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Quantum non-Markovianity elusive to interventions
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The non-Markovian nature of open quantum dynamics lies in the structure of multitime correlations, which
are accessible by means of interventions. Here, by examining multitime correlations, we show that it is possible
to engineer non-Markovian systems with only long-term memory but seemingly no short-term memory, so that
their non-Markovianity is completely nondetectable by any interventions up to an arbitrarily large time. Our
results raise the question about the assessability of non-Markovianity: in principle, non-Markovian effects that
are perfectly elusive to interventions may emerge at much later times.
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Introduction. A key obstacle that lies in the path to quan-
tum information processing is noise [1]. The conventional
models for quantum noise, responsible for decoherence of
qubits, make many simplifying assumptions. One of the key
assumptions is that the noise is memoryless or Markovian
[2]; this is widely known to be false, and an immense effort
in understanding non-Markovian noise, both in general and
in quantum information processors, has been initiated [3–6].
While non-Markovian noise is more complex than Markovian,
it is not more detrimental. In fact, non-Markovian effects,
which manifest as correlations in time, can be used to improve
the functionality of the quantum information processor [7–9].
Thus, modeling and characterizing different varieties of non-
Markovian noise is of strong interest.

The first challenge in this endeavor is to be able to differ-
entiate between Markovian and non-Markovian noise in the
quantum regime, which is not an easy task. Often, Marko-
vian noise is associated with the exponential decay curves,
e.g., a qubit that relaxes to the maximally mixed state ex-
ponentially fast. However, there are instances where a qubit
exhibits an exponential decay, but nevertheless is undergoing
a non-Markovian process [10,11]. A famous example is due
to Lindblad, dubbed as a shallow pocket (SP), which has been
scrutinized in detail recently in terms of dynamical decoupling
[12,13], signaling [13], and multitime correlations [14]. (See
Ref. [15] for a generalization of a SP.) In each case it is
clear that the seemingly simple Markovian noise is, in fact,
complex non-Markovian noise that can be exploited to pro-
long the coherence time of the system. On the other hand,
there is a class of system-environment dynamics, generated
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by Chebotarev-Gregoratti (CG) Hamiltonians [16] (also see
Ref. [17]), that yield an exponential decay for the system but,
unlike SP, do not allow for dynamical decoupling or other
noise mitigation methods.

Recently, the matter took a turn for the worse; Ref. [18]
introduced a class of models in which the decay of the system
exhibits the tantalizingly Markovian exponential decay for a
finite, but arbitrarily large, time window; then, abruptly, there
is a departure from the exponential decay, i.e., the system’s
evolution displays non-Markovian features of the noise. These
models have thus been termed as hidden non-Markovian
(HNM) models. They occupy the space somewhere between
SP and CG models. Importantly, given one of these processes,
a snapshot [19] of the dynamics can fail to differentiate be-
tween them and will label each as Markovian [3,4]. This
is an important space, as most real experiments exhibit the
aforementioned exponential decay, and suggests that non-
Markovianity may be unassessable.

One possibility is to examine how the system reacts to
interventions. Indeed, since non-Markovian systems tend to
respond positively to error mitigation methods such as dynam-
ical decoupling, it would appear natural that even models with
hidden non-Markovianity can be “stimulated” by interven-
tions to already reveal this at much earlier time. For instance,
with the right type of intervention we might be able to fill up
the quantum environment with excitation and stimulate an ear-
lier backflow. Multitime correlation measurements were also
shown to reveal the failure of the quantum regression theorem,
and therefore a subtle type of non-Markovianity [20], which
may appear as a precursor.

In this Letter we show that the class of HNM processes
are, in fact, genuinely Markovian within the finite window and
genuinely non-Markovian outside of that temporal window.
We do this by computing the multitime correlations, including
those stemming from interventions. This is provably a set of
necessary and sufficient quantum Markov conditions [21–23].
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FIG. 1. (a): Scheme of a quantum stochastic process for a system coupled with an environment, initially prepared in a global state �0 =
ρ ⊗ ρvac. At times t1, . . . , t4, an intervention is performed on the system alone; between consecutive interventions, system and environment
evolve freely. (b): Scheme of a qubit in a photon waveguide with a two-point interaction. The loop of length T creates a time-delayed coherent
feedback and non-Markovian effects on the qubit evolution. (c): Free evolution of |0, vac〉: plot of the survival probability of the emitter
|a(t )|2 (top) and density plot of the wavefunction of the emitted boson |ξt (x)|2 (bottom) for the model with double point interaction, with
γ T = ω0T = 2; darker shades correspond to larger values of |ξt (x)|2. In both graphs, the dashed black line represents the time t = T at which
|a(t )|2 ceases to be exponential and Eq. (10) ceases to hold. Plotted quantities are dimensionless.

We begin by revisiting the role of multitime correlations in
quantum stochastic processes, and the basic properties of
HNM models; then we compute such correlations for HNM
models, showing that they vanish identically at small times.
In other words, we show that there are non-Markovian pro-
cesses whose non-Markovianity is perfectly hidden for a finite
duration; non-Markovianity can be therefore undetectable at
small times, even by taking into account the role of interven-
tions, since the onset of all time correlations can be arbitrarily
delayed.

Quantum multitime correlations. A classical stochastic pro-
cess is a joint probability distribution of a random variable x
in time. In practice, one usually considers the joint distribu-
tion of a discrete set of times, {tk, . . . , t0}, and corresponding
probability distributions of P (xk, . . . , x0). A Markovian pro-
cess satisfies the following condition: P (xk|xk−1, . . . , x0) =
P (xk|xk−1), i.e., the system, at a given time, is only condition-
ally dependent of its state at the previous time step. Practically
speaking, this condition means that a Markov process is easy
to work with. Nevertheless, such processes are not the norm,
but rather a special case [24].

For multitime correlations in the quantum case, consider
an initial system-bath (SB) state �0, which undergoes an
evolution U0 and then an intervention A1 is made on the
system S alone. Next, the total state once again evolves due
to U1, followed by a second intervention A2 on S alone,
and so on, up to a final intervention Ak performed following
Uk−1; see Fig. 1(a). The interventions {Aj} are any physically
implementable operation, which can be thought of as a gen-
eralized measurement with possible corresponding outcomes
{x j}. Mathematically, these are known as instruments [25]

and represented by a collection of completely positive maps
J := {Axj } such that

∑
x j

Axj is trace preserving.
The above machinery straightforwardly allows for the cal-

culation of the probability to observe a sequence of quantum
events (xk, . . . , x1), corresponding to a choice of instruments
{(Jk, . . . ,J1)}, as

P (xk, . . . , x1 |Jk, . . . ,J1) = tr[AxkUk−1. . . Ax1U0(�0)].

While the left-hand side is akin to a classical joint probability
distribution, we have yet to identify the quantum stochastic
process. We can do this by rewriting the right-hand side as

tr
[
AxkUk−1. . . Ax1U0�0

] = tr
[
ϒk:0AT

k:1

]
(1)

with Ak:1 :=Axk ⊗· · · ⊗ Ax1 and ϒk:0 := trB[Uk−1 � · · · � U0�0],
where T denotes transposition and � denotes the link product,
defined as a matrix product on space B and a tensor product on
space S [26]. The important feature here is the clear separation
of the interventions Ak:1 from the influences due to the bath,
which are packaged in ϒk:0, which is the Choi state of the
process [5].

The process tensor ϒk:0 is the quantum generalization of
the joint classical probability distribution and unambiguously
represents a quantum stochastic process [27–29]. It contains
all accessible multitime correlations [9,30], including tempo-
ral entanglement [31–33], and Markovian processes are those
satisfying the following property: any k-time process tensor
factorizes as

ϒk:0 = ϒk:k−1 ⊗ · · · ⊗ ϒ2:1 ⊗ ϒ1:0. (2)

Conversely, we can deduce a process to be non-Markovian by
looking for correlations. For instance, in the SP model, while
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the qubit dephases exponentially, an intervention of a Pauli σx

operation reverses this process: therefore, in this model non-
Markovianity isn’t seen in two-time correlations, but it is seen
in three-time correlations.

Hidden non-Markovianity models. We shall consider a
qubit with ground state |1〉 and excited state |0〉, with exci-
tation energy ω0, interacting with a one-dimensional bosonic
bath on the real line. We write the Hamiltonian of the bath in
the position representation, with annihilation and creation op-
erators bx, b†

x satisfying the commutation relations [bx, b†
x′ ] =

δ(x − x′). Throughout this section, we shall use the following
compact notation: for any wave function η(x), we set

B†(η) =
∫

dx η(x) b†
x, (3)

which represents the creation operator of a boson with wave
function η(x). The total Hamiltonian H = H0 + Hint is the
sum of the free Hamiltonian

H0 = ω0 |0〉〈0| ⊗ 1 + 1 ⊗ HB, (4)

and the interaction Hamiltonian

Hint = σ+ ⊗ B(g) + σ− ⊗ B†(g). (5)

Above, HB is the second quantization of the momentum op-
erator p = −i d

dx on the boson field, σ+ = σ
†
− = |0〉〈1|, and

g(x) is the form factor which encodes all information about
the qubit-field interaction; different choices of the form factor
can yield drastically distinct physics.

Local point interaction. A point interaction between the
field and a qubit at x = 0 is obtained by setting g(x) =√

γ δ(x), with coupling constant γ > 0, which gives B(g) =√
γ b0 [34]. This choice corresponds to a flat form factor in

the frequency representation used in Ref. [18]. In the single-
excitation sector, the model is exactly solvable; in particular,
for every t ∈ R we have e−itH |1, vac〉 = e−iε0t |1, vac〉 and
[35]

e−itH |0, vac〉 = a(t ) |0, vac〉 + B†(ξt ) |1, vac〉 . (6)

Above, |s, vac〉 ≡ |s〉 ⊗ |vac〉, s = 0, 1, with |vac〉 being the
field vacuum state; besides, a(t ) = e−(iε0+γ /2)t with ε0 being
the dressed excitation energy of the qubit; finally, the boson
wave function is given by ξt (x) = ϕt (x), where

ϕt (x) = −i
√

γ a(t − x) 1[0,t](x), (7)

with 1�(x) being the characteristic function of the set �, that
is, 1�(x) = 1 for x ∈ � and = 0 elsewhere. This is a simple
model of an emission process: the decay of the qubit at x = 0
is associated with the creation of a photon which propagates
along the positive direction of the x axis with unit velocity.
The photon wave function exactly traces out the exponential
decay of the qubit and is compactly supported in the interval
[0, t].

Consequently, the quantum evolution �t of the qubit ob-
tained by preparing the system in a state ρ and the field in the
vacuum ρvac = |vac〉〈vac|, letting them evolve for a time t , and
tracing out the field, namely

ρ(t ) ≡ �t (ρ) = trB[e−itHρ ⊗ ρvac eitH ], (8)

satisfies the semigroup property �t�s = �t+s at all times,
and yields a Markovian evolution: indeed, it is simply an
amplitude-damping channel with decay rate γ [18].

Nonlocal point interactions. Now we consider a modifi-
cation of the above setup. Namely, we allow for a nonlocal
interaction of the qubit at two distinct points, say x = 0 and
x = T , given by a form factor

g(x) =
√

γ

2
[δ(x) + δ(x − T )], (9)

so that B(g) = √
γ /2 (b0 + bT ); see Fig. 1(b). Physically,

such a choice (up to a relative sign) has been used, see, e.g.,
[36], as a model of a qubit in a single-end waveguide with
a perfect mirror at one end, with T/2 being the distance
between the qubit and the mirror. This model was also studied
in Ref. [18] as an example of non-Markovian model yielding
exponential decay for the reduced dynamics of the qubit up to
a time T .

Again, the single-excitation sector is fully solvable [35]. In
particular, for 0 � t � T , we have again an evolved state (6)
with a(t ) = exp[−(iε0 + γ

2 )t], and

ξt (x) = 1√
2

[ϕt (x) + ϕt (x − T )], t ∈ [0, T ], (10)

where ϕt (x) is as in Eq. (7). We may interpret this new
situation as a two-point emission: at time t = 0, the qubit
emits a photon at both positions x = 0, T , and each of its two
spatially separated parts propagates separately in the positive
direction of the x axis up to the time t = T ; see Fig. 1(b).
Notice that the two components, up to normalization, are two
exact copies of the wave function of the one-point emission,
and in particular the overall norm ‖ξt‖2 = ‖ϕt‖2 = 1 − e−γ t

is the same as before. In this sense, at times smaller than T ,
this system behaves like the superposition of two identical,
independent “copies” of the previous system. When t = T ,
one of the photon branches starts interfering back with the
qubit and this simple picture ceases immediately to hold: a(t )
is no longer an exponential function, and ξt (x) will no longer
satisfy Eq. (10). This is clearly visible in the plots of |a(t )|2
and |ξt (x)|2 in Fig. 1(c).

As a result, the evolution of the qubit state ρ(t ), obtained
in the same way as in Eq. (8) will be completely indistinguish-
able from the previous one, as long as 0 � t � T . In fact, the
form factor given by Eq. (9) is just one possible example:
the same result would be obtained by taking into account
any number of spatially separated nonlocal point interactions:
until the various components of the photon wave function
do not propagate to the next point and start interfering. We
can thus construct a large family of quantum systems with
the HNM property, as shown in Ref. [18]. In all such cases,
we obtain non-Markovian processes which, as long as we
examine their free dynamics, “look exactly like” a Marko-
vian process at times 0 � t � T , despite ultimately starting
to show non-Markovian behavior at t > T .

This argument, however, still does not take into account
multitime correlations of the qubit, which are accessible
by means of external interventions on the system. The
above result only accounts for correlations between two
times, and in general, correlations at all orders should
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be proved to vanish for assessing that a process is
Markovian.

We will make a few remarks before going on and exam-
ining multitime correlations. The spin-boson model (4),(5),
with a singular point interaction g(x) = √

γ δ(x) and with bo-
son Hamiltonian HB the right shift generator, can be mapped
into an SLH model [16,37], with S = 1, L = σ−, and H =
ε0 |0〉 〈0|. As such, it is associated with an Itô quantum
stochastic differential equation [38], with a regression prop-
erty for all multitime correlation functions, and thus with a
strong quantum Markovianity property [4]. In this respect, the
model with a two-point interaction (9), is a non-Markovian
generalization of an SLH model, in which a feedback is
considered; see Fig. 1(b). This is also linked with the the-
ory of time-delayed coherent quantum feedback [39], where
a similar scheme was considered. Interestingly enough, this
theoretical model is an effective description of the experimen-
tal implementation of superconducting artificial giant atoms
in waveguide electrodynamics [40]. Finally, we remark that
a master equation hierarchy formalism for general systems
interacting with an N-boson temporal wave packet was de-
veloped in Ref. [41].

Multitime correlations in HNM models. Now we turn to
the main question of this Letter, that is, whether higher order
correlations are present in HNM models. In other words, can
intermediate interventions reveal hidden non-Markovianity al-
ready in the time interval [0, T ]? Such interventions can cause
the system to go in higher-excitation sectors, which are not
solvable; the ‘indistinguishability” between this model and the
reference one may, in principle, be broken.

However, the system with form factor (9) satisfies a prop-
erty which will be crucially employed here: given a time
t < T and any wave function η(x) which satisfies

η(x) = 0, for x ∈ [−t, 0] ∪ [T − t, T ], (11)

then the following property holds [35] for B†(η) in (3):

e−itH B†(η)eitH = B†(e−it pη), (12)

where e−it pη(x) = η(x − t ) is the free evolution of η(x). Phys-
ically, Eq. (12) can be interpreted as follows: since wave
functions satisfying (11) are sufficiently far apart from the
point interactions, they freely propagate without interfering.
In particular, this implies that, for t1, t2 � 0 such that t1 + t2 <

T , we have

e−it2H B†(ξt1 )eit2H = B†(e−it2 pξt1 ), (13)

with ξt (x) being the boson wave function (10). This simple
equation encodes a fundamental property of the system, which
proves to be the key point of our discussion: as long as the total
time of observation is less than T , the boson field cannot carry
information about the non-Markovianity of the system. Local
operations of any kind on the qubit cannot modify this simple
picture: however we intervene on the qubit via a process as
depicted in Fig. 1(a), with all interventions made at times
t j < T , all photons emitted in the process will evolve exactly
as they would in the absence of coupling. Consequently, all
multitime correlations vanish, and the process is genuinely
Markovian up to a time T . Only at later times the field will
“recognize” the inherently non-Markovian structure of the
coupling.

This argument is fully backed up by a lengthy but straight-
forward calculation which shows that, as a consequence
of property (13), the process tensor ϒk,0 for all the HNM
models (and, in particular, for the model discussed in the
previous section) is exactly the same, and has the factor
form (2), as long as tk ∈ [0, T ]. However, for t1 ∈ [0, T ] and
t2 > T , the process tensor will display correlations. There-
fore, all HNM models define a quantum process which
is genuinely Markovian within a finite time window and
(apart from the one-point interaction which is Markovian
for all times) genuinely non-Markovian outside that win-
dow. The proof is shown in [35] for three-time correlations,
and may be easily generalized for an arbitrary number of
interventions.

What is surprising here is that these intricate memory
structures stem from a rather simple time-independent Hamil-
tonian. This is a feature that may be used to engineer intricate
temporal correlations, which we discuss in our concluding
remarks.

Conclusions. When the Markovian properties of quantum
noise were first investigated [10,11] the emphasis was on
the natural properties of a given system. Nowadays, quantum
information adds an important engineering perspective, which
asks how systems behave differently in the context of design
and control. This means that device characterization needs to
test quantum systems under a wide range of interventions. We
have shown here that it is ultimately impossible, in general,
to fully conclude if a given system is truly Markovian, no
matter how complex this characterization is. Using such a
device under Markovian design assumptions can then lead to
unexpected behavior at a later stage.

On the other hand, open systems quickly become too com-
plex. Simple models like SP, CG, and now HNM allow us
to form simple building block for complex processes and
offer keen intuition about the structures of quantum stochastic
processes. There are several features of the HNM of interest.
First, this is an example of a process which has no short-
term memory and only long-term memory. Moreover, this
model could serve as the basis for constructing processes
with only higher-order correlations, that is, a process where
only correlations above four points in time are nonvanish-
ing. Finally, HNM can serve as an ansatz for simulating
processes with slow decaying correlations. To do this, we
may add more loops to at the top in Fig. 1(b) and cre-
ate a self-similar structure that will reduce the correlation
strength geometrically after a delay of T . The slowly de-
caying correlation in time here will be akin to the highly
common 1/ f noise. Modeling processes with slowly decay-
ing noise is thought to be hard for the same reasons as the
tensor network representation of such correlation is nontrivial
[42].
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I. DYNAMICS IN THE SINGLE-EXCITATION SECTOR

As discussed in the main text, the Hamiltonian given by H = H0 +Hint, with

H0 = ω0 |0〉〈0| ⊗ 1 + 1⊗HB , (1)

and the interaction Hamiltonian

Hint = σ+ ⊗B(g) + σ− ⊗B†(g). (2)

preserves the total number of excitations of states. Let us consider the single-excitation sector, spanned by states in
the form

|Ψ〉 = a |0, vac〉+B†(ξ) |0, vac〉 (3)

for some a ∈ C and some wavefunction ξ(x), with B†(ξ) being the operator that creates a photon with wavefunction
ξ, defined by

B†(η) =

∫
dx η(x) b†x, (4)

The restriction of H to vectors in the form (3), known as the Friedrichs-Lee Hamiltonian, is exactly solvable; see
Refs. [? ? ]. We will be interested in the evolution of the states |1, vac〉 and |0, vac〉; the first one is readily shown to
evolve trivially, for the second one we need to solve the Schrödinger equation, where we set ξt(x) = ξ(t, x):i ȧ(t) = ω0a(t) +

∫
dx g(x)ξ(t, x);

i ξ̇(t, x) = −i ξ′(t, x) + a(t)g(x)

(5)

with initial conditions ξ(0, x) ≡ 0 and a(0) = 1, with ξ̇(t, x), ξ′(t, x) being respectively the derivatives with respect to
t and x.

While this system has already been solved in Ref. [? ], we will briefly discuss here its resolution since we are now
working in the (different, but equivalent) position representation. The second equation with initial condition at t = 0
can be solved formally with respect to the first one:

ξ(t, x) = −i

∫ t

0

ds a(s)g(x− (t− s)). (6)

In the main text we have considered the following two choices:

• g(x) =
√
γ δ(x);

∗ daniel.burgarth@mq.edu.au
† paolo.facchi@ba.infn.it
‡ davide.lonigro@ba.infn.it
§ kavan.modi@monash.edu

mailto:daniel.burgarth@mq.edu.au
mailto:paolo.facchi@ba.infn.it
mailto:davide.lonigro@ba.infn.it
mailto:kavan.modi@monash.edu


2

• g(x) =
√

γ
2 (δ(x) + δ(x− T )).

In the first case, Eq. (6) simplifies as follows:

ξ(t, x) = −i
√
γ

∫ t

0

ds a(s)δ(x− (t− s))

= −i
√
γ a(t− x) 1[0,t](x), (7)

where 1[0,t](x) is the characteristic function of the interval [0, t], i.e. 1[0,t](x) = 1 for x ∈ [0, t] and is zero otherwise.
Substituting this expression in the first equation in (5), it can be shown, as discussed extensively in the Appendix of
Ref. [? ], that a(t) is a pure exponential function:

a(t) = e−(iε0+ γ
2 )t (8)

with ε0 being the dressed (renormalised) excitation energy of the qubit. See Refs. [? ? ] for a rigorous approach to
the renormalisation in the Friedrichs-Lee model. By substituting Eq. (8) into Eq. (7), one obtains

ξ(t, x) ≡ ϕt(x) = −i
√
γe−(iε0+ γ

2 )(t−x)1[0,t](x); (9)

notice that

‖ϕt‖2 = 1− e−γt. (10)

In the second case, Eq. (6) becomes

ξt(x) = −i

√
γ

2

∫ t

0

ds a(s) (δ(x− (t− s)) + δ(x− (t− s+ T )))

= −i

√
γ

2

(
a(t− x) 1[0,t](x) + a(t+ T − x)1[T,T+t](x)

)
= −i

√
γ

2

(
a(t− x) 1[0,t](x) + a(t− (x− T ))1[0,t](x− T )

)
. (11)

Notice that ξt(x) is the sum of two identical, compactly supported wavefunctions evaluated at x and x−T respectively;
in particular, for t < T their supports are disjoint. See also Fig. 1c in the main text.

Substituting this expression in the first equation in (5), again a(t) can be computed exactly at all times, as discussed
in Ref. [? ], while its expression will be involved for t > T , for t ≤ T it is, again, a pure exponential given by Eq. (8),
and therefore

ξt(x) =
1√
2

(ϕt(x) + ϕt(x− T )) , (12)

again with ϕt(x) given by Eq. (9). Notice that, for t < T ,

‖ξt‖2 =
1

2

(
‖ϕt‖2 + ‖ϕt+T ‖2

)
= ‖ϕt‖2 = 1− e−γt, (13)

again as an immediate consequence of the fact that, for t < T , the wavefunction is composed of two identical, disjointly
supported terms.

Finally, we remark that the generalisation of these calculations to the case of a form factor

g(x) =
∑
n

cnδ(x− xn),
∑
n

|cn|2 = 1, xn+1 − xn ≥ T, (14)

is straightforward: for each admissible choice of the coefficients cn and the points xn, the function a(t) will again be
a pure exponential up to T and the resulting single-photon wavefunction ξt(x) will be a superposition of rescaled and
translated components cnϕt(x− xn); again, the property ‖ξt‖2 = ‖ϕt‖2 will hold.
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II. PROOF OF THE COMMUTATION PROPERTY

We will now show that the commutation property:

e−itHB† (η) eitH = B†
(
e−itpη

)
, (15)

holds respectively in the following cases:

• if g(x) =
√
γ δ(x), whenever η is not supported in [−t, 0];

• if g(x) =
√

γ
2

(
δ(x) + δ(x− T )

)
, whenever η is not supported in [−t, 0] ∪ [T − t, T ],

the generalisation to a form factor (14) again being immediate. In the second case (and a fortiori in the first one as
well), Eq. (15) implies that, for t1, t2 ≥ 0 such that t1 + t2 < T , we have

e−it2HB†(ξt1)eit2H = B†
(
e−it2pξt1

)
, (16)

with ξt(x) being the boson wavefunction (12).
Let B†(η, t) = e−itHB†(η)eitH the Heisenberg evolution of B†(η); as such, it must satisfy{

d
dsB

†(η, s) = −i[H,B†(η, s)],

B†(η, 0) = B†(η).
(17)

On the other hand, the free evolution B†(e−ispη) satisfies{
d
dsB

†(e−ispη) = −i[HB , B
†(e−ispη)],

B†(e−ispη)
∣∣∣
s=0

= B†(η),
(18)

where the free boson Hamiltonian HB is the second quantisation of p. Now, in the case of a point interaction at x = 0,
we get

[H,B†(e−ispη)] = [HB , B
†(e−ispη)] +

√
γ (e−ispη)(0)σ+

= [HB , B
†(e−ispη)] +

√
γ η(−s)σ+. (19)

Therefore, if η(x) = 0 for all x ∈ [−t, 0], i.e. if the boson wavepacket is supported outside the space interval [−t, 0],
then for all times s ∈ [0, t] we get that

[H,B†(e−ispη)] = [HB , B
†(e−ispη)], (20)

whence B†(η, s) = B†(e−ispη), for all s ∈ [0, t], since they satisfy the same differential equation with the same initial
condition. In particular, B†(η, t) = B†(e−itpη).

In the case of a 2-point interaction we get instead

[H,B†(e−ispη)] = [HB , B
†(e−ispη)]

+

√
γ

2

(
η(−s) + η(T − s)

)
σ+, (21)

and the free field evolution equals the Heisenberg evolution as far as η(x) = 0 for all x ∈ [−t, 0] ∪ [T − t, T ].

III. CHOI STATE WITH NONLOCAL POINT INTERACTIONS

Let us evaluate the Choi state for a two-times process tensor on the Hamiltonian H = H0 +Hint with form factor
given by

g(x) =

√
γ

2

(
δ(x) + δ(x− T )

)
(22)

at times (0, t0, t1) with 0 < t0 < t1 < T , starting from the system and the environment prepared in the global pure
state |0, vac〉. In particular, we will show that the Choi state is exactly the same that would be obtained with the
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form factor given by g(x) =
√
γδ(x), which corresponds to a Markovian model, and therefore no deviation from

Markovianity is detected if the process lasts less than T . The computation can be readily generalised for a general
k-times process, again provided that the final time satisfies tk−1 < T .

Following Ref. [? ], it suffices to consider two couples S0, S
′
0 and S1, S

′
1 of qubits each initially in a maximally

entangled state |Φ+〉0 , |Φ+〉1, defined by

|Φ+〉s =
1√
2

(|00〉s + |11〉s) , s = 0, 1. (23)

First of all, we must compute the state

|ΥSE
t1+t0,t0,0〉 = U

(1)
t1 U

(0)
t0 |Φ

+〉1 ⊗ |Φ
+〉0 ⊗ |vac〉 , (24)

where U (0)
t0 is the evolution, for a time t0, of the subsystem composed by the qubit S′0 and the environment (with S0

and the second couple of qubits S1, S
′
1 being uncoupled in the process) and U

(1)
t1 is the evolution, for a time t1, of

the subsystem composed by the qubit S′1 and the environment (with S1 and the first couple of qubits S0, S
′
0 being

uncoupled in the process). The partial trace of the pure state corresponding to the vector (24) with respect to the
environment is the Choi state that we need to compute,

Υt1+t0,t0,0 = trB
(∣∣ΥSE

t1+t0,t0,0

〉〈
ΥSE
t1+t0,t0,0

∣∣) . (25)

whose components may be arranged in a 16 × 16 matrix. Clearly, to compute (24), we must evaluate the following
four quantities:

U
(1)
t1 U

(0)
t0 |00〉1 ⊗ |00〉0 ⊗ |vac〉 ; (26)

U
(1)
t1 U

(0)
t0 |00〉1 ⊗ |11〉0 ⊗ |vac〉 ; (27)

U
(1)
t1 U

(0)
t0 |11〉1 ⊗ |00〉0 ⊗ |vac〉 ; (28)

U
(1)
t1 U

(0)
t0 |11〉1 ⊗ |11〉0 ⊗ |vac〉 . (29)

We will report here the calculation of the first term; the remaining ones will follow similarly. First of all, in the time
interval [0, t0] the qubit S′0, in the state |0〉0, interacts with the environment in the state |vac〉, while all other emitters
do not evolve. Recalling the discussion in the first subsection of this Appendix, we have

U
(0)
t0 |00, vac〉0 = a(t0) |00, vac〉0 +B†(ξt0) |01, vac〉0 (30)

with ξt0 ≡ ξ(t0, ·) as in Eq. (12), and therefore the global state of the system after a time t0 will be given by

U
(0)
t0 |00〉1 ⊗ |00〉0 ⊗ |vac〉 = a(t0) |00〉1 ⊗ |00〉0 ⊗ |vac〉+ |00〉1 ⊗ |01〉0 ⊗B

†(ξt0) |vac〉 , (31)

and thus

U
(1)
t1 U

(0)
t0 |00〉1 ⊗ |00〉0 ⊗ |vac〉 = a(t0) |00〉0 ⊗ U

(1)
t1 |00, vac〉1 + |01〉0 ⊗ U

(1)
t1 B†(ξt0) |00, vac〉1 . (32)

We must finally compute the two states U (1)
t1 |00, vac〉1 and U (1)

t1 B†(ξt0) |00, vac〉1. The first one is computed exactly
as in the previous step:

U
(1)
t1 |00, vac〉1 = a(t1) |00, vac〉1 +B†(ξt1) |01, vac〉1 ; (33)

In order to compute the second state, here we will finally use Eq. (16), which holds as a direct consequence of Eq. (15)
provided that t0 + t1 < T , as in our case. We have

U
(1)
t1 B†(ξt0) |00, vac〉1 = B†(e−ipt1ξt0)U

(1)
t1 |00, vac〉1 = B†(e−ipt1ξt0)

(
a(t1) |00, vac〉1 +B†(ξt2) |01, vac〉1

)
= a(t1)B†(e−ipt1ξt0) |00, vac〉1 +B†(e−ipt1ξt0)B†(ξt1) |01, vac〉1

We finally obtain
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U
(1)
t1 U

(0)
t0 |00〉1 ⊗ |00〉0 ⊗ |vac〉 = |00〉1 ⊗ |00〉0 ⊗ a(t0)a(t1) |vac〉

+ |01〉1 ⊗ |00〉0 ⊗ a(t0)B†(ξt1) |vac〉
+ |00〉1 ⊗ |01〉0 ⊗B

†(e−ipt1ξt0)a(t1) |vac〉+

+ |01〉1 ⊗ |01〉0 ⊗B
†(ξt1)B†(e−ipt1ξt0) |vac〉 . (34)

Notice that, in the two-photon state in Eq. (34), the two creation operators commute, since ξt1 is supported in
[0, t1] ∪ [T, T + t1] while e−itpξt0 is supported in [t1, t1 + t0] ∪ [t1 + T, t1 + T + t0], the supports being disjoint.

The remaining three pieces can be computed similarly:

U
(1)
t1 U

(0)
t0 |00〉1 ⊗ |11〉0 ⊗ |vac〉 = |01〉1 ⊗ |11〉0 ⊗B

†(ξt1)a0(t0)

+ |00〉1 ⊗ |11〉0 ⊗ a(t1)a0(t0) |vac〉 ; (35)

U
(1)
t1 U

(0)
t0 |11〉1 ⊗ |00〉0 ⊗ |vac〉 = |11〉1 ⊗ |01〉0 ⊗ a0(t1)B†(e−it1pξt0) |vac〉

+ |11〉1 ⊗ |00〉0 ⊗ a0(t1)a(t0) |vac〉 ; (36)

U
(1)
t1 U

(0)
t0 |11〉1 ⊗ |11〉0 ⊗ |vac〉 = |11〉1 ⊗ |11〉0 ⊗ a0(t1)a0(t0) |vac〉 . (37)

The pattern is as follows. Only the qubit S′0 and S′1 may flip, and only the transition |0〉 → |1〉 is allowed; for each
possible combination,

• |1〉 → |1〉 will yield a phase factor a0(tj) = e−iε0tj , j = 0, 1;

• |0〉 → |0〉 will yield an exponential factor a(tj) = e−(iε0+
γ
2 )tj , j = 0, 1;

• |0〉 → |1〉 will yield a boson, i.e. an operator B†(ξt1) if the transition happens during the second step (a boson
propagates starting from t0 up to t0 + t1), and B†(e−it1pξt0) if it happens in the first step (a boson propagates
from time 0 to t0, and then is rigidly translated for an additional time t1).

The sum of the terms in Eqs. (34)–(37) finally gives the vector in (24). Now all matrix elements of the Choi state (25)
can be computed: since each of the addends corresponds to a distinct qubit state, we must simply evaluate the norms
of all boson components of the states in Eqs. (34)–(37). But recalling that, as long as t < T ,

• a(t) has exactly the same expression that would be obtained in the reference model with g(x) =
√
γ δ(x), i.e.

|a(t)|2 = e−γt;

• the boson wavefunction ξ(t, x) has exactly the same norm, by Eq. (13), of the boson wavefunction ϕt(x) that
would be obtained in the reference model, i.e. ‖ξ(t, ·)‖2 = 1 − e−γt, and similarly the scalar products between
the wavefunctions e−it1pξt0 and ξt1 are equally zero,

we conclude that, as long as we consider a process tensor lasting less than T , the Choi states for the reference model
and the one with a nonlocal double interaction are exactly identical. More generally, this holds when taking into
account any form factor as in Eq. (14).

Therefore, to prove our claim, it suffices to show explicitly that the reference model satisfies

Υt1+t0,t0,0 = Υt1+t0,t0 ⊗Υt0,0. (38)

By a direct computation one has the following expressions for the Choi states of the model: the single-time Choi state
Υt0,0 is a 4x4 matrix in the form

Υt0,0 =


e−γt0 0 0 e−γt0/2

0 1− e−γt0 0 0
0 0 0 0

e−γt0/2 0 0 1

 (39)

while the two-times Choi state Υt1+t0,t0,0 is a 16x16 matrix that can be written, in a block diagonal structure, as

Υt1+t0,t0,0 =


Υ(00,00) 0 0 Υ(00,11)

0 Υ(01,01) 0 0
0 0 0 0

Υ(11,00) 0 0 Υ(11,11)

 , (40)
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where

Υ(00,00) =


e−γ(t0+t1) 0 0 e−γ(t1+

t0
2 )

0 e−γt1 (1− e−γt0) 0 0
0 0 0 0

e−γ(t1+
t0
2 ) 0 0 e−γt1

 ; (41)

Υ(00,11) =


e−γ(t0+

t1
2 ) 0 0 e−

1
2γ(t0+t1)

0 e−
1
2γt1 (1− e−γt0) 0 0

0 0 0 0

e−
1
2γ(t0+t1) 0 0 e−

1
2γt1

 ; (42)

Υ(01,01) =


e−γt0 (1− e−γt1) 0 0 e−

1
2γt0 (1− e−γt1)

0 (1− e−γt0) (1− e−γt1) 0 0
0 0 0 0

e−
1
2γt0 (1− e−γt1) 0 0 1− e−γt1

 ; (43)

Υ(11,00) =


e−γ(t0+

t1
2 ) 0 0 e−

1
2γ(t0+t1)

0 e−
1
2γt1 (1− e−γt0) 0 0

0 0 0 0

e−
1
2γ(t0+t1) 0 0 e−

1
2γt1

 ; (44)

Υ(11,11) =


e−γt0 0 0 e−

1
2γt0

0 1− e−γt0 0 0
0 0 0 0

e−
1
2γt0 0 0 1

 . (45)

With these expressions, a direct computation shows that the Choi states of the reference model satisfy Eq. (38). This
calculation is immediately generalisable to a process tensor with a larger number of steps.


