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a b s t r a c t

We study admissible boundary conditions for a charged quantum
particle in a two-dimensional region subjected to an external
magnetic field, i.e. a quantum magnetic billiard. After reviewing
some physically interesting classes of admissible boundary con-
ditions (magnetic Robin and chiral boundary conditions), we turn
our attention to the role of gauge transformations in a magnetic
billiard: in particular, we introduce gauge covariant boundary
conditions, and find a sufficient condition for gauge covariance
which is satisfied by all the aforementioned examples.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The study of quantum systems confined in a bounded domain requires a careful description
f the physical properties of its boundary, and thus of the interaction between the system and
he boundary, effectively encoded via a proper choice of boundary conditions. In recent years,
uantum boundary conditions have increasingly attracted interest in different branches of quantum
hysics [1,2], some examples being the analysis of quantum Hall systems [3,4], the study of geo-
etric phases [5], quantum control theory, topological insulators and QCD [6], quantum gravity and

opology change [7,8], as well as the Casimir effect in quantum field theory [9–11], to name a few.
Quantum magnetic billiards are a paradigmatic example of such systems. Magnetic billiards

onsist of a charged particle which moves in a region of the plane and interacts solely with an
xternal magnetic field and with the boundary of the region. Despite the apparently innocuous
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setup, even at the classical level, where the particle interaction with the billiard consists just in a
reflection (an elastic scattering), magnetic billiards have a rich physical phenomenology as well as
many interesting mathematical properties, which arise from the interaction between the arc-like
trajectories of the particle and the reflection at the boundary [12,13]. Their quantum-mechanical
counterpart is even more surprising, and throughout the years has been widely studied from
different points of view and with various applications.

From the physical perspective, quantum magnetic billiards represent a starting point to study
agneto-transport properties and, in particular, the quantum Hall effect [14,15]. Moreover, they
onstitute a non-trivial arena to understand the quantum-to-classical transition and the emergence
f quantum chaos [16,17] as well as to investigate the subtleties related to the Aharonov–Bohm
ffect and, more generally, the interplay between the electromagnetic interaction and the geometry
f the system [18,19]. Quantum magnetic billiards are also extensively studied in the mathe-
atical literature, which ranges e.g. from the rigorous analysis of magnetic Hamiltonians and of

heir spectral properties [20,21], to the description of gauge fields in non-trivial topologies and
eometries [22,23].
Therefore, it is crucial to characterize the physically admissible boundary conditions for a

uantum magnetic billiard. While, in general, a ‘‘good’’ boundary condition must preserve the self-
djointness of the Hamiltonian (and thus, physically, ensure the overall conservation of probability),
hen dealing with magnetic systems an additional request emerges: the gauge covariance of the
ystem must also be ensured, thus constraining the quantum boundary conditions of the magnetic
illiard to be gauge covariant as well.
In this work, we apply the well-developed theory of self-adjoint extensions of Hermitian

perators to a simple setup involving a non-relativistic spinless particle in a magnetic billiard.
ollowing a bottom-to-top approach which focuses on the physical intuition behind the formalism,
e will characterize a large family of physically admissible boundary conditions for a regular
uantum magnetic billiard, also showing that such a family does include some remarkable examples
f quantum boundary conditions, namely magnetic Robin and chiral. To do so, we shall develop a
ersatile framework capable of describing the relationship between the boundary conditions and
he self-adjoint extensions of the Hamiltonian, without dwelling too much on the mathematical
ubtelties related to the analysis of unbounded operators. Our approach also paves the way to some
nteresting applications, which will be explored in future works, such as a self-consistent model of
he quantum Hall effect seen as a magnetic billiard [24].

The paper is organized as follows. In Section 2 we describe our setup introducing the relevant
amiltonian (i.e. the magnetic Laplacian). In Section 3 we describe some interesting families
f boundary conditions which render the Hamiltonian self-adjoint. Finally, in Section 4, after
ppropriately defining a gauge transformation, we investigate the general relationship between
oundary conditions and gauge transformations.

. Quantum magnetic billiard

For our purposes, a magnetic billiard consists in a nonrelativistic spinless particle with mass m
and electric charge −e < 0, constrained in a region Ω ⊆ R2 of the xy-plane and subjected to a
magnetic field aligned with the z axis and of value B = B(x, y). The magnetic field is related to the
vector potential A = (Ax, Ay) by the relation

B =
∂Ay

∂x
−
∂Ax

∂y
. (1)

n order to avoid technical difficulties, in the following we will focus on the case of a regular magnetic
illiard, i.e. we will assume that:

1. Ω is an open, connected and bounded subset of R2 with a smooth boundary ∂Ω;
2. A(x, y) is a smooth vector field on the closure of Ω;

However, we will not assume Ω to be simply connected, allowing i.e. the possibility of magnetic
billiards with one or more holes, an interesting setup which is also relevant for the description of
the Aharonov–Bohm effect in a bounded domain.
2
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2.1. The magnetic Laplacian

In a quantum mechanical setting, the system must be described by a properly chosen self-adjoint
perator (the Hamiltonian) acting on the Hilbert space L2(Ω) of complex square-integrable functions
n the region Ω ⊆ R2, endowed with the scalar product

⟨ψ |φ⟩ =

∫
Ω

ψ(x)∗φ(x) dx , (2)

here x = (x, y), and its associated norm ∥ψ∥
2

= ⟨ψ |ψ⟩. Formally, the quantum Hamiltonian of a
agnetic billiard is given by the differential operator

HA ≡
1
2m

(−ih̄∇ + eA)2 = −
h̄2

2m
∇

2
A , (3)

here ∇
2
A is known as the magnetic Laplacian, h̄ is the reduced Planck constant, and

∇A ≡ ∇ + i
e
h̄
A =

(
∂

∂x
+ i

e
h̄
Ax,

∂

∂y
+ i

e
h̄
Ay

)
(4)

is the so-called covariant derivative. More explicitly, the operator (3) can be written as

HA = −
h̄2

2m

(
∂2

∂x2
+
∂2

∂y2

)
− i

h̄e
m

(
Ax(x)

∂

∂x
+ Ay(x)

∂

∂y

)
− i

h̄e
2m

(
∂Ax(x)
∂x

+
∂Ay(x)
∂y

)
+

e2

2m
A2(x) . (5)

auge freedom. It is well-known that Eq. (1) does not completely fix the vector potential in terms
of the magnetic field, leaving a so-called gauge freedom, which is the freedom in the choice of
the vector potential: since distinct vector potentials corresponding to the same magnetic field are
associated in general with distinct Hamiltonians, this introduces an ambiguity in the description of
the system. However, as we will discuss in Section 4, when there are no topological obstructions
distinct Hamiltonians associated with the same magnetic field inside the billiard Ω turn out to be
nitarily equivalent. This is always the case when the particle is free to move in the whole plane
r, more generally, when Ω is a simply connected region. Note that this equivalence is intrinsically
elated to a gauge transformation, which relates different vector potentials associated with the same
agnetic field inside the billiard; a precise definition of the latter will be given in Section 4.1.

.2. Domain specification

Eq. (3) is not enough to define a Hamiltonian on L2(Ω), since the formal expression HAψ is not a
quare-integrable function for every ψ ∈ L2(Ω). As such, a domain specification is also needed:
e must choose a dense subspace D ⊂ L2(Ω) of wavefunctions such that, for every ψ ∈ D,

HAψ is square-integrable. Necessarily, for each such choice, HA will be rendered as an unbounded
operator [25]. We stress that, far from being a mathematical subtlety, the domain specification is,
in general, crucial: many properties of a given unbounded operator, such as its spectrum, strongly
depend on the domain D where it acts, and different domains correspond to different physical
realizations of HA. In this sense, the domain specification is physical.

Furthermore, in order to describe a physical observable (and thus to generate a unitary evolution),
he Hamiltonian must be a self-adjoint operator. Indeed, we recall that self-adjointness is a necessary

nd sufficient request for a Hermitian operator to have a real spectrum. For this purpose, it is

3
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convenient to introduce the following boundary form associated with HA:

ΛA(ψ, φ) ≡ ⟨ψ |HAφ⟩ − ⟨HAψ |φ⟩ =

∫
Ω

[
ψ∗HAφ − (HAψ)∗φ

]
dx . (6)

With this notation, the operator HA with domain D will be

• Hermitian (or symmetric) if ΛA(ψ, φ) = 0 for all ψ, φ ∈ D2;
• self-adjoint if, for any fixed ψ ∈ D, ΛA(ψ, φ) = 0 if and only if φ ∈ D,

the second condition obviously implying the first. For practical purposes, however, it is enough
requiring HA to be essentially self-adjoint, i.e. to have a unique self-adjoint extension: as a matter of
fact, this allows one to choose a space of suitably well-behaved functions as domain, without losing
any physical information.

For the kind of systems we are considering in this paper, let us distinguish two paradigmatic
examples.

• When the particle is free to move in the whole xy-plane, i.e. when Ω = R2, a suitable choice
for the domain D which guarantees the essential self-adjointness of HA is the space of test
functions, i.e. smooth and compactly supported functions, denoted by D(R2). This is a well-
known result which holds even for non-smooth (singular) vector potentials: see e.g. Theorem 2
of [26].

• When the particle is constrained in a regular billiardΩ ⊂ R2, instead, though being Hermitian
on the domain D = D(Ω) (the space of test functions supported in Ω) the magnetic Laplacian
HA is not essentially self-adjoint, but rather admits infinitely many self-adjoint extensions [2].

As it turns out, the existence of multiple self-adjoint extensions in the latter case is strictly linked
to the behavior of wavefunctions ψ ∈ L2(Ω) on the boundary ∂Ω . Functions in D(Ω), being
compactly supported, do not ‘‘see’’ the boundary of the billiard. In other words, no information
about the physics at the boundary is encoded in them. If we want HA to describe a unique physical
implementation of the billiard, we must specify a boundary condition (BC).

Following a physical insight, in the next section we elucidate this point by clarifying which BCs
are actually physically relevant.

3. Boundary conditions for a regular magnetic billiard

Consider the larger space D(Ω) of functions which are supported up to the boundary, Ω =

∪∂Ω being the closure of Ω . The magnetic Laplacian HA with domain D(Ω) is, in general, a non-
ermitian operator whose boundary form, introduced in the previous section, can be fully expressed
n terms of boundary quantities through the well-known Green’s formula.

roposition 1. For each ψ, φ ∈ D(Ω), the boundary form (6) can be expressed as

ΛA(ψ, φ) =

∫
∂Ω

(n · jAψ,φ)(s) ds , (7)

where s denotes the induced curvilinear coordinate on ∂Ω , n = n(s) is the unit normal vector and

jAψ,φ ≡ −
h̄2

2m
[ψ∗

∇Aφ − (∇Aψ)∗φ] . (8)

2 In the mathematical literature the term symmetric operator is usually preferred to Hermitian operator, the latter being
instead more common in the physical literature.
4
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Fig. 1. Example of a bulk function ψ(x, y) ∈ D(Ω) (in green) and of its restriction Ψ (s) ∈ D(∂Ω) (in blue). (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

roof. By inserting the explicit expression (3) of HA into (6) and observing that the terms
roportional to A2 cancel out, we obtain

ΛA(ψ, φ) =
1
2m

∫
Ω

{
ψ∗(−ih̄∇ + eA)2φ − [(−ih̄∇ + eA)2ψ]

∗φ
}
dx

=
−h̄2

2m

∫
Ω

{
ψ∗(∇ · ∇A + i

e
h̄
A · ∇)φ − [(∇ · ∇A + i

e
h̄
A · ∇)ψ]

∗φ

}
dx

=
−h̄2

2m

∫
Ω

∇ · [ψ∗
∇Aφ − (∇Aψ)∗φ] dx =

∫
Ω

∇ · jAψ,φ(x) dx . (9)

y applying the Gauss–Green theorem, the bulk integral (9) is transformed into the line integral (7),
hus proving the claim. □

The boundary form (7), which depends only on the edge behavior of the wavefunctions and of
he vector potential, has a clear physical interpretation: the quadratic form ΛA(ψ,ψ) represents
ndeed the net flux through the boundary of the probability current density jAψ,ψ associated with
he state ψ . As a result, requiring HA to be Hermitian, i.e. ΛA(ψ,ψ) = 0 for all ψ in its domain,
corresponds to a probability conservation law [27,28].

Moreover, as a consequence of Proposition 1, the domain D for which the magnetic Laplacian
HA is Hermitian can be determined by just looking at the behavior of the wavefunctions ψ ∈ D on
he boundary ∂Ω . To formalize this concept, let us give the following definitions.

efinition 1. The restriction operator γ and the covariant normal derivative νA are defined respec-
ively by

γ :D(Ω) → D(∂Ω) , γ :ψ ↦→ Ψ ≡ ψ |∂Ω ; (10)

νA :D(Ω) → D(∂Ω) , νA :ψ ↦→ Ψ̇ ≡ n · (∇Aψ)|∂Ω . (11)

To highlight the difference between D(Ω) and D(∂Ω), sketched in Fig. 1, we will reserve the
pper-case Greek letters to denote wavefunctions defined exclusively on the boundary. With the
bove definitions, the boundary form ΛA can be equivalently written as

ΛA(ψ, φ) = −
h̄2

2m

∫
∂Ω

[
γψ∗ νAφ − (νAψ)∗ γφ

]
(s) ds = −

h̄2

2m

∫
∂Ω

[
Ψ ∗Φ̇ − Ψ̇ ∗Φ

]
(s) ds . (12)

his expression strongly suggests to implement a BC as a linear relation between the values of
= γψ and Ψ̇ = νAψ , expressed through a suitable bulk-to-boundary operator.3

3 Here we shall only consider BCs defined via bounded bulk-to-boundary operators. Such BCs will be enough for our
urposes. In general, as briefly discussed in Appendix, unbounded operators may be also taken into account.
5
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Definition 2. A bulk-to-boundary operator is an operator BA : D(Ω) → D(∂Ω) which can be
xpressed in the form

BA = T1,Aγ − T2,AνA , (13)

here T1,A, T2,A are two boundary operators, that is

Ti,A :D(∂Ω) → D(∂Ω) (i = 1, 2) . (14)

The bulk-to-boundary operator BA acts thus between two different spaces, mapping a function
n the bulk ψ ∈ D(Ω) to a function on the boundary BAψ ∈ D(∂Ω).

efinition 3. Given a vector potential A, a magnetic boundary condition is a constraint BAψ = 0,
.e. a condition

ψ ∈ kerBA =
{
ψ ∈ D(Ω) : T1,AΨ = T2,AΨ̇

}
, (15)

where BA :D(Ω) → D(∂Ω) is a bulk-to-boundary operator.

It should be noted that a magnetic BC is associated with a bulk-to-boundary operator BA only up
o an invertible operator C , since kerBA = ker(CBA). In what follows, with a slight abuse of notation
e will eventually denote a bulk-to-boundary operator itself as the corresponding BC. Notice also
hat the kernel kerBA is never a trivial space, as it always contains the whole space D(Ω) of test
unctions on Ω . In our formalism, for every BC BA we have D(Ω) ⊂ kerBA ⊂ D(Ω), the magnetic
aplacian being Hermitian but not essentially self-adjoint on D(Ω), and non-Hermitian on D(Ω).
he Hamiltonian obtained by imposing a magnetic BC on D(Ω) ‘‘lays in the middle’’.

Physically admissible boundary conditions. An admissible magnetic BC, i.e. one associated with
a physical observable, must necessarily render HA essentially self-adjoint as an operator with
domain kerBA. Such BCs can be parametrized by unitary operators acting on a proper boundary
space [1,29,30]. This point is briefly discussed in Appendix. Notice, however, that this is not enough:
the dependence of the boundary operators Ti,A on the vector potential A is not completely arbitrary,
since a good magnetic BC should also be gauge covariant. This crucial point will be discussed in
Section 4.2.

We conclude this section by introducing some interesting examples of magnetic BCs. To keep our
discussion simple, we will only verify the Hermiticity of HA subjected to our selected BCs, relying to
the more general and well-known results presented in Appendix to prove essential self-adjointness;
for the latter, we refer the reader to, e.g., Refs. [1,2,30–32].

3.1. Magnetic Robin boundary conditions

Definition 4. Let α : ∂Ω → R be a smooth, real-valued function on the boundary ∂Ω of the billiard
Ω . The magnetic Robin boundary conditions BR

A(α) are defined via

T1,A = αI and T2,A = I , (16)

that is

ψ ∈ kerBR
A(α) ⇐⇒ n · (∇Aψ)|∂Ω (s) = α(s)ψ |∂Ω (s) . (17)

Physically, magnetic Robin BCs encode a local proportionality between the boundary values of
the functions and their magnetic covariant normal derivatives. In particular, at a boundary point s
when n · A = 0 so that n · ∇A = n · ∇, Robin BCs are repulsive or attractive in the cases α(s) < 0
and α(s) > 0, respectively: see the example in Fig. 2.

Proposition 2. For every choice of A, the magnetic Hamiltonian HA with Robin BCs BR
A(α) is Hermitian.

Interestingly, this property holds independently of the geometry of Ω and hence independently
of the properties of its boundary ∂Ω .
6
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Fig. 2. Attractive versus repulsive Robin boundary conditions: Ground energy eigenfunctions of the free Laplacian on
= (−L, L), subjected to Robin BCs n · ∇ψ |∂Ω= αψ |∂Ω with αL = 2 (solid blue line) and αL = −2 (dashed green line).

For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

roof. Let us suppose that ψ, φ ∈ kerBR
A(α), so that both satisfy (17). Then

ΛA(ψ, φ) = −
h̄2

2m

∫
∂Ω

[
ψ∗n · ∇Aφ − n · (∇Aψ)∗φ

]
ds = −

h̄2

2m

∫
∂Ω

[
αψ∗φ − αψ∗φ

]
ds = 0 ,

(18)

whence the claim. □

Robin BCs admit two familiar limit cases given by the limits α(s) → ∞ and α(s) = 0,
corresponding respectively to Dirichlet boundary conditions BD, obtained by setting T1,A = I and
T2,A = 0 so that

ψ ∈ kerBD
⇐⇒ Ψ = 0 , (19)

and to magnetic Neumann conditions BN
A , obtained by setting T1,A = 0 and T2,A = I:

ψ ∈ kerBN
A ⇐⇒ Ψ̇ = 0 . (20)

Notice that BD is the only magnetic Robin BC not involving the magnetic potential A. For a
general function α(s), Robin BCs clearly represent a (pointwise) interpolation between Dirichlet and
Neumann BCs.

3.2. Magnetic chiral boundary conditions

Definition 5. Let α : ∂Ω → R be a smooth, real-valued function on the boundary, and let β ∈ R
be a real constant. Denote the unit tangent vector on ∂Ω by t = t(s). The magnetic chiral boundary
conditions BC

A(α, β) are defined via

T1,A = αI + iβ
(

d
ds

+ i
e
h̄
t · A

)
and T2,A = I , (21)

.e.

ψ ∈ kerBC
A(α, β) ⇐⇒ n · (∇Aψ)|∂Ω (s) = α(s)ψ |∂Ω (s) + iβt · (∇Aψ)|∂Ω (s) . (22)

These BCs generalize Robin BCs, which are obtained by setting β = 0. For β ̸= 0, they relate
he value of a function and of its normal derivative to its tangential derivative, which physically
orresponds to the particle velocity along the boundary. Magnetic chiral BCs on a disk have been
tudied in [33]. In particular, for some values of β , the spectrum of HA with such BCs is shown to
e unbounded from below, i.e. the system is unstable.

roposition 3. For every choice of A, the magnetic Hamiltonian HA with chiral BCs BC
A(α, β) is

ermitian.
7
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As for the Robin case, this property is remarkably true independently of the geometry of the
ystem.

roof. Let us suppose that ψ, φ ∈ kerBC
A(α, β) so that both satisfy (22). Then

ΛA(ψ, φ) = −
h̄2

2m

∫
∂Ω

[
ψ∗n · ∇Aφ − n · (∇Aψ)∗φ

]
ds

= −
h̄2

2m

∫
∂Ω

{
ψ∗

[αφ + iβt · ∇Aφ] − [αψ∗
− iβt · (∇Aψ)∗]φ

}
ds

= −
h̄2

2m

∫
∂Ω

{
ψ∗

[
iβ
∂φ

∂s
− β

e
h̄
t · Aφ

]
+

[
iβ
∂ψ∗

∂s
+ β

e
h̄
t · Aψ∗

]
φ

}
ds

= −
h̄2

2m
iβ

∫
∂Ω

∂

∂s
(ψ∗φ) ds . (23)

Because of our regularity assumptions and the property ∂(∂Ω) = ∅, applying the Gauss–Green
heorem we finally have

ΛA(ψ, φ) = −
h̄2

2m
iβ

∫
∂(∂Ω)

ψ∗φ dξ = 0 , (24)

enceforth the claim. □

3.3. Non-local boundary conditions

Robin and chiral BCs have a local nature, since they relate the value of the wave function at each
point of the boundary to its derivatives at the same point. However, admissible BCs can also be
non-local, and connect the values of the wave function and of its derivatives at a boundary point
s to their values at different boundary points s′ ̸= s. In this case the global geometry of Ω plays a
rucial role, as non-local BCs as a matter of fact change the topology of the system: many interesting
xamples are considered e.g. in [1,7]. A precise formulation of non-local BCs is however beyond the
cope of this paper, and we refer the interested reader to the construction presented in [32].

. Gauge transformations and magnetic boundary conditions

We will finally discuss the role of gauge transformations in the description of a quantum
agnetic billiard. As remarked in Section 2, different vector potentials linked by a gauge trans-

ormation, thus corresponding to the same magnetic field, yield different Hamiltonians which, in
rinciple, may correspond to different physical dynamics. Understanding the role of magnetic BCs
n this framework is the main contribution of our work. Before focusing on the BCs in Section 4.2,
owever, let us give a definition of a gauge transformation that can accommodate also the case of
non-simply-connected billiard.

.1. Gauge transformations

efinition 6. Two vector potentials A = (Ax, Ay) and Ã = (Ãx, Ãy) are connected by a gauge
ransformation on a set Ω if

∂Ax

∂x
−
∂Ay

∂y
=
∂Ãx

∂x
−
∂Ãy

∂y
(25)

for each x ∈ Ω , and
e

∮ [
A(s) − Ã(s)

]
· ds ∈ 2π Z (26)
h̄ γ

8
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for each closed path γ contained in Ω . Moreover, an A-dependent quantity which transforms
unitarily (resp. trivially) under a gauge transformation is said to be gauge covariant (resp. gauge
invariant).

From a physical point of view, the condition in Eq. (25) says that the magnetic fields respectively
associated with A and Ã have to coincide inside the billiard. These magnetic fields, which in principle
may differ outside the billiard, are however further related by Eq. (26), a topological condition which
expresses a flux quantization. Eq. (26) says indeed that the magnetic fluxes (through the same
surface) associated with A and Ã, respectively, can differ at most by an integer multiple of the
magnetic flux quantum 2π h̄/e = h/e. In other words, if we consider a billiard with a hole and
e look exclusively at what happens inside the billiard, we are free to add an arbitrary number of
agnetic flux quanta through the hole, as we cannot distinguish in any way the two systems (see
roposition 5).
Notably, the condition supplied by Eq. (26) is not necessary (i.e. it is trivial) in the particular case

here Ω is simply connected, since in this case Eq. (25) implies that∮
γ

[
A(s) − Ã(s)

]
· ds = 0 . (27)

This is a consequence of a standard topological result, namely the Poincaré lemma, stating that each
losed one-form defined in a simply connected manifold is also exact.
From the mathematical point of view, the conditions (25)–(26) further imply that the quantity

− Ã can be unambiguously characterized in terms of a suitable ‘‘gauge function’’. This is expressed
y the following proposition, whose proof is based e.g. on Proposition 2.1.3 of [34].

roposition 4. Let A, Ã be two vector potentials connected by a gauge transformation on a set Ω .
hen there exists a gauge function χ , in general multivalued, such that for each x ∈ Ω:

1. both the quantities ∇χ and eieχ/h̄ are well-defined (i.e. ordinary) functions;
2. we have Ã = A − ∇χ .

roof. Let us fix a reference point x0 ∈ Ω . The quantity

χγ (x) ≡

∫
γ (x0,x)

[
A(s) − Ã(s)

]
· ds , (28)

where γ (x0, x) denotes a path inΩ joining x0 to x, is in general a multivalued function that depends
on the path γ . However, since A and Ã are connected by a gauge transformation, the difference
χγ (x) − χγ ′ (x) is an integer multiple of the magnetic flux quantum:

χγ (x) − χγ ′ (x) =

∫
γ (x0,x)

[
A(s) − Ã(s)

]
· ds −

∫
γ ′(x0,x)

[
A(s) − Ã(s)

]
· ds

=

∮
γ ′′

[
A(s) − Ã(s)

]
· ds =

2nπ h̄
e

, (29)

for some n ∈ Z, where the closed path γ ′′ is given by γ (x0, x) ∪ γ ′(x, x0). Therefore, for each pair
of paths γ and γ ′ in Ω , we get that

∇χγ (x) = ∇χγ ′ (x) and eieχγ (x)/h̄ = eieχγ ′ (x)/h̄ , (30)

that is, the quantities ∇χγ (x) and eieχγ (x)/h̄ do not actually depend on the path, and are thus ordinary
functions. The relation Ã(x) = A(x) − ∇χ (x) follows then immediately for each x ∈ Ω . □

With this property, we are now able to describe a gauge transformation at the level of the Hilbert
space, and consequently to evaluate its effects on the observables and on the states of the physical
system. In particular, we can now prove the gauge covariance of the magnetic Laplacian H .
A

9
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Proposition 5. Let HA and HÃ be the operators

HA = −
h̄2

2m
∇

2
A and HÃ = −

h̄2

2m
∇

2
Ã , (31)

efined respectively on the domains D(HA) and D(HÃ). If the vector potentials A and Ã are connected
y a gauge transformation, with gauge function χ , and if

D(HÃ) = UχD(HA) =
{
Uχψ : ψ ∈ D(HA)

}
, (32)

with Uχ ≡ eieχ/h̄, then HA and HÃ are gauge covariant, i.e. unitarily equivalent:

HÃ = UχHAU†
χ . (33)

In particular, if HA is essentially self-adjoint, then HÃ is also essentially self-adjoint.

Proof. The multiplication operator Uχ : L2(Ω) → L2(Ω) by the function Uχ (x) = eieχ (x)/h̄ is well-
efined, as a consequence of Proposition 4, and obviously unitary. The unitary equivalence of HA
nd HÃ follows then both from the gauge covariance of the magnetic Laplacian,

∇
2
Ã = ∇Ã · ∇Ã = (Uχ∇AU†

χ ) · (Uχ∇AU†
χ ) = Uχ∇A · ∇AU†

χ = Uχ∇2
AU

†
χ , (34)

hich in turn follows from the gauge covariance of the operator ∇A, and from the gauge covariance
f the domains, which is ensured by the assumption Eq. (32). □

In particular, a domain without BCs is gauge-invariant (for smooth vector potentials A and Ã),
hat is UχD(Ω) = D(Ω). This is the relevant result when the particle is free to move in the whole
lane Ω = R2: if A and Ã are connected by a gauge transformation, and the operators HA and
Ã are both defined on D(R2), the invariance UχD(R2) = D(R2) ensures the condition (32), and

by the previous proposition we conclude that HA and HÃ are unitarily equivalent. For a regular
agnetic billiard, the discussion is however complicated by the fact that the typical domain of

he Hamiltonian involves a BC, namely D(HA) = kerBA: in general, even if HÃ is defined on
(HÃ) = kerBÃ and A is connected by a gauge transformation to Ã, HA and HÃ may not be unitarily
quivalent, as it may happens that kerBÃ ̸= Uχ kerBA. We give an example of this latter possibility
t the end of the next subsection.
Moreover, ifΩ is not simply connected, we stress that HA and HÃ may not be unitarily equivalent,

aving hence different spectral properties, even if A and Ã describe the same magnetic field inside
he billiard. This is clearly due to the fact that HA and HÃ can be still associated with different
agnetic fields outside the billiard, and the flux quantization condition (26) is then crucial to ensure

he unitary equivalence. This phenomenon is particularly relevant for the description (and the
nterpretation) of the Aharonov–Bohm effect, see e.g. [23,35,36].

.2. Covariance of magnetic boundary conditions

As previously anticipated, in order to ensure the unitary equivalence of HA and HÃ, admissible
agnetic BCs should be gauge covariant, in the sense that

kerBÃ = Uχ kerBA , (35)

o that Eq. (32) holds. In the next proposition we give a condition on the boundary operators Ti,A,
ntroduced in Eq. (14), which makes the corresponding BC gauge covariant.

roposition 6. Let BA, BÃ be two magnetic boundary conditions associated with two vector potentials
and Ã connected by a gauge transformation, with gauge function χ . If

Ti,Ã = uχTi,Au†
χ (i = 1, 2) , (36)

here uχ ≡ γUχ , then the boundary conditions are gauge covariant:

kerB = U kerB . (37)
Ã χ A

10
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Proof. An immediate calculation shows that the covariant normal derivative νA is actually gauge
ovariant, in D(Ω):

νÃUχψ = uχνAψ . (38)

sing this result and the gauge covariance of the Ti,A we get

BÃUχψ = [T1,Ãγ − T2,ÃνÃ]Uχψ = [T1,ÃγUχ − T2,ÃνÃUχ ]ψ

= [T1,Ãuχγ − T2,ÃuχνA]ψ = uχ [T1,Aγ − T2,AνA]ψ = uχBAψ , (39)

thus implying the claim. □

We stress that this result represents just a sufficient condition for the gauge covariance of a
bulk-to-boundary operator BA, and the opposite implication is generally not true. This is related
to the fact that a magnetic BC is associated with a bulk-to-boundary operator BA only up to an
invertible operator C , as kerBA = ker(CBA). To give a simple example, let us consider the operators
BA =

e
h̄

∮
∂Ω

A(s) · ds γ and BÃ =
e
h̄

∮
∂Ω

Ã(s) · ds γ , and let us suppose that A and Ã are related by a
auge transformation. As the reader can easily verify, in this case kerBÃ = Uχ kerBA. However, by

virtue of Eq. (26), there exists n ∈ Z such that BÃ = BA +2πn γ , that is such that T1,Ã = T1,A +2πn;
therefore, when n ̸= 0, we get T1,Ã ̸= uχT1,Au†

χ .
We now particularize the above discussion to the BCs discussed in Section 3.1.

Proposition 7. The magnetic Robin boundary conditions BR
A(α) and the magnetic chiral boundary

conditions BC
A(α, β) are gauge covariant, that is:

Uχ kerBR
A(α) = kerBR

Ã(α) , (40)

Uχ kerBC
A(α, β) = kerBC

Ã
(α, β) , (41)

where Ã = A − ∇χ and Uχ = eieχ/h̄.

Proof. We prove the proposition only for magnetic chiral boundary conditions, as they include
magnetic Robin boundary conditions as a special case: BR

A(α) = BC
A(α, 0). They are defined via the

boundary operators (21), namely:

T1,A = αI + iβ
(

d
ds

+ i
e
h̄
t · A

)
and T2,A = I.

ince

uχT1,Au†
χ = αI + iβ

(
d
ds

+ i
e
h̄
t · (A − ∇χ )

)
= T1,Ã ,

uχT2,Au†
χ = I = T2,Ã ,

where uχ = γUχ , by Proposition 6 we conclude the proof. □

We conclude this section by proving the gauge invariance of the boundary form ΛA(ψ, φ) for an
arbitrary regular magnetic billiard.

Proposition 8. Let A and Ã be two vector potentials connected by a gauge transformation, with gauge
function χ . Then we have

∀ψ, φ ∈ D(Ω) : ΛA(ψ, φ) = ΛÃ(Uχψ,Uχφ) . (42)
11
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Proof. It follows from a direct calculation:

j ÃUχψ,Uχφ = −
h̄2

2m

{
(Uχψ)∗∇ÃUχφ − Uχφ(∇ÃUχψ)∗

}
= −

h̄2

2m

{
U†
χψ

∗(Uχ∇AU†
χ )Uχφ − [(Uχ∇AU†

χ )Uχψ]
∗Uχφ

}
= −

h̄2

2m

{
ψ∗

∇Aφ − (∇Aψ)∗φ
}

= jAψ,φ . □ (43)

In particular, this proposition implies that ifΛA(ψ, φ) vanishes for each ψ, φ belonging to kerBA,
so does the quantity ΛÃ(Uχψ,Uχφ) for each Uχψ,Uχφ belonging to Uχ kerBA. As a matter of
fact, then, Propositions 7 and 8, combined with Propositions 2 and 3, ensure that either magnetic
Robin or chiral BCs, being gauge covariant and making the Hamiltonian HA Hermitian, are physically
acceptable BCs.

5. Conclusions

In this work we investigated the role of boundary conditions for the magnetic Laplacian in
bounded regions of the plane, examining some physically interesting examples and remarking
the importance of considering gauge covariant boundary conditions. In particular, we obtained
sufficient conditions which ensure the gauge covariance of the bulk-to-boundary operator. Similar
results can be analogously obtained for more general setups, such as relativistic billiards described
by (magnetic) Dirac operators. Besides, one can extend our analysis, and more generally the
theory of self-adjoint extensions via boundary conditions, also to higher spatial dimensions d (with
d > 2) [30] and/or non-smooth domains. In particular, the class of Lipschitz domains has been
widely studied and it is still object of research: we refer the interested reader to e.g. [37–39]. For
what concerns the magnetic Laplacian, a natural application of our results is to characterize the
dependence of the spectral properties on the boundary conditions. In particular, following e.g. the
analysis in [3,4], a strip-shaped magnetic billiard can indeed be thought as a model for the quantum
Hall effect, in the absence of other interactions. Future work will be devoted to this topic [24].
Another interesting setup is that of quantum graphs, which can be thought as collections of one-
dimensional systems, often used to model quantum transport in mesoscopic networks [40] and to
study quantum chaos [41]. In this framework, a strong result can be proven: a magnetic Laplacian
on a graph is always unitarily equivalent, by means of a gauge transformation, to a non-magnetic
Laplacian, having in general different boundary conditions [42].
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Appendix. General theory of quantum boundary conditions

In this appendix we will give a brief sketch of the general theory of quantum BCs for a second-
order differential strongly elliptic operator in a smooth, bounded subset Ω ⊂ Rd. In full generality,
such an operator can be formally written as

K = −

d∑ ∂

∂xi
aij(x)

∂

∂xj
+

d∑
bi(x)

∂

∂xi
+ c(x) , (A.1)
i,j=1 i=1
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where all coefficients are assumed to be smooth up to the boundary ∂Ω . Strong ellipticity means
hat, for all x ∈ Ω , given any 0 ̸= ξ ∈ Rd we have

d∑
i,j=1

aij(x)ξiξj > 0 , (A.2)

.e. the highest-order coefficients define a positive definite quadratic form. This condition is clearly
atisfied by the Laplacian as well as the magnetic Laplacian, both having aij(x) ∝ δij.
We will also require K to be formally self-adjoint, in the following sense: the boundary form

ΛK (ψ, φ), defined in the usual way as

ΛK (ψ, φ) =

∫
Ω

[
ψ∗Kφ − (Kψ)∗φ

]
dx , (A.3)

vanishes for every test (i.e. smooth and compactly supported) functions φ,ψ ∈ D(Ω).
For any choice of the coefficients, K can be implemented as an operator mapping D(Ω) on itself.

esides, a generalized version of Green’s formula holds [43]: letting γ : D(Ω) → D(∂Ω) be the
estriction operator defined in Eq. (10), there exists a boundary operator νK : D(Ω) → D(∂Ω),
btained as a coefficient-dependent linear combination of γ and the normal derivative ν, such that

ΛK (ψ, φ) =

∫
∂Ω

[
γψ∗ νKφ − (νKψ)∗ γφ

]
ds, (A.4)

ds being the induced measure on ∂Ω .
Now, as in the case of the (magnetic) Laplacian, K is not closed nor Hermitian as an operator

with domain D(Ω). Its Hermiticity can be restored only by imposing proper BCs, i.e. by constructing
a bulk-to-boundary operator B = T1γ − T2νK such that functions in kerB are characterized by a
anishing boundary form. Some explicit examples of BCs restoring the Hermiticity have been found
or the magnetic Laplacian. However, Hermiticity is not a sufficient condition for an operator to have
well-defined spectrum and hence be associable to a physical observable: essential self-adjointness,

.e. self-adjointness of its closure, is required. The question is: which BCs render K (essentially)
elf-adjoint?
A thorough discussion of the complete parametrization of admissible BCs, far from the scope of

his paper, requires the introduction of Sobolev spaces and the extension of the operators γ and
νK to two operators, known as Sobolev traces, mapping the maximal domain of K (i.e. the space of
functions ψ such that Kψ ∈ L2(Ω)) to proper negative-order Sobolev spaces. Here, without entering
in such details, we will only briefly present the main results in the cases d = 1 and d > 1.

A.1. Case d = 1

When d = 1, i.e. Ω consists of finitely many segment lines (some of them possibly being infinite
or semi-infinite), the boundary ∂Ω simply consists of a finite number r of points (r = 2 in the case
f one segment), hence γ and νK have values in Cr and, for every BC, T1 and T2 are r × r complex
atrices.
In this setup, a powerful result can be obtained [2]:

roposition 9. Admissible self-adjoint realizations of K are bijectively parametrized by all r×r unitary
atrices in the following way: U is associated with the boundary condition BU characterized by

T1 = i(I + U) , T2 = I − U , (A.5)

ence with

ψ ∈ kerBU ⇐⇒ i(I + U)γψ = (I − U)νKψ . (A.6)

As a result, a bulk-to-boundary operator B corresponds to an admissible BC if and only if its
ssociated boundary matrices T can be written as in Eq. (A.5). As one may readily verify, admissible
i

13
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BCs for a segment include Robin conditions, whilst chiral conditions cannot obviously be defined in
this setup.

Finally, notice that all BCs parametrized by a unitary matrix U such that I − U is invertible
i.e. with U not having 1 as eigenvalue) can be equivalently parametrized as follows:

νKψ = Lγψ , (A.7)

here L = i(I + U)(I − U)−1, the (inverse) Cayley transform of U , is a Hermitian matrix.

.2. Case d > 1

The situation is more involved when d > 1, with ∂Ω hence being a nontrivial (d−1)-dimensional
anifold. In fact, a parametrization formally analogous to the one in Eq. (A.6) can be obtained, but
ith a huge complication: instead of νK , a ‘‘regularized’’ operator ν̃K [30,31], which heavily depends
n the geometry of the system, appears. However, among others, two cases of remarkable physical
nterest may be proven to define admissible BCs:

roposition 10. A boundary condition of the form

νKψ = Lγψ (A.8)

s an admissible boundary condition in the following two cases:

• L is an elliptic (pseudo) differential operator with degree at most 1 [44] (Theorem 8.9);
• L is a bounded operator [45] (Theorem 6.24 and Corollary 6.25).

The first case obviously contains magnetic chiral (and, in particular, Robin) boundary conditions,
onsidered in the main text.
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