy ladder from Fig. 2 is no longer preserved, and higher-order perturbations are required for a consistent model.

of frequency-independent coupling between cavity and en-
vironment. The form factors are responsible for rescaling
the relative strengths of the contributing peaks according to
Eq. (26). The spectra and transition rates change smoothly for
intermediate values of the parameter p. The single low-energy
peak at around ω = 2

√
10gR = 0.063 ωc corresponds to the

|10+〉 → |10−〉 transition induced by the inversion-symmetry
breaking of the two-level system and might unveil applica-
tions for low-frequency sources. Therefore its tunability is
an important feature: the position of this peak depends on
gS , i.e., on the permanent dipole moment dee of the atom,
and on the field strength in the cavity, related to the number
of photons. In the classical limit, this provides an all-optical
tuning possibility with the field amplitude [18]. Additionally,
tuning could be achieved through orientation of the permanent
dipole moment of the two-level system with an external DC
electric field [21]. Around ω = ωc we recognize the Mollow
triplet that arises from the JC interaction. Similar structures
are repeated at around ω = 2 ωc and ω = 3 ωc, arising respec-
tively from the AS and CR Hamiltonian perturbations. Note

that the positions of sidebands of the Mollow-like triplet at
around 2 ωc are related to the diagonal dipole moment and
will accordingly be modified if gS is tuned. We emphasize
that all the peaks, including the Mollow-like sidebands, can
be resolved in the spectra. In particular, even though the
low-energy peak usually corresponds to the weakest transition
intensities, it appears on top of a correspondingly suppressed
background. As a consequence, the signal-to-noise ratio is
found comparable for all emission peaks. Below we analyze
the intensity ratio of different peaks depending on the cou-
pling strengths of the model.

We study three selected transitions, representative for
each Hamiltonian contribution, highlighted as thick arrows
in Fig. 2: for the Jaynes-Cummings term we select the
|10+〉 → |9+〉 transition; for the diagonal-coupling term the
|10+〉 → |10−〉 transition; for the counter-rotating term the
|10+〉 → |7−〉 transition, that corresponds to the highest fre-
quency, and hence the most favored by form factors that
increase with the energy of the emitted photon. In Fig. 5(a),
we plot the squared matrix elements |〈n′

s′ |a|ns〉|2, which en-

FIG. 4. Emission spectra (arbitrary units), computed according to Eq. (26) from the initial states |10+〉 (solid blue line) and |10−〉 (dashed
orange line), with form factors scaling like ωp, with (a) p = 2 and (b) and p = 0. Plots are normalized to the maximum of S, and we have set
� = 10−4ωc.
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FIG. 5. Transition rates determined by a form factor P = const [panels (a) and (d)], P ∝ ω2 [panels (b) and (e)], and Lorentzian, centered
at the frequency ωext = E+−

nn /h̄, with a full width at half maximum γext = 10−4ωext [panels (c) and (f)]. Results are referred to the resonant
ωc = ωa [panels (a), (b), and (c)] and detuned case (ωc − ωa)/ωc = 0.2 [panels (d), (e), and (f)]. For each form factor, values on the vertical
axis are normalized to the Jaynes-Cummings transition rate obtained in the limit gR � ωc for the resonant case. In panels (a) and (d), the
plotted quantities correspond, up to a constant, to the squared matrix elements |〈n′

s′ |a|ns〉|2. Colors indicate different transition mechanisms:
the Jaynes-Cummings transition |10+〉 → |9+〉 is plotted with a dot-dashed green line, the counter-rotating term |10+〉 → |7−〉 with a solid
red line, and the transition driven by the diagonal coupling |10+〉 → |10−〉 with dashed violet lines, for three values of the diagonal-coupling
strength, gS = gR, gR/10, gR/100.

tirely determine the relative weight of the different decay
channels in the case of a constant form factor [see Eq. (28)].
They are plotted separately for each considered transition.
As anticipated, the contribution due to the Jaynes-Cummings
interaction dominates, overcoming the other terms by several
orders of magnitude for the investigated range of coupling
strengths gR. As expected, the JC contribution has a relatively
weak dependence on gR, which induces small corrections to
the zeroth-order result (see Fig. 3). The purple (red) lines
in Fig. 5 represent the contributions determined by the AS
(CR) Hamiltonian. Results obtained for the different values
gS = gR, gR/10, gR/100 are presented. This confirms the in-
tuition suggested at the end of the previous section, that for
equal coupling strengths gS = gR the term induced by the di-
agonal coupling overcomes the counter-rotating contribution.
Both terms share the same linear scaling with their respective
coupling strengths gS or gR, so, as we decrease gS , the squared
transition amplitude |〈ns′ |a|ns〉|2 is gradually suppressed.

This simple linear scaling is slightly modified in the de-
tuned case, in which the slopes change at around gR 	 (ωc −
ωa)/2

√
n. An example for a strong detuning ωa = 0.8 ωc is

shown in Fig. 5(d). We find that in this case the contribution
of both perturbative terms is suppressed with respect to the
resonant contribution. However, for relatively small coupling
strengths (gR < 4 × 10−3 ωc) the terms corresponding to the
asymmetric contribution still dominate over those due to the
counter-rotating Hamiltonian, even for small gS = 0.01gR.
For a wide range of coupling strengths, the squared transi-

tion amplitudes induced by the perturbation related to the
asymmetry dominate over those originating from the counter-
rotating term. However, if the outcoupling Hamiltonian Hext

involves a form factor scaling as ωp, the weight of a decay
channel is proportional to the pth power of the transition
frequency. Therefore, in a 3D continuum geometry in which
the density of states scales as ω2, the relevance of low-energy
transitions tends to be suppressed. We show this case in both
the resonant and off-resonant case in Figs. 5(b)–5(e). In the
off-resonant case, we note that for equal coupling strengths
gS = gR the terms originating from the diagonal coupling still
dominate over the counter-rotating ones, despite the latter
being by far energetically favored. Panels (a), (b), (d), and
(e) of Fig. 5 show the changes in the hierarchy between low-
energy decays, determined by the asymmetric perturbation,
and high-energy transitions due to counter-rotating terms, in
the cases of constant and quadratic form factor P . The results,
determined by Eq. (25), show that it is not generally justified
to study the intrinsic asymmetry effects of the atomic levels
while neglecting the counter-rotating contributions, since the
effects entailed by these two kinds of corrections compete
with each other. In particular, high-energy transitions entailed
by the counter-rotating Hamiltonian can be overwhelmingly
relevant in the case of a form factor that increases with energy.
However, the different behavior of transition rates according
to Eq. (28),

�ss′
nn′ ∝ |〈n′

s′ |a|ns〉|2P
(
ωss′

nn′
)
, (36)
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FIG. 6. Total transition rates according to Eq. (24) for each Hamiltonian contribution, for a fixed initial state |10+〉: rate of the Jaynes-
Cummings transitions �JC

10,+ = �++
10,9 + �+−

10,9 (dot-dashed green line), diagonal-coupling mechanism �AS
10,+ = �++

10,8 + �+−
10,8 + �+−

10,10 (dashed
violet line), and the counter-rotating transitions �CR

10,+ = �++
10,7 + �+−

10,7 (solid red line) (a) on resonance and (b) for the detuned case. Individual
contributions to the diagonal coupling are resolved in panels (c) and (d) for the resonant and the detuned case, respectively, where the solid line
represents the low-energy transition rate �+−

10,10, while the dashed (�++
10,8) and dotted (�+−

10,8) lines correspond to transitions around 2 ωc. In each
plot, gS = gR and the form factor is P = const. Values on the vertical axis are normalized to the Jaynes-Cummings transition rate obtained in
the limit gR � ωc for the resonant case.

in the cases of constant P [Figs. 5(a) and 5(d)] and P ∝ ω2

[Figs. 5(b) and 5(e)] suggests the possibility of tailoring the
weight of transition lines by engineering the density of states
P (ω) of the external field, e.g., in the form of a Lorentzian,
centered on the frequency ω+−

n,n , as follows:

P (ω) ∝ γext/(2π )

(ω − ω+−
nn − 
n,+)2 + γ 2

ext/4
. (37)

Therefore we couple the atom-cavity system to a single-
mode cavity, assuming that the form factor P is a Lorentzian
function centered at the low-energy transition frequency
ωext = ω+−

10,10 and characterized by a full-width at half-
maximum γext = 10−4ωc. The cavity is tailored to emphasize
the strength of the low-energy transition |n+〉 → |n−〉 at the
cost of suppressing other transitions. Indeed, as demonstrated
in Figs. 5(c) and 5(f), this is successful in both the reso-
nant and the detuned case. A cavity with similar parameters
can be realized in photonic crystals [26] that provide one-
or two-dimensional photonic environments, in whispering-
gallery-mode resonators [27] or, with smaller quality factors,

using metamaterials [28]. Notice that the advantage entailed
by the form factor (36) in selecting the low-energy transition is
effective only if γext � ωc; when the width of the Lorentzian
becomes comparable to ωc, the results tend to approach those
obtained for a constant form factor.

For the above analysis we have selected only one exem-
plary transition of the Jaynes-Cummings diagonal-coupling
and counter-rotating groups, corresponding to arrows with
different colors in Fig. 2. In Fig. 6 we show the total transition
rates in each group, considering the initial state |ns〉 = |10+〉.
The dot-dashed green lines correspond to the total rate of
the Jaynes-Cummings transitions �JC

10,+ = �++
10,9 + �+−

10,9, the
dashed purple lines to the diagonal coupling �AS

10,+ = �++
10,8 +

�+−
10,8 + �+−

10,10, and the solid red lines to the counter-rotating
contribution �CR

10,+ = �++
10,7 + �+−

10,7. We find that, as expected,
the higher-energy contributions from the asymmetric Hamil-
tonian HAS around 2 ωc are strong enough to overcome the
ones induced by the counter-rotating terms. This can be also
seen from Fig. 6(c), in which we resolve different contri-
butions induced by HAS in the decay from the state |10+〉.

013722-8
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The difference between the two perturbative contributions
becomes even smaller in the detuned case, in which all per-
turbative terms are suppressed, as can be seen from panels
(b) and (d) in Fig. 6. One can notice from Fig. 6(c) that the
|n+〉 → |n−〉 transition within the same manifold (see thicker
purple line in Fig. 2) has the lowest intensity compared to
the other transitions |n±〉 → |(n − 2)±〉 for gR < 0.05ωc. This
demonstrates that the low-energy transition competes even
with higher-energy transitions that originate from the same
Hamiltonian term HAS. However, a Lorentzian form factor
centered around the low-energy transition allows us to avoid
also this competition. Interestingly, as shown Fig. 5(d), for
the detuned case the asymmetric contributions are comparable
with each other for all considered values of the coupling
constant and are more stable when varying the detuning pa-
rameter.

VI. CONCLUSIONS

We have investigated the emission properties of a two-level
system coupled to a single-mode electromagnetic field, in-
cluding interaction channels based on the Jaynes-Cummings,
counter-rotating and asymmetry-related contributions. In the
electric-dipole interaction mechanism, the first two interac-
tions arise from the coupling of the field mode with the
induced transition dipole moment, while the latter requires
a permanent dipole characterizing the system’s eigenstates.
Light-matter coupling with permanent dipoles gives birth to
additional emission peaks. We have demonstrated that even
though at some frequencies the asymmetry-related contribu-
tion is weak in relative terms, the signal-to-noise ratio is
comparable for all emission peaks. Therefore all the Hamilto-
nian terms contribute to the emission spectrum: in particular,
they induce multiple active light emission channels, none
of which can a priori be neglected in a general analysis.
However, the relative strengths of the emission peaks can be
modified with a suitable photonic environment. A properly
chosen function for the density of states would allow one to
funnel the emitted energy into the desired channel. From an
application point of view, an appealing possibility is related
to enhancing the low-energy transition between the states of
the same manifold. On the cavity-atomic system resonance,
the frequency of this particular transition scales linearly with
the coupling strength gR and is of the same order of mag-
nitude, i.e., typically much lower than the cavity frequency
C. This feature could be exploited to generate low-frequency
radiation, that for different atomic systems might span across
the MHz–THz regimes, in particular, with the application to
bridge the THz gap. We have demonstrated this possibility ex-
ploiting a Lorentzian form factor, showing that for the external
cavity parameters that lie well within the range of experimen-
tal capabilities, the asymmetry-related emission channel may
even become dominant.
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APPENDIX A: VALIDITY OF THE PERTURBATIVE
APPROACH

In this Appendix we discuss the range of coupling strengths
for which the perturbative approach used in the main text is
justified. The condition for the analysis to be consistent is that
the perturbation series converge both for the perturbed ener-
gies and states. This is not the case around energy crossings,
where some of the series terms in the perturbed eigenstate
given by Eq. (18) diverge. On the other hand, sufficiently
away from energy crossing the state norm is approximately
preserved. To identify the applicability range of the approach,
we therefore verify the normalization of states.

For the cases investigated in the main manuscript, the first
energy crossing among the investigated states appears for
those corresponding to the highest manifold. In Fig. 7 we plot
the norm of state |10+〉 as a function of gS = gR. A clear di-
vergence appears for coupling strengths approaching 0.14 ωc,
which results from a crossing involving higher manifolds, in
this case up to E (14). The vertical line in the figure indicates
the limit for the coupling strengths considered in the main text.

FIG. 7. Norm of state |10+〉, as obtained from Eq. (18). For
coupling strengths exceeding gR 	 0.1 ωc the norm deviates from 1,
which is an indication of the breakdown of perturbation theory.
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APPENDIX B: SPECTRAL DISTRIBUTION OF
EMITTED PHOTONS

In order to derive Eqs. (24)–(26), let us consider an ini-
tial state |ψ0〉, evolving under the Hamiltonian H = H0 +
Hint, where Hint is meant as a perturbation of the “free”
Hamiltonian H0. While

H0|ψ0〉 = E0|ψ0〉, (B1)

the presence of the interaction Hamiltonian Hint makes the
initial state unstable, inducing decay towards generalized
eigenstates |q〉 of H0 (where q is generally a multi-index of
N quantum numbers, some of which can be discrete, such as
spin or polarization), satisfying

H0|q〉 = E (q)|q〉. (B2)

The probability associated to a specific q at an arbitrary time
t can be computed by projecting |q〉 on the evolved state
|ψ (t )〉 = exp(−iHt )|ψ〉 of the system, determined by the cor-
responding matrix element of the resolvent (z − H )−1 through
a Fourier-Laplace transform:

A(q, t ) = 〈q|e−iHt/h̄|ψ0〉 = i

2π

∫
B

dz e−izt/h̄〈q| 1

z − H
|ψ0〉,

(B3)
where B = (−∞ + iη,+∞ + iη) is an arbitrary line, parallel
to the real axis, with η > 0. Therefore, in order to characterize
the matrix element of the resolvent, it is sufficient to determine
the amplitude and probability associated to the distribution of
decay products. In particular, we are interested in the asymp-
totic distribution

P∞(q) = lim
t→∞ |〈q|e−iHt/h̄|ψ0〉|2. (B4)

For Im(z) �= 0, the resolvent satisfies the equation

1

z − H
= 1

z − H0
+ 1

z − H0
Hint

1

z − H
, (B5)

that can be used, along with the assumption 〈ψ0|Hint|ψ0〉, to
determine an approximate form of the matrix element appear-
ing in the right-hand side of (B3),

〈q| 1

z − H
|ψ0〉 	 1

z − E (q)
〈q|Hint|ψ0〉〈ψ0| 1

z − H
|ψ0〉,

(B6)
where the corrections are O(H2

int ) and proportional to the ma-
trix elements 〈q|Hint|q′〉. An error of the same order on A(q, t )
is entailed by applying the Weisskopf-Wigner approximation
to the initial state propagator,

〈ψ0| 1

z − H
|ψ0〉 	 1

z − (E0 + h̄
 − ih̄�/2)
, (B7)

with


 = 1

h̄
P

∫
dN q

|〈q|Hint|ψ0〉|2
E0 − E (q)

, (B8)

� = 2π

h̄

∫
dN q |〈q|Hint|ψ0〉|2δ(E0 − E (q)), (B9)

which yields an expression of the transition amplitude in terms
of a solvable integral

A(q, t ) 	 i

2π

∫
B

dz
〈q|Hint|ψ0〉e−izt/h̄

(z − E (q))[z − (E0 + h̄
 − ih̄�/2)]
,

(B10)
leading to the asymptotic distribution

P∞(q) 	 |〈q|Hint|0〉|2
(E (q) − E0 − h̄
)2 + h̄2 �2

4

. (B11)

Suppose now that the final states |q〉 can be collected in
different decay channels, namely, orthogonal subspaces D j of
final products, identified by quantum numbers belonging to
specific domains Dj . The energy distribution associated to the
decay channel n reads

P( j)
∞ (E ) =

∫
Dj

dN q δ(E − E (q))P∞(q)

	 1

2π

h̄� j

(E − E0 − h̄
)2 + h̄2 �2

4

, (B12)

with

� j = 2π

h̄

∫
Dj

dN q |〈q|Hint|ψ0〉|2δ(E0 − E (q)), (B13)

the channel decay rate. Computation of the total probability
for the system to decay in channel n yields the classical result

p( j) =
∫

dEP( j)
∞ (E ) 	 � j

�
. (B14)

If the decay channels are represented by states | j〉 ⊗ |ω〉, in
which a photon of frequency ω is emitted by a bound system
in the transition from an initial state |i〉 of energy h̄ωi towards
a specific final state | j〉 of energy h̄ω j , the spectral distribution
of final states can be conveniently represented in terms of the
photon frequency,

S( j)(ω) = h̄P( j)
∞ [h̄(ω j + ω)]

	 1

2π

� j

[ω − (ωi − ω j + 
)]2 + �2

4

, (B15)

which corresponds to the quantity in Eq. (26).
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