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Heisenberg scaling precision in the estimation of functions of parameters in linear optical networks
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We propose a metrological strategy reaching Heisenberg-scaling precision in the estimation of functions of
any fixed number p of arbitrary parameters encoded in a generic M-channel linear network. This scheme is
experimentally feasible since it only employs a single-mode squeezed vacuum and homodyne detection on a
single output channel. Two auxiliary linear networks are required and their role is twofold: to refocus the signal
into a single channel after the interaction with the interferometer, and to fix the function of the parameters
to be estimated according to the linear network analyzed. Although the refocusing requires some knowledge
on the parameters, we show that the required precision on the prior measurement is achievable with a classic
measurement. We conclude by discussing two paradigmatic schemes in which the choice of the auxiliary stages
allows us to change the function of the unknown parameter to estimate.
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I. INTRODUCTION

The estimation of physical properties has always played
a central role in the development of science, engineering,
technologies, and ultimately human knowledge. At the same
time, advances in technologies and a better understanding
of nature allow for improvements in the sensing protocols
and, occasionally, for breakthroughs on the ultimate pre-
cisions fundamentally achievable. One of the most recent
breakthroughs is the discovery of the advantage that quantum
strategies can bring to metrology: it has been shown that the
ultimate precision achievable employing N entangled probes
for the estimation of a single phase (or more in general the
amplitude of a unitary evolution) exceeds the precision of any
classical strategy [1–4]. In particular, it is possible to conceive
quantum estimation strategies which lead to errors that scale
as fast as 1/N , a bound usually called the Heisenberg limit
(HL), whereas the error of any classical strategy is bounded
by the so-called shot-noise limit (SNL) and cannot scale faster
than 1/

√
N . Since these initial works, considerable effort has

been put into the development of quantum estimation pro-
tocols reaching the HL [5–9], with applications in imaging
[10,11], thermometry [12,13], and magnetic field [14,15] and
gravitational waves detection [16], among others.

A difficulty often encountered in early protocols is the
fragility of the required probes state, which are usually en-
tangled. To overcome this drawback, the employment of
Gaussian states as probes and squeezing as resource has
recently started to be considered, since these states are

*danilo.triggiani@port.ac.uk
†vincenzo.tamma@port.ac.uk

feasible to be experimentally produced and robust against
noise [17–27].

In some recent works [26,27], a protocol has been proposed
for the estimation of a single parameter encoded in a generic
passive linear network, reaching Heisenberg-scaling sensitiv-
ity by employing a single squeezed-vacuum state and a single
homodyne detection. In this scheme it has been found that
employing two auxiliary passive and linear stages opportunely
engineered, one at each side of the main network, suffices
for the estimation protocol to reach Heisenberg-scaling sen-
sitivity with only classical prior knowledge on the single
unknown parameter [27]. Moreover, it is shown that the two
auxiliary stages introduce some redundant degrees of free-
dom, that typically do not affect the ability of the setup to
reach Heisenberg-scaling precision [26]. The advantage of
this approach, where the overall network is affected by a
single global parameter, is to give a general result irrespective
of the way the unknown parameter is encoded in the linear
transformation, that is how it is physically implemented in the
network.

The scope of work of this article is the study of the very
structure of the linear network, and in particular how the dif-
ferent passive components, phase shifters and beam splitters,
might concur to encode the parameter to be estimated and
how they might affect the precision in the estimation. In other
words, our goal here is to answer the following questions:
What happens if the network is affected locally by an arbitrary
number of unknown parameters? Is it possible to measure a
given function of such parameters?

Due to the presence of many independent unknown param-
eters, each one representing, for example, local properties of
the components of the network, and as such being independent
sources of uncertainty in the estimation process, the transition
from the estimation of a single parameter to a single function
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l.o.ÛF̂in F̂out
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FIG. 1. Optical scheme for Heisenberg limited estimation of a
function f (ϕ) of an arbitrary number of parameters ϕi, with i =
1, . . . , p, encoded in an arbitrary M-channel linear optical network
Ûϕ by using either two auxiliary optical stages F̂in and F̂out or only
one of them. Such parameters can be optical phases or phase-like
parameters of beam-splitters. By injecting a single-mode squeezed-
vacuum state with N mean photons in (say) the first channel, through
single-mode homodyne detection in (say) the first channel and ignor-
ing the others, it is possible to tune the phase of the local oscillator
(l.o) to estimate the phase acquired by the probe through the whole
network, which is a function of the p parameters and of the specifics
of the auxiliary stages F̂in and F̂out. When an auxiliary stage (F̂in

or F̂out) is suitably chosen, this setup allows Heisenberg scaling
precision in the photon number N . Furthermore, the extra degrees
of freedom in either of the two auxiliary gates could be used to
manipulate the functional dependence of f (ϕ) on the parameters.

of multiple parameters is not straightforward, nor it is granted
to be applicable [28]. A feasible and efficient solution to this
problem would present the compelling advantage of allowing
the estimation of global properties (e.g., spatial average of a
field, field gradients, or nonlinear functions) without wasting
resources to measure each local unknown parameter, at the
expense of the use of two auxiliary networks and a more
thorough theoretical analysis to guarantee that results similar
to those of the scenario of a single-parameter network hold
true for the estimation of a function of multiple parameters
affecting the network, employing the more complete multipa-
rameter formalism, such as the use of the Fisher information
matrix [29–32]. However, this would require overcoming a
number of constraints on the parameters and on the network
that are usually required in other protocols for the estima-
tion of functions found in the literature, such as commuting
generators, reduced working range, scarce freedom on the
structure of the networks and on the nature of the parame-
ters [8,9,24,25,28,33–36], which pose a problem for certain
practical applications, including scenarios where small or no
control is possible on the structure and parameter dependence
of a given arbitrary multiparameter network.

In the present work we demonstrate that this transition is
indeed possible: we show that Heisenberg scaling precision
in the estimation of an arbitrary number of either linear or
nonlinear functions of p > 1 independent parameters, which
can be encoded with great freedom in a passive linear optical
network, is possible by employing a single squeezed state, a
single homodyne detection, and two auxiliary stages. Indeed,
for any given parameter-dependent network, the function of
the parameters to be estimated can be manipulated by using
simple linear optical stages (see Fig. 1). Furthermore, no

constraint in the values of the parameters and no entangled
probes are needed. In particular, the p unknown parameters
can be both optical phases or reflectivities of beam splitters
which can depend in principle also on external parameters
such as pressure, electromagnetic fields, or temperature. In
this scheme, the two auxiliary linear networks serve a twofold
purpose: they act on the probe to scatter first and then refocus
the photons in the only channel measured, and they can also
be opportunely engineered to manipulate how the information
about the parameters is encoded, and ultimately to choose
the function of the unknown parameters to be estimated with
Heisenberg scaling precision. Although these auxiliary stages
might depend on the value of the unknown parameters, requir-
ing thus a prior knowledge in order to correctly implement
our scheme, we show that classical precision on the prior
knowledge of the parameters is sufficient, meaning that a prior
classical measure of each parameter is enough to correctly se-
lect the auxiliary stages. Finally, we apply our general scheme
to the case of two different multiparameter interferometers:
the first is the simplest nontrivial example of multiparameter
estimation, which allows us to estimate a whole family of
(in general) nonlinear functions: a linear interferometer with
three parameters encoded in two phase shifts and a beam split-
ter; the second allows us to estimate any linear combination
with positive coefficients of phase shifts and beam-splitter
parameters.

II. LINEAR NETWORK WITH AN ARBITRARY NUMBER
OF UNKNOWN PARAMETERS

Let us consider an M × M passive and linear optical
network which depends on p unknown parameters that, in
a compact form, can be written as components of an p-
dimensional vector ϕ = (ϕ1, . . . , ϕp). These parameters can
be, for example, local independent properties of the optical
components of the network (e.g., phase shifts, reflectivities of
beam splitters), or the values of an external nonuniform field
(magnetic field, temperature) affecting the components. The
network is described by a unitary operator Ûϕ which depends
smoothly on ϕ, whose action on the M bosonic annihilation
operators âi, for i = 1, . . . , M is given by the unitary matrix
Uϕ such that

Û †
ϕ âiÛϕ =

M∑
j=1

(Uϕ )i j â j . (1)

The input probe in our scheme consists in a single-mode
squeezed-vacuum state with N = sinh2 r mean number of
photons, where r is the real squeezing parameter of the probe.
This is injected into one of the input ports, namely, the first, of
an auxiliary linear and passive optical network F̂in (described
by the unitary matrix Fin), whose role is to distribute the
probe photons among all the channels of the network Ûϕ, and
ultimately to control the function of the parameters f (ϕ) to
estimate. Then, the photons go through a second auxiliary
linear and passive network F̂out, described by Fout, which
refocuses the photons into a single output port, say the first,
so that all the information on the parameters acquired by the
probe can be read by performing homodyne detection on a
single channel. The probability amplitude χϕ associated with
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the transition of a single photon from the first input port to the
first output port of the whole setup reads

χϕ ≡ √
Pϕei f (ϕ) = (FoutUϕFin )11 (2)

and represents the only relevant quantity in the presented
scheme. If the refocusing process is perfect, the probability
Pϕ will be exactly equal to one, and all the information on ϕ

is encoded in the phase acquired by the probe f (ϕ), whose
functional dependence on the parameters ϕ can be partially
controlled through the auxiliary gates F̂in and F̂out. In the next
section we show that Heisenberg-limited sensitivity can be
achieved even for an imperfect refocusing as long as the prob-
ability for the photons to exit from a different channel scales
as 1/N , which is attainable without any additional quantum
resource.

Since the initial squeezing parameter is real, and the probe
acquires a total phase-shift of f (ϕ), the quadrature field with
minimum variance at the first output port of the interferometer
corresponds to x̂ f (ϕ)±π/2. Eventually, the quadrature field x̂θ

is measured through homodyne detection on the first chan-
nel, where θ is the reference phase of the homodyne local
oscillator, in order to infer the value of f (ϕ). From Eq. (2)
it is possible to make explicit the dependence of the acquired
phase f (ϕ) from the elements of the scattering matrix Uϕ,

f (ϕ) = arctan

(
Im(FoutUϕFin )11

Re(FoutUϕFin )11

)
, (3)

and the influence of both the networks Fin and Fout. We show
how, once the expression of the scattering matrix Uϕ is spec-
ified, the phase (3) can be specialized into various functions
of the parameters (both linear and nonlinear), useful for ap-
plications, such as function interpolation [9] or gradient-fields
estimation [34]. In the next section, we show that the precision
reached with this setup in the estimation of the function f (ϕ)
of the parameters asymptotically reaches the Heisenberg limit.

III. HEISENBERG LIMITED ESTIMATION OF A
FUNCTION OF THE NETWORK PARAMETERS

The probability density function p(x|ϕ) that the outcome
xθ of the homodyne detection falls between x and x + dx is a
centered Gaussian distribution

p(x|ϕ) = 1√
2πσ 2

ϕ

exp

[
− x2

2σ 2
ϕ

]
, (4)

whose variance

σ 2
ϕ = 1

2
+ Pϕ{sinh2 r + cos [2 f (ϕ) − 2θ ] sinh r cosh r} (5)

depends on the parameters ϕ through Pϕ and f (ϕ) (see
Appendix A). Due to the presence of multiple independent
parameters in the optical network Uϕ, the theoretical analysis
of the precision of this setup has to make use of the multipa-
rameter formalism. The ultimate precision achievable on the
estimation of any function α(ϕ) of the parameters is regulated
by the Fisher information matrix [37]

I =
∫

dxp(x|ϕ)[∇ϕ ln p(x|ϕ)][∇ϕ ln p(x|ϕ)]T, (6)

where ∇ϕ = (∂ϕ1 , . . . , ∂ϕp )T is the gradient in parameter
space. In particular, substituting the distribution (4) in this
expression, we obtain

I = 1

2σ 4
ϕ

(∇ϕσ 2
ϕ

)(∇ϕσ 2
ϕ

)T
. (7)

We assume now that the refocusing performed by the stage
F̂out is such that the probability Pϕ differs from unity by a
small quantity of O(N−1), namely,

Pϕ ∼ 1 − 	

N
, 	 � 0, (8)

with 	 independent of N . This condition is a requirement on
the precision of the refocusing performed through the aux-
iliary networks: only a small portion of the signal [i.e., an
average number of photons N (1 − Pϕ ) which does not grow
with N] can be scattered into unmeasured output channels.
For an arbitrary ϕ dependent network Ûϕ this condition can
only be satisfied with a prior knowledge of the parameters
in order to suitably chose the auxiliary gates. Remarkably,
in Appendix B we show that a classical prior knowledge
ϕcl of the parameters, corresponding to a shot-nose precision
δϕ = ϕ − ϕcl = O(N−1/2), suffices to satisfy (8).

Moreover, we impose that the local oscillator phase θ is
experimentally tuned on a value θϕ of the asymptotic form

θϕ ∼ f (ϕ) ± π

2
+ k

N
, k �= 0, (9)

which differs from the phases f (ϕ) ± π/2 of the quadrature
field with minimum variance only by a quantity k/N , with
k independent of N . This condition assures that the right
quadrature field x̂θ is measured, namely, a quadrature that si-
multaneously has a squeezed variance, so that σ 2

ϕ = O(N−1),
but that still is sensible to variations of the parameter, namely,
∇ϕσ 2

ϕ = O(1). When conditions (8) and (9) hold, in the large-
N limit, the Fisher information matrix reads (see Appendix C)

I ∼ 8�(k, 	)N2[∇ϕ f (ϕ)][∇ϕ f (ϕ)]T, (10)

with

�(k, 	) =
(

8k

1 + 16k2 + 4	

)2

. (11)

A thorough analysis of the matrix I in (10) (see Appendix D)
shows that only f (ϕ), or functions of f (ϕ), admit estimators
with finite variances. In particular, any unbiased estimator
f̃ of f (ϕ) is characterized by a variance which satisfies the
Cramér-Rao bound (see Appendix D)

Var( f̃ ) � 1

8�(k, 	)N2
, (12)

and thus our scheme allows Heisenberg scaling precision in
N through Bayesian analysis [18,38,39] or employing the
maximum-likelihood estimator (obtained in Appendix E),
which asymptotically saturate the bound.

From Eq. (2) we notice that the functional dependence of
f (ϕ) on the parameters ϕ changes for different choices of
F̂in and F̂out. In particular, after the optimization required
to satisfy condition (8), the remaining degrees of freedom
on the stages F̂in and F̂out can be employed to manipulate
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FIG. 2. Example of an M-channel linear network Ûϕ in (1) for
M = 2 with suitable auxiliary stages F̂in and F̂out for the estimation
of a family of functions of two optical phases and a beam-splitter
parameter within Ûϕ. The function of the parameters ϕ ≡ (ϕ1, ϕ2, ϕ3)
estimated depends on a control parameter �α = α1 − α2 which can
be arbitrarily chosen. To correctly tune the auxiliary stage F̂out to
achieve Heisenberg-limited sensitivity, only a classical prior knowl-
edge ϕcl on the parameter is required, namely, the error δϕ = ϕ − ϕcl

in a preparative coarse estimation must be of order of 1/
√

N

the function of the parameters f (ϕ) that we can estimate
with Heisenberg-scaling precision. Hereafter we are going to
show some examples for which the acquired phase f (ϕ) to be
estimated assumes simple functional dependencies of the pa-
rameters ϕ, which can be manipulated through simple changes
in the two auxiliary stages, useful for practical purposes.

IV. EXAMPLES OF SETUPS FOR THE ESTIMATION
OF FUNCTIONS OF PARAMETERS

A. Functions of parameters in a two-channel network

We consider a two-mode network (see Fig. 2), which al-
lows a Heisenberg scaling precision in the estimation of a
family of functions f (ϕ; �α) of the reflectivity ϕ1 of a beam
splitter, described by a scattering matrix

UBS(ϕ1) = eiϕ1σy , (13)

with σy being the second Pauli matrix, and of two phase shifts
described by

UPS(ϕ2, ϕ3) =
(

eiϕ2 0
0 eiϕ3

)
. (14)

The family of functions is parametrized by the relative phase
shift �α = α1 − α2 in the arms of an input auxiliary gate
F̂in ≡ F̂in(α1, α2), where α1 and α2 can be arbitrarily cho-
sen. The probe photons, in a single-mode squeezed state
Ŝ1(r)|vac〉 = e

r
2 (â2

1−â†2
1 )|vac〉 with an average number of pho-

tons N = sinh2 r, are first injected into the first channel of

the auxiliary input linear network F̂in(α1, α2) which, in gen-
eral, may require some prior classical knowledge ϕ1,cl of
the beam-splitter parameter ϕ1, namely, such that the error
δϕ1 = ϕ1 − ϕ1,cl = k1/

√
N in the prior coarse estimation is of

order O(1/
√

N ), where k1 is a constant value not depending
on N . In particular, in order to satisfy condition (8), a possible
choice for this stage consists in a beam splitter UBS(ω), whose
reflectivity ω is tuned according to

ω = 1

2
arctan

(
cos (ϕ1,cl )

sin (ϕ1,cl ) cos �α

)
, (15)

and in the two arbitrary and ϕ-independent phase shifts α1 and
α2, so that the scattering matrix of this stage is

Fin = UPS(α1, α2)UBS(ω). (16)

Then, the probe goes through the passive linear network de-
scribed by the matrix

Uϕ = UPS(ϕ2, ϕ3)UBS(ϕ1), (17)

and finally through a second auxiliary linear network
F̂out (α3, α4), depending on two ϕ-independent parameters α3

and α4 such that α4 − α3 = α1 − α2 ≡ �α, and a prior classi-
cal knowledge ϕcl on the three unknown parameters, namely,
such that the errors δϕi = ϕi − ϕi,cl = ki/

√
N in the prior

estimations are of order of O(1/
√

N ), with ki constants not
depending on N for i = 1, 2, 3. In particular, this stage is com-
posed of a phase-shift in each channel of values α3 − ϕ2,cl and
α4 − ϕ3,cl, and of a beam splitter with reflectivity ω − π/2.
The scattering matrix of the whole output stage thus reads

Fout (α3, α4) = UBS(ω − π/2)UPS(α3 − ϕ2,cl, α4 − ϕ3,cl ).
(18)

Finally, a homodyne detection is performed on the first output
port of the interferometer according to condition (9).

A straightforward calculation shows that, for this setup, the
one-photon transition amplitude (2) reads

χϕ = ei(α1+α3+ δϕ2+δϕ3
2 )

×
[

cos

(
δϕ2 − δϕ3

2

)
sin 2ω cos ϕ1

+ cos

(
�α − δϕ2 − δϕ3

2

)
cos 2ω sin ϕ1

+ i sin

(
�α − δϕ2 − δϕ3

2

)
sin ϕ1

]
, (19)

and is such that condition (8) on the transition probability
Pϕ = |χϕ|2 is satisfied for large N and with a reflectivity
ω given by (15). The acquired phase f (ϕ; �α) through the
interferometer reads

f (ϕ; �α) = α1 + α3 + δϕ2 + δϕ3

2

+ arctan

⎛
⎝ sin ϕ1 sin

(
�α − δϕ2−δϕ3

2

)√
1 − sin2 (ϕ1,cl ) sin2 �α

cos ϕ1 cos ϕ1,cl cos
(

δϕ2−δϕ3

2

) + sin ϕ1 sin ϕ1,cl cos �α cos
(
�α − δϕ2−δϕ3

2

)
⎞
⎠, (20)
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FIG. 3. An M-channel linear and passive network which allows
Heisenberg scaling precision in the estimation of any linear com-
bination of M unknown parameters ϕ, all encoded within Uϕ (red
box). The auxiliary stages defined in (24) and (27) are composed
of multichannel beam splitters encoding the weights of the linear
combination and of phase shifts depending on the classical knowl-
edge of the parameter. As shown in the lower panel, each parameter
ϕi is (a) an optical phase acquired through a single-mode phase-
shift, or (b) the reflectivity of a lossless beam splitter which can be
readily imprinted into an optical phase by means of a two-channel
parameter-independent local network. Since the probability that a
photon injected into the first port of each local network comes out
from the second channel is exactly zero, each local network acts as a
single-channel phase delay with magnitude ϕi.

and in general is not linear in the parameters ϕ. It can be
arbitrarily tuned by changing the value of �α and estimated
with Heisenberg scaling precision through homodyne mea-
surement and the maximum-likelihood estimator (shown in
Appendix E) which saturates asymptotically the Cramér-Rao
bound (12).

For certain choices of �α, the function f (ϕ; �α) becomes
linear in ϕ. For example, for �α = π/2, the beam splitters
needed in the input stage F̂in and output stage F̂out are bal-
anced, since from condition (15) one gets ω = ±π/4. For
ω = +π/4, the acquired phase becomes

f (ϕ; π/2) = α1 + α3 + ϕ1 + δϕ2 + δϕ3

2
, (21)

while the value of 	 in the Cramér-Rao bound (12) can be
found by expanding for large N the transition probability Pϕ =
|χϕ|2, with χϕ given in (19), 	 = (k2 − k3)2/4. In particular,
if both ϕ2 and ϕ3 are perfectly known (i.e., ϕ2 = ϕ2,cl and
ϕ3 = ϕ3,cl) so that δϕ2 = δϕ3 = 0, then the network in Fig. 2
reduces to the one in Fig. 3(b) and can be employed for the
estimation of ϕ1, namely, the parameter associated with the
beam splitter, without requiring any prior information.

For �α = 0 instead, condition (15) reads ω = −π/4 −
ϕ1,cl/2, and the phase acquired becomes

f (ϕ; 0) = α1 + α3 + δϕ2 + δϕ3

2

− arctan

(
tan

(
δϕ2 − δϕ3

2

)
sin (ϕ1)

cos (δϕ1)

)

= α1 + α3 + δϕ2 + δϕ3

2

− δϕ2 − δϕ3

2
sin (ϕ1) + O(N−3/2), (22)

where we exploited the fact that the errors δϕ2 and δϕ3

are of order O(1/
√

N ), with 	 = k2
1 + (k2 − k3)2 cos2(ϕ1)/4.

Noticeably, this is an example of estimation of a nonlinear
function of the unknown parameters, namely, the transmittiv-
ity amplitude of the unknown beam splitter multiplied by an
unknown parameter-dependent factor (δϕ2 + δϕ3)/2 up to a
constant, provided that δϕ2 �= δϕ3 �= 0.

If instead ϕ1 = 0, this setup reduces to a Mach-Zehnder
interferometer with balanced beam splitters, and the function
(20) becomes the average of the two remaining unknown
parameters δϕ2 and δϕ3. In the following section, we
show a generalization of this case, in which an M-channel
Mach-Zehnder-like interferometer can be exploited for the
estimation of an arbitrary linear combination with positive
weights of phase shifts, or beam-splitter reflectivities as dis-
played in (21) when ϕ2 and ϕ3 are known.

B. Convex sum of any number of phase shifts
and of beam-splitter reflectivities

We finally show an interferometer (see Fig. 3) which allows
Heisenberg-scaling precision in the estimation of any linear
combination with non-negative weights

L(ϕ) =
M∑

i=1

ωiϕi (23)

of M independent and unknown quantities ϕ = (ϕ1, . . . , ϕM ),
which can be both optical phases acquired through single-
channel phase shifts UPS(ϕi) = eiϕi , or reflectivities of beam
splitters UBS(ϕi ) = eiϕiσy , with M non-negative coefficients
ω = (ω1, . . . , ωM ). Applications for this type of estimations
can be found in field-gradient inference or in the study of
spatial properties or fluctuations of fields [8,34]. In our discus-
sion, we will additionally suppose that the positive coefficients
ω sum to one, without any loss of generality: rescaling the
estimated quantity by a constant factor would change the error
by the same factor, hence without ruining the Heisenberg
scaling.

As previously discussed, the probe employed is a single-
mode squeezed state Ŝ1(r)|vac〉, with N = sinh2 r average
number of photons. The probe is injected in the first port of
a first auxiliary linear network F̂in which scatters the photons
into each channel of Ûϕ with probabilities

|(Fin )i1|2 = ωi, (24)

where the normalization of the positive coefficients allows for
the unitarity of Fin. The network Ûϕ encodes all the unknown
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parameters ϕ, each one associated with a different channel.
For each beam splitter with an unknown reflectivity, an auxil-
iary two-channel ϕ-independent network V [see Fig. 3(b)] is
employed in order to turn its parameter into an optical phase.
In particular, the network

V †UBS(ϕ)V = UPS(ϕ,−ϕ), (25)

with

V = UPS(π/4,−π/4)UBS(π/4), (26)

acts as a phase shift on both channels. Thus, when a signal is
fed into the first port of this network, all the light comes out
from the first output port shifted by a phase ϕ, so it behaves as
a single-channel phase shift of magnitude ϕ. Noticeably, the
network V needed for this purpose is the same as employed
in Sec. IV A, in the case of ϕ2 = ϕ3 = 0 for �α = π/2. It
is worth mentioning that, if the signal is injected into the
second channel of this local network, it will come out only
from the second output channel shifted by −ϕ, hence allowing
in this way a negative weight in the linear combination (23).
At the output of Ûϕ, a second auxiliary passive and linear
network F̂out is employed, whose preparation requires a prior
classical knowledge ϕcl = (ϕ1,cl, . . . , ϕM,cl ) of the unknown
parameters, meaning that the errors δϕi = ϕi − ϕi,cl = ki/

√
N

are of order of O(1/
√

N ), with k1 constants independent of N ,
a transformation that can be regarded as a single-step phase
feedback operation [40]. In particular, the signal in the ith
channel must undergo a phase shift of −ϕi,cl. Then, the probe
is refocused on a single channel by inverting the action of
F̂in, and it undergoes a phase shift of constant and known
magnitude L(ϕcl ), so that the scattering matrix of the output
stage reads

Fout = UPS(L(ϕcl ), 0, . . . , 0)F†
inUPS(−ϕcl ), (27)

where we denoted with UPS(λ1, . . . , λl ) =
diag(eiλ1 , . . . , eiλl ). Finally, single-mode homodyne detection
is performed according to condition (9).

With this setup, the probability amplitude, shown in (2),
reads

χϕ = eiL(ϕcl )
M∑

i=1

ωie
iδϕi =

= eiL(ϕcl )

(
1 +

M∑
i=1

iωiδϕi − 1

2

M∑
i=1

ωiδϕ
2
i

)
+ O(N−3/2).

(28)

The shot-noise scaling δϕi = O(N−1/2) implies that the one-
photon probability

Pϕ =
∣∣∣∣∣eiL(ϕcl )

M∑
i=1

ωie
iδϕi

∣∣∣∣∣
2

= 1 +
(

M∑
i=1

ωiδϕi

)2

−
M∑

i=1

ωiδϕ
2
i + O(N−3/2)

≡ 1 − 	

N
+ O(N−3/2) (29)

satisfies condition (8), with 	 = (
∑

i ωiki )2 − ∑
i ωik2

i , so that
Heisenberg scaling sensitivity in the estimation of the total
acquired phase f (ϕ) = arg(χϕ ) can be achieved. In particular,

f (ϕ) = L(ϕcl ) +
M∑

i=1

ωiδϕi + O(N−3/2)

= L(ϕ) + O(N−3/2), (30)

so that it is possible to recover the linear combination (23)
with Heisenberg-scaling precision from the estimation of
f (ϕ). Notice that, although L(ϕ) in (23) and f (ϕ) in (30) are
not exactly equal, they differ by a quantity of order O(N−3/2),
which is beyond the Heisenberg resolution and thus negligible
for our estimation purposes.

We conclude this section with an insightful observation. As
already discussed, the local networks (25) shown in Fig. 3(b),
appearing inside Uϕ, whose purpose is to translate the un-
known beam-splitter reflectivities into optical phase shifts, can
be obtained from the setup in Fig. 2 by imposing �α = π/2,
when ϕ2 = ϕ3 = 0. It is indeed possible to further generalize
this scheme by replacing the local networks (25) with the
more general network in Fig. 2, and only requiring conditions
(15) to hold for each local network (see Appendix F). This
allows us to estimate with Heisenberg-scaling precision linear
combinations of functions of unknown local parameters of the
type shown in (20), with each function parametrized by an
arbitrary local quantity �αi.

V. CONCLUSIONS

We provided a feasible metrologic strategy to estimate
functions of multiple parameters encoded arbitrarily in a M-
channel linear network with Heisenberg-scaling precision in
the average number of photons injected. Our scheme is ex-
perimentally feasible since it only requires a single-mode
squeezed-vacuum state which, in general, is scattered by a
first auxiliary network, interacts with the interferometer, and
eventually is refocused by a second auxiliary network in a
single output channel, where homodyne detection takes place.
We show that, in order for the refocusing to be successful, a
prior knowledge of the unknown parameters is required for the
realization of only one of the two stages (i.e., F̂out) and only
with a precision at shot-noise level, so that a classical estima-
tion strategy is sufficient. Remarkably, the remaining degrees
of freedoms in the stage F̂out and all those in the parameter-
independent stage, in this case F̂in, can be used to manipulate
the functional expression of the unknown parameters depend-
ing on which function we are interested to estimate with
Heisenberg-limited precision. We provide as examples two
interferometric schemes, and we demonstrate how the choice
of the auxiliary stages influences the functions of the pa-
rameters that is possible to estimate with Heisenberg-scaling
precision: in the first, we examine a nontrivial two-channel
linear network with unknown phase shifts and beam splitters,
and we show how a whole family of functions, in general
nonlinear in the parameters and parametrized by an arbitrary
relative phase in the auxiliary stages, can be estimated with
Heisenberg-scaling precision. In the second, we show that it is
possible to estimate any linear combination of phase shifts and
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beam-splitter reflectivities, with the only requirement being
for the linear combination coefficients to be positive. Our
results are strongly relevant in experimental scenarios where
we are interested to measure the global properties of a given
network associated with particular functional dependencies
from its parameters with no constraints on their values.
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APPENDIX A: VARIANCE OF THE QUADRATURE x̂θ

To evaluate the variance (5) along the quadrature x̂θ of the
squeezed vacuum state after the action of the interferometer,
we first recall the covariance matrix �0 of the input state
Ŝ1(r)|vac〉, which reads

�0 = 1

2

(
e2R 0

0 e−2R

)
, (A1)

where R is the M × M diagonal matrix R =
diag(r, 0, . . . , 0). After the action of the interferometer,
the covariance matrix transforms into

�ϕ = Rϕ�0RT
ϕ , (A2)

where Rϕ is the orthogonal and symplectic matrix associated
with the interferometer unitary matrix uϕ = FoutUϕFin:

Rϕ =
(

Reuϕ −Imuϕ

Imuϕ Reuϕ

)
. (A3)

Thus �ϕ in (A2) reads

�ϕ =
(

�X 2
ϕ �XPϕ

�XPT
ϕ �P2

ϕ

)
, (A4)

where

�X 2
ϕ ≡ 1

2
[Reuϕe2RReu†

ϕ − Imuϕe−2RImu†
ϕ]

= 1

2

{
Re[uϕ cosh (2R)u†

ϕ] + Re
[
uϕ sinh (2R)uT

ϕ

]}
,

(A5)

�P2
ϕ ≡ 1

2
[−Imuϕe2RImu†

ϕ + Reuϕe−2RReu†
ϕ]

= 1

2

{
Re[uϕ cosh (2R)u†

ϕ] − Re
[
uϕ sinh (2R)uT

ϕ

]}
,

(A6)

�XPϕ ≡ 1

2
[−Reuϕe2RImu†

ϕ − Imuϕe−2RReu†
ϕ]

= 1

2

{−Im[uϕ cosh (2R)u†
ϕ] + Im

[
uϕ sinh (2R)uT

ϕ

]}
.

(A7)

In the second lines of each of the previous expression, we have
used the fact that R is real.

The 2 × 2 reduced covariance matrix �′
ϕ of the first mode

reads

�′
ϕ =

( (
�X 2

ϕ

)
11

(�XPϕ )11
(�XPϕ )11

(
�P2

ϕ

)
11

)
. (A8)

Our final step is to recover the variance of the quadrature x̂θ .
To do that, we introduce the 2 × 2 orthogonal and symplectic
matrix

Oθ =
(

cos θ sin θ

− sin θ cos θ

)
, (A9)

representing the action of a phase shift e−iθ , namely, a clock-
wise rotation of an angle θ in the first mode phase space. The
variance σ 2

ϕ in (5) is finally obtained by a direct computation

σ 2
ϕ=(

Oθ�
′
ϕOT

θ

)
11

= 1

2
+Pϕ{sinh2 (r) + cos [2 f (ϕ) − 2θ ] cosh (r) sinh (r)}.

(A10)

APPENDIX B: PRIOR KNOWLEDGE OF THE
PARAMETERS

In this Appendix we show that, with the setup presented
in this work, a classical prior knowledge ϕcl, with an error
δϕ = ϕ − ϕcl scaling as 1/

√
N , is enough to correctly opti-

mize our setup, satisfy condition (8), and thus ultimately reach
Heisenberg scaling.

In general, in order to perform the optimization, the aux-
iliary stages F̂in and F̂out are chosen accordingly to a prior
knowledge on the parameter, so that once the setup is cor-
rectly optimized, we can write F̂in ≡ F̂in(ϕcl ) and F̂out ≡
F̂out (ϕcl ). The one-photon transition probability Pϕ is by def-
inition the square modulus of the (complex) scalar product of
the two M-dimensional normalized vectors UϕFin(ϕcl )e1 and
F†

out (ϕcl )e1, namely,

Pϕ = ∣∣e†
1Fout (ϕcl )UϕFin(ϕcl )e1

∣∣2 ≡ η(ϕ,ϕcl ), (B1)

with e1 = (1, 0, . . . , 0)T , and η is a smooth function of ϕ and
ϕcl with global maxima along the condition ϕcl = ϕ since,
with a perfect prior knowledge of the parameters ϕ, the auxil-
iary stages are chosen so that |e†

1Fout (ϕ)UϕFin(ϕ)e1| = 1. If a
small uncertainty δϕ = ϕ − ϕcl is present due to an imperfect
prior knowledge on the parameter, then

Pϕ = η(ϕ,ϕ − δϕ)

= 1 + 1

2

p∑
i, j=1

(
∂2

i, jη
)
ϕ
δϕiδϕ j + O(|δϕ|3), (B2)

where (∂2
i, jη)ϕ is the second derivative of η(ϕ, ·) with respect

of the ith and jth components evaluated at ϕ. Comparing the
expression of Pϕ in (B2) with the condition (8), it is evident
that the uncertainty allowed on the prior estimation, in order to
correctly optimize F̂out and ultimately reach Heisenberg scal-
ing independently of the value of ϕ, must be of order 1/

√
N ,

namely, it must happen that δϕi = O(N−1/2), for i = 1, . . . , p.
It is straightforward to notice that these results also hold if one
of the two auxiliary gates is chosen independently from ϕcl,
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including the case of an identity operation corresponding to
the absence of one gate.

APPENDIX C: DERIVATION OF THE FISHER
INFORMATION MATRIX IN (10)

In this Appendix we obtain the expression of the Fisher
information matrix (10) from the general Fisher information
matrix for a Gaussian distribution (7) when conditions (8) and
(9) hold.

Since the dependence of σ 2
ϕ in (5) on the parameters ϕ only

appears through Pϕ and f (ϕ), the gradient of the variance,

∇ϕσ 2
ϕ = {[∇ϕPϕ]∂P + [∇ϕ f (ϕ)]∂ f }σ 2

ϕ

= ∇ϕPϕ{sinh2 r + cos [2 f (ϕ) − 2θ ] sinh r cosh r}
− 2Pϕ∇ϕ f (ϕ) sin [2 f (ϕ) − 2θ ] sinh r cosh r, (C1)

can be written in terms of ∇ϕPϕ and ∇ϕ f (ϕ). We now impose
condition (9) and fix θ = θϕ, and evaluate the variance in (5)
and its gradient (C1) in the large-N limit

σ 2
ϕ = 1

2
+ NPϕ

[
1 − cos

(
2k

N

)√
1 + 1

N

]

= 1

2
+ NPϕ

[
1 −

(
1 − 2k2

N2

)(
1 + 1

2N
− 1

8N2

)]

+ O

(
1

N2

)

= 1 − Pϕ

2
+ Pϕ

(
2k2

N
+ 1

8N

)
+ O

(
1

N2

)
, (C2)

∇ϕσ 2
ϕ = N∇ϕPϕ

[
1 − cos

(
2k

N

)√
1 + 1

N

]

+ 2NPϕ∇ϕ f (ϕ) sin

(
2k

N

)√
1 + 1

N

= N∇ϕPϕ

[
1 −

(
1 + 1

2N

)]

+ 2NPϕ∇ϕ f (ϕ)
2k

N
+ O

(
1

N

)

= −1

2
∇ϕPϕ + 4kPϕ∇ϕ f (ϕ) + O

(
1

N

)
. (C3)

Then, by imposing condition (8) on Pϕ, we get

σ 2
ϕ =

(
2k2 + 1

8
+ 	

2

)
1

N
+ O

(
1

N2

)
, (C4)

∇ϕσ 2
ϕ = 4k∇ϕ f (ϕ) + O

(
1

N

)
. (C5)

Therefore, the Fisher information matrix (7) can be asymptot-
ically written as

I = 8�(k, 	)N2[∇ f (ϕ)][∇ f (ϕ)]T , (C6)

with

�(k, 	) =
(

8k

16k2 + 1 + 4	

)2

(C7)

a positive and N-independent prefactor.

APPENDIX D: PROOF OF HEISENBERG SCALING

In this Appendix we show that the Fisher information ma-
trix I shown in (10) implies that the only functions of the
parameter α(ϕ) which admit unbiased estimators with finite
variance are of the form α(ϕ) ≡ g( f (ϕ)), with g(·) a smooth
function.

Since I in (C6) is a rank-one matrix, it has a single nonzero
eigenvalue λ. By direct calculation, the nonzero eigenvalue
associated with the (normalized) eigenvector

v = ∇ f (ϕ)

|∇ f (ϕ)| (D1)

reads

λ = 8�(k, 	)|∇ f (ϕ)|2N2. (D2)

In order for a given function α(ϕ) of the parameters to admit
an unbiased estimator α̃ with finite variance, it must happen
that ∇ϕα(ϕ) belongs to the support of I [28,41], which in our
case is one dimensional and spanned by v, whence

∇ϕα(ϕ) ∝ ∇ϕ f (ϕ), (D3)

which is verified for all ϕ, only if α(ϕ) = g( f (ϕ)), with g(·)
a differentiable real-valued function. For every unbiased esti-
mator α̃ ≡ g̃ of such functions, the Cramér-Rao bound reads

Var[g̃] �
(

dg

df

)2 1

8�(k, 	)N2
, (D4)

and, for the particular case g( f (ϕ)) = f (ϕ),

Var[ f̃ ] � 1

8�(k, 	)N2
. (D5)

APPENDIX E: MAXIMUM-LIKELIHOOD ESTIMATOR

In this Appendix we find the maximum-likelihood estima-
tor f̃MLE that saturates the Cramér-Rao bound in Eq. (12). Let
us assume that, after ν independent iterations, the homodyne
measurement of the quadrature field x̂θ yields the outcomes

x = (x1, . . . , xν ). Due to the independence of the measure-
ments, the likelihood L(ϕ|
x), namely the probability that the
set of outcomes 
x are observed as a function of the unknown
parameters ϕ, is given by

L(ϕ|
x) =
ν∏

j=1

p(x j |ϕ), (E1)

with p(x|ϕ) given in Eq. (4). The estimator f̃MLE ≡ f̃MLE(
x)
is defined as the value of f (ϕ) that most likely yields the
observed outcomes 
x. To find that, we maximize the log-
likelihood function, and thus obtain

0 = ∂

∂ f
lnL(ϕ|
x)

∣∣∣
f = f̃MLE

= ∂

∂ f

ν∑
j=1

ln p(x j |ϕ)
∣∣∣

f = f̃MLE

= ∂

∂ f

ν∑
j=1

(
−1

2
ln σ 2

ϕ − x2
j

2σ 2
ϕ

)∣∣∣∣∣
f = f̃MLE
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=
[

∂σ 2
ϕ

∂ f

ν∑
j=1

(
− 1

2σ 2
ϕ

+ x2
j

2σ 4
ϕ

)]∣∣∣∣∣
f = f̃MLE

. (E2)

By assuming that ∂σ 2
ϕ/∂ f �= 0 the solution is given by the

value of f (ϕ) that solves

σ 2
ϕ = σ 2(
x) ≡ 1

ν

ν∑
j=1

x2
j , (E3)

where σ 2
ϕ is given by (5), with Pϕ given by (8) and θ being

phase of the local oscillator. Thus the estimator is ultimately
given by

f̃MLE(
x) = θ + 1

2
arccos

(
[2σ 2(
x) − 1] − 2Pϕ sinh2 r

2Pϕ sinh r cosh r

)
.

(E4)

APPENDIX F: GENERALIZATION OF THE SETUP
IN FIG. 3

In this Appendix we show that employing as local net-
works inside Ûϕ of Fig. 3, the network shown in Fig. 2, with
conditions (15) satisfied, still yields a setup which allows
Heisenberg-scaling sensitivity, this time for the estimation
of a linear combination of functions of parameters. In fact,
even though these local networks do not exactly behave as
single-mode phase shifts, since (15) holds locally, they still
satisfy some local conditions

Pi ∼ 1 − 	i

N
, 	i � 0, i = 1, . . . , m2, (F1)

similar to the global condition (8), where Pi in this case is the
probability that a photon, injected in the first channel of the
ith local network, comes out from its upper channel. Thus, the
probability amplitude (28) generalizes to

χϕ = eiL(ϕcl )
M∑

i=1

ωi

√
1 − 	i

N
eiδϕi

= eiL[ϕcl )

[
1 +

M∑
i=1

iωiδϕi − 1

2

M∑
i=1

ωi

(
δϕ2

i + 	i

N

)]

+ O(N−3/2), (F2)

where we made use of condition (F1) to write the transition
amplitudes associated with each channel of Ûϕ. Exploiting
once again the requirement that δϕi = O(N−1/2), for i =
1, . . . , M, we notice that the one-photon probability,

Pϕ =
∣∣∣∣∣eiL(ϕcl )

M∑
i=1

ωi

√
1 − 	i

N
eiδϕi

∣∣∣∣∣
2

= 1 +
(

M∑
i=1

ωiδϕi

)2

−
M∑

i=1

ωi

(
δϕ2

i + 	i

N

)
+ O(N−3/2)

≡ 1 − 	

N
+ O(N−3/2) (F3)

still satisfies condition (8), so that Heisenberg-scaling sensi-
tivity in the estimation of the total acquired phase shown in
(30) is achieved.
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