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I. INTRODUCTION

In quantum optics a downconversion process may
be visualized as the decay of a pump photon into a pair
of signal and idler photons of lower frequency. Provid-
ed the pumping is sufficiently strong and phase match-
ing takes place, the energy of the spontaneously down-
converted light monotonously increases and that of the
pump beam monotonously decreases. From this point
of view the downconversion process may be looked at
as the decay process of an unstable system. It is well
known that frequent monitoring of a quantum system
leads to inhibition of its evolution. This phenomenon is
called quantum Zeno effect [1, 2]. Recently, a thought
experiment has been suggested [3], in which it is possi-
ble to determine the place where the conversion of the
pump photon took place inside the nonlinear crystal.
The idea goes as follows. The nonlinear crystal is trans-
versely cut in 

 

N

 

 pieces which are then carefully aligned
so that the signal and pump photons leaving, say, the

 

k

 

th slice become the input signal and pump photons to
the (

 

k

 

 + 1) th slice of the crystal. The idler photons, on
the other hand, are removed after each slice, allowing
thus for a future measurement to be performed on them.
If, for example, an ideal detector placed into the path of
the idler mode after the 

 

k

 

th slice clicks, it is then obvi-
ous that the decay of a pump photon took place some-
where inside the 

 

k

 

th slice. By increasing the number of
slices, the actual position of birth of the signal and idler
photons becomes more certain. It has been shown in
[3], in accordance with the Misra-Sudarshan theorem
[2], that the probability of emission of the downcon-
verted pair decreases with increasing 

 

N

 

 and for very
large number of crystal slices (continuous observation)

the decay of the pump photon never occurs. It has also
been shown [4, 5] that provided the phase matching
condition is not fulfilled in the process of downconver-
sion, the observation may, on the contrary, 

 

enhance

 

 the
emission for a properly chosen 

 

N

 

 (anti-Zero or inverse
Zeno effect). This Zeno anti-Zeno interplay has a sim-
ple explanation in terms of destructive and constructive
interference of subsequent emissions inside the nonlin-
ear crystal [3–5]. Here we shall demonstrate that a Ze-
no-like behaviour occurs also when instead of cutting
the crystal we couple one of the downconverted beams
with an auxiliary mode. Although, strictly speaking,
such a linear coupling cannot be interpreted as being
the realization of a measurement a la von Neumann, the
dynamics of the nonlinear coupler mimics very well the
Zeno behaviour of the arrangement in [3]. It is worth
noting, in this context, that the idea of considering the
continuous interaction with an external agent as a sort
of “steady gaze” at the system goes back to Kraus [6]
and has recently been revived in relation with the quan-
tum Zeno effect [7]. Schulman [8], in particular, has
even provided a quantitative relation between the Zeno
effect produced by pulsed measurements (in the sense
of [2]) and continuous observation (in the sense dis-
cussed above) performed by an external system.

The paper is organized as follows. In the second
section a theoretical model of the nonlinear coupler is
introduces. In the third section the Zeno-like behavior
of the nonlinear coupler is demonstrated. In the fourth
section the dressed modes picture of the device under
investigation is developed and a formal analogy be-
tween a phase mismatch and the coupling of the down-
conversion process to an auxiliary mode is explored.
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Abstract

 

—The distorsion of a spontaneous downconvertion process caused by an auxiliary mode coupled to
the idler wave is analyzed. In general, a strong coupling with the auxiliary mode tends to hinder the downcon-
version in the nonlinear medium. On the other hand, provided that the evolution is disturbed by the presence of
a phase mismatch, the coupling may increase the speed of downconversion. These effects are interpreted as be-
ing manifestations of quantum Zeno or anti-Zeno effects, respectively, and they are understood by using the
dressed modes picture of the device. The possibility of using the coupling as a nontrivial phase-matching tech-
nigue is pointed out.
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Finally, the observed Zeno and anti-Zeno effects are
thoroughly discussed in the fifth section, by using the
obtained results.

2. MODEL

Consider a nonlinear coupler made up of two
waveguides, through which four modes, pump 

 

p

 

, signal

 

s

 

, idler 

 

i

 

, and auxiliary mode 

 

b

 

 propagate in the same
direction, see Fig. 1. The nonlinear waveguide is filled
with a second-order nonlinear medium in which ultra-
violet pump photoms are downconverted to signal and
idler photons of lower frequency. In addition, the idler
mode is allowed to exchange energy, e.g. by means of
evanescent waves, with the auxiliary mode 

 

b

 

 propagat-
ing through a linear medium.

In the following we will assume that all four modes
are monochromatic and their frequencies are fixed, e.g.
by placing narrow interference filters in front of detec-
tors. Provided the amplitudes of the fields inside the
coupler vary little during an optical period (SVEA ap-
proximation), and provided the linear coupling is suffi-
ciently weak so that it can be described by coupled
modes theory (Born approximation) [9], the effective
Hamiltonian of our device reads (

 

�

 

 = 1)

 

(1)

 

Here 

 

ω

 

α

 

 is the frequency of mode 

 

α

 

, 

 

∆

 

 = (

 

k

 

p

 

 – 

 

k

 

s

 

 – 

 

k

 

i

 

)

 

z

 

is the nonlinear phase mismatch, 

 

Γ

 

 and 

 

κ

 

 are the non-
linear and linear coupling constants, respectively, and
the propagation variable 

 

z

 

 has been replaces with the
evolution parameter 

 

t

 

. Usually, 

 

κ

 

 is proportional to the
overlap between the idler and auxiliary modes [9],
whereas the nonlinear coupling constant 

 

Γ

 

 is propor-
tional to the second order nonlinear susceptibility 

 

χ

 

(2)
[10]. It is convenient to split the Hamiltonian (1) into
free and interaction parts

 

(2)

 

In order to get rid of the free evolution in the Heisen-
berg equations of notion

 

(3)

 

where 

 

a

 

 is the annihilation operator of a particular
mode, we introduce the new field operators

 

(4)

 

and analogoulsy for 

 

b

 

. Substituting these new variables
together with the Hamiltonian (2) into Eq. (3), we ar-
rive at the equations of motion

 

(5)

H ωpap
†
ap ωsas

†
as ωiai

†
ai ωbb

†
b ++ + +=

+ Γapas
†
ai

†
e

i∆t κai
†
b h.c.+ +( ).

H H0 HI.+=

ȧ i a H0 HI+,[ ] ,–=

aα' e
iωα t

aα , α p s i, ,= =

a'˙ i a' HI',[ ] ,–=

 

where

 

(6)

 

Because the Hamiltonian (1) contains products of three
operators, the equations of motion (3) and (5) are non-
linear. The nonlinearity accounts mainly for saturation
effects and must be taken into account whenever the
pump beam becomes depleted (e.g. medium in a cavi-
ty). On the other hand, if the pumping is sufficiently
strong and if the nonlinear interaction is weak so that
only a small fraction of the pump photons is removed
from the input beam, we can simplify our problem by
describing the strong pump wave in classical terms, i.e.
we let 

 

a

 

p

 

 = 

 

ξ

 

exp(

 

i

 

ω

 

p

 

t

 

), where 

 

ξ

 

 and 

 

ω

 

p

 

 denote the com-
plex amplitude and the frequency of the classical pump
wave, respectively. With the help of the strong pump
wave approximation the interaction Hamiltonian of our
problem (6) is simplified as follows

 

(7)

 

where we assumed that the frequency matching condi-
tions hold: 

 

ω

 

p

 

 – 

 

ω

 

s

 

 – 

 

ω

 

i

 

 = 0 and 

 

ω

 

b

 

 = 

 

ω

 

i

 

. The amplitude

 

ξ

 

 has been absorbed in coupling constant 

 

Γ

 

 and all op-
erators are written without apostrophes, for simplicity.
The dynamics of the nonlinear coupler (7) reduces to
the dynamics of the phase matched spontaneous down-
conversion process provided that 

 

κ

 

 = 

 

∆

 

 = 0 and the ini-
tial state is taken as 

 

|Ψ

 

0

 

〉

 

 = |vac〉 s ⊗ | vac〉 i . As we already
mentioned in the introduction, the average number of
signal and idler photons originating in the crystal of
length L,

(8)

is then an (exponentially) increasing function of L.

3. LINEAR COUPLING TURNED ON

The behaviour of the downconversion process dra-
matically changes when one of the two downconverted
modes (e.g. the idler mode) is coupled to an auxiliary

HI' Γap' as'
†
ai'

†
e

i∆t
e

i ωp ωs– ωi–( )t–
+=

+ κai'
†
b'e

i ωi ωb–( )t
h.c.+

HI Γas
†
ai

†
e

i∆t κai
†
b h.c.,+ +=

as i,
†

as i,〈 〉 vac ΓL, κ ∆ 0= =( )sh
2

=

nonlinear waveguide

linear waveguide

pump sigal

idler

aux
κ

Γ

Fig. 1. Outline of the nonlinear coupler.
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mode via a linear interaction. The Hamiltonian (7)
yields, when ∆ = 0 (phase matching),

(9)

and we are interested in the regime of weak nonlinear-
ity, expressed by the condition κ > Γ. Notice that two
opposite tendencies compete in Eqs. (9): an elliptic
structure, leading to oscillatory behavior, governed by
the coupling parameter κ, 

(10)

and a hyperbolic structure, yielding exponential behav-
ior, governed by the nonlinear parameter Γ,

(11)

The threshold between these two regimes occurs for
Γ = κ.

The system of equations (9) is easily solved and the
number of output signal photons, which is the same as
the number of pump photons decays, reads

(12)

where χ = . Hereafter, the symbol 〈…〉vac de-
notes averaging with respect to the initial vacuum state
|Ψ0〉  = |vac〉 s ⊗  |vac〉 i ⊗  |vac〉b

1. Unlike the case of phase
matched downconversion (8), the exchange of energy
between all modes now becomes periodical when κ > Γ.
As the linear coupling becomes stronger, the period of
the oscillations gets shorter and the amplitude of the os-
cillations decreases as κ–2, namely

(13)

For very strong coupling2 the downconversion process
is completely frozen, the medium becomes effectively
linear and the pump photons propagate throught it
without “decay”. Notice that in this situation, even if L
is increased, the number of downconverted photons is
bounded [compare with the opposite case (8)]. This can
be interpreted as a manifestation of quantum Zeno ef-
fect in the following sense: by increasing the coupling
with the auxiliary mode, one performs a better “obser-
vation” of the idler mode and therefore of the “decay”

1 Other choices of the initial state are possible as well. Different in-
put states of mode b then correspond to different input states of
the pointer of a measuring apparatus.

2 In the regime of very large κ, however, the coupled modes theory
breaks down and some other experimental realization of the
Hamiltonian (1) should be found.

ȧs iΓai
†
,–=

ȧi iΓas
†

– iκb ∆ 0=( ),–=

ḃ iκai,–=

ȧ̇i κ 2
ai, ḃ̇– κ 2

b–= =

ȧ̇s Γ 2
as, ȧ̇i Γ 2

ai.= =

as
†
as〈 〉 vac

Γ 2

χ2
----- χLsin

2 κ 2Γ 2

χ4
----------- 1 χLcos–( )2

,+=

κ 2 Γ 2
–

as
†
as〈 〉 vac

Γ 2

κ 2
----- κLsin

2 Γ 2

κ 2
----- 1 κLcos–( )2

+∼  = 
4Γ 2

κ 2
--------- κL

2
------sin

2

κ  � Γ( ).

of the pump. The hindering of the evolution results.
There is an intuitive explanation of this behavior: since
the linear coupling changes the phases of the ampli-
tudes of the interacting modes, the constructive inter-
ference yielding exponential increase of the converted
energy (8) is destroyed, and downconversion becomes
frozen. We shall come back to this point and corrobo-
rate this intuitive picture in the next section.

The proposed interpretation in terms of quantum
Zeno effect is readily understandable and rather appeal-
ing. On the other hand, one should remark that since
only the output fields are accessible to measurement in
the experimental setup in Fig. 1, no relevant informa-
tion is readily available about the place where the sig-
nal and idler photon are created3. In this sense, no bona
fide measurement is being performed on the fields. The
situation would be different if we provided the auxilia-
ry waveguide with some photodetection device like an
array of highly efficient photodetectors. For sufficient-
ly strong linear coupling, the decay product (the idler
photon) would enter the auxiliary mode soon after the
emission, it could then be detected by a pixel of the
photodetection array and we could thereafter infer the
place where the emission had taken place. As there is
no such a detection device present in the setup in ques-
tion, the coherent superposition of the two possibilities:
“the idler photon is in the idler mode” and “the idler
photon is in the auxiliary mode”, is maintained through
the evolution and no decomposition of the wave func-
tion occurs. Nevertheless, it is still possible (and use-
ful) to spear about quantum Zeno effect in the more
general sense given above. A discussion of this point is
given in [11] in connection with the experiment per-
formed by Itano et al. [12].

4. DRESSED MODES

We nov look for the modes dressed by the interac-
tion κ. This will provide an alternative interpretation
and a more rigorous explanation of the result obtained
above. Let us diagonalize the Hamiltonian (1) with re-
spect to the linear coupling. By setting ωi = ωb and κ re-
al, it is easy to see that in terms of the dressed modes

(14)

the Hamiltonian (1) reads

(15)

3 The possibility of the existence of an observable playing a role
similar to the phase in Ref. [4], and yielding some information
about the place of downconversion is not excluded, though: A.
Luis, private communication.

c ai b+( )/ 2,=

d ai b–( )/ 2,=

H ωpap
†
ap ωsas

†
as ωcc

†
c ωdd

†
d ++ + +=

+
Γ
2

-------apas
†
c

†
e

i∆t Γ
2

-------apas
†
d

†
e

i∆t
h.c.,+ +
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where the dressed energies are

(16)

If ∆ = 0, in the strong pump limit, by following the
same procedure of section 2, instead of (7), we get the
following interaction Hamiltonian

(17)

where we assumed as before that the frequency match-
ing conditions holds: ωp – ωs – ωi = 0. By comparing
the Hamiltonian (7) when κ = 0:

(18)

describing downconversion with phase mismatch ∆, it
is apparent that the coupling and the phase mismatch
influence the downconversion process in the same way.
In fact for large values of the phase mismatch ∆ it is
easy to find that

(19)

which is to be compared with Eq. (13). The coupling of
the idler mode ai with the auxiliary mode b yields two
dressed modes c and d the pump photon can decay to.
They are completely decoupled and due to their energy
shift (16), exhibit a phase mismatch ±κ. Since the
phase mismatch effectively shortens the time during
which a fixed phase relation holds between the interact-
ing beams, the amount of converted energy is smaller
than in the ideal case of perfectly phase matched inter-
action. This explains the results of section 3. A strong
linear coupling then makes the subsequent emissions of
converted photons interfere destructively and the non-
linear interaction is frozen. In this respect the distur-
bances caused by the coupling and by frequently re-
peated measurements are similar and we can interpret
the phenomenon as a quantum Zeno effect.

5. COMPETITION BETWEEN THE COUPLING 
AND THE MISMATCH

In the previous section we saw that the nonlinear in-
teraction was affected by both linear coupling and
phase mismatch in the dame way. Namely, the effec-
tiveness of the nonlinear process dropped down under
their action. In this section we show that when both dis-
turbing elements are present in the dynamics of the
downconversion process, the linear coupling can, rath-
er surprisingly, compensate for the phase mismatch and
vice versa, so that the probability of emission of the sig-
nal and idler photons can almost return back to its un-
disturbed value.

We start from the equations of motion generated by
the full interaction Hamiltonian (7)

ωc ωi κ ,+=

ωd ωi κ .–=

HI
Γ
2

-------as
†
c

†
e

iκ t Γ
2

-------as
†
d

†
e

iκ t–
h.c., ∆ 0=( )+ +=

HI Γas
†
ai

†
e

i∆t
h.c., κ 0=( )+=

as
†
as〈 〉 vac

4Γ 2

∆2
--------- ∆L

2
------- ∆ � Γ( ),sin

2∼

(20)

Although it is easy to write down the explicit solution of
the system (20), we shall here provide only a qualitative
discussion of the solution. The main features are then
best demonstrated with the help of a few figures. Elimi-
nation idler and auxiliary mode variables from Eq. (20)
we get a differential equation of the third order for the
annihilation operator of the signal mode. Its characteris-
tic polynomial (upon substitution as(t) = as(0)exp(iλt))

(21)

is recognized as a cubic polynomial in λ with real coef-
ficients. An oscillatory behaviour of the signal mode
occurs only provided the polynomial (21) has three real
roots (causus irreducibilis), i.e. its determinant D must
obey the condition D < 0. Expanding the determinant in
the small nonlinear coupling parameter Γ and keeping
terms up to the second order in Γ we obtain

(22)

It is seen that a mismatched downconversion behaves
in either oscillatory of hyperbolic way, depending on
the strength of the coupling with the auxiliary mode.
The values of κ lying at the boundary between these
two types of dynamics are determined by solving the
equation D = 0. The only two nontrivial solutions are

(23)

The case ∆ � Γ is of main interest in this section (oth-
erwise we have the situation already described in sec-
tion 3). Hence we can, eventually, drop Γ2 in Eq. (23).
The resulting intervals are

(24)

The behaviour of the mismatched downconversion
process is shown in Fig. 2 for a particular choice of ∆.
In absence of linear coupling the downconverted light
shows oscillations and the overall effectiveness of the
nonlinear process is small due to the presence of phase
mismatch ∆. However, ad we switch on the coupling
between the idler and auxiliary mode, the situation
changes. By increasing the strength of the coupling the
period of the oscillations gets longer and its amplitude

gets larger. When κ becomes larger than ∆ –  the

ȧs iΓai
†
e

i∆t
,–=

ȧi iΓas
†
e

i∆t
– iκb, ∆ 0 κ, 0≠ ≠( )–=

ḃ iκai.–=

λ 3
2∆λ 2 ∆2 κ 2

– Γ 2
+( )λ ∆Γ 2

, κ 0≠+ + +

D
κ 2

27
------ κ 2 ∆2

–( )
2

5∆2
3κ 2

+( )Γ 2
–[ ] ,–=

Γ  � ∆ κ .,

κ1 2, ∆2 3
2
---Γ 2

8∆Γ±+ .=

hyperbolic behaviour:

κ ∆ 2Γ– ∆ 2Γ+,〈 〉 ;∈
oscillatory behaviour:

κ 〈 0 ∆ 2Γ–, )∈ ∆ 2Γ ∞,+( ).∪

2Γ
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oscillations are no longer seen and the intensity of the
signal bean starts to grow monotonously. We can say
that in this regime the initial nonlinear mismatch has
been compensated by the coupling.

The interplay between nonlinear mismatch and lin-
ear coupling is illustrated in Fig. 3. A significant pro-
duction of signal photons is a clear manifestation of an
anti-Zeno effect. In correspondence with the observa-

tions in [4, 5], such an anti-Zeno effect occurs only pro-
vided a substantial phase mismatch is introduced in the
process of downconversion. It is worthwile to compare
the interesting behavior seen in Fig. 3 with the Zeno
and anti-Zeno effects observed in a sliced nonlinear
crystal (Fig. 1 in [5]). It can be seen that the coupling
parameter κ here plays a role similar to the number of
slices N, into which the crystal is cut in the latter
scheme. Moreover, the sharpness of the “observation”
(κ or N), at which a maximum output intensity occurs,
is approximately a linear function of the introduced
phase mismatch in both schemes. There are, however,
also some points of difference. For example, the maxi-
mum output intensity obtainable for a given ∆ by slic-
ing the crystal decreases with increasing phase mis-
match ∆ [5]. On the other hand, no matter how strong
the mismatch is, it can always be removed with the help
of a suitable linear coupling (and vice versa). This dif-
ference is due to the 1/N scaling of intensities of output
light generated by a process under observation [3–5].
An analogous factor is missing here, in Eq. (12).

Several intuitive explanations of the anti-Zeno like
behaviour seen in Fig. 3 are at hand. From the point of
view of constructive and destructive interference one
can say that since the linear coupling effectively chang-
es the phase relations among interacting modes, the de-
structive interference of subsequent pump photon de-
cays caused by phase mismatch is suppressed in the
same way as the constructive interference has been
suppressed in the case of perfectly matched interaction.

Fig. 3 can also be interpreted in a quantitative way
in analogy with the dressed state description of interac-
tion of atoms with intense light [13]. In terms of the
dressed modes c and d of Eq. (14), if ∆ ≠ 0, in place of
the Hamiltonian (17) one gets

(25)

that yields the equations of motion

(26)

The energy scheme implied by Eq. (26) is shown in
Fig. 4. Under the influence of the coupling with the
auxiliary mode b the mismatched downconversion
splits into two dressed energy-shifted interactions. It is
apparent that when κ = ±∆ one of the two interactions
becomes resonant. The other one is “counterrotating”
and acquires a phase mismatch 2∆, yielding oscilla-
tions. Also, the amplitude of such oscillations decreas-
es as ∆–2 and the mode output becomes negligible com-
pared to the other one. The use of the rotating wave ap-

HI
Γ
2

-------as
†
c

†
e

i ∆ κ+( )t Γ
2

-------as
†
d

†
e

i ∆ κ–( )t
h.c.,+ +=

ȧs i
Γ
2

-------c
†
e

i ∆ κ+( )t
– i

Γ
2

-------d
†
e

i ∆ κ–( )t
,–=

ċ i
Γ
2

-------as
†
e

i ∆ κ+( )t
,–=

ḋ i
Γ
2

-------as
†
e

i ∆ κ–( )t
.–=

〈ns〉vas

0.6

0

2

4

0

20

κ∆

〈ns〉vas

1

0

1

2

3 0

4

8

κL

0.4

0.2

6

10

Fig. 2. Mean number of signal photons 〈ns 〉  behind the non-
linear medium as a function of interaction length L and
strength κ of linear coupling. The nonlinear mismatch and
nonlinear coupling parameter are ∆ = 5 and Γ = 0.5, respec-
tively.

Fig. 3. Interplay between linear coupling and phase mis-
match. The mean number of signal photons 〈ns 〉  behind the
nonlinear medium of length L = 1.5 is shown vs strength κ
of linear coupling and nonlinear mismatch ∆. The nonlinear
coupling parameter is fixed at Γ = 0.5.
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proximation in Eq. (26) is fully justified in this case and
the system is easily solved. The output signal intensity
reads

(27)

[compare with Eq. (8)]. The linear coupling to an aux-
iliary mode compensates for the phase mismatch up to
a change in the effective nonlinear coupling strength
Γ  Γ/ .

As a matter of fact, the condition κ = ±∆ can be inter-
preted also as a condition for achieving the so-called
quasi-phase matching in the nonlinear process. A quasi-
phase-matched regime of generation [14] is usually
forced by creating an artificial lattice inside a nonlinear
medium, e.g. by periodic modulation of the nonlinear
coupling coefficient. Periodic change of sign of Γ (rect-
angular modulation) yields the effective coupling
strength Γ  2Γ/π [14], where, as before, Γ is the cou-
pling strength of the phase-matched interaction. Thus the
continuous “observation” of the idler mode even gives a
slightly better enhancement of the decay rate than the
most common quasi-phase-matching technique.

To summarize, the statement “the downconversion
process is mismatched” means that the nonlinear pro-
cess is out of resonance in the sense that the momentum
of the decay products (signal and idler photons) differs
from the momentum carried by the pump photon before
the decay took place. When the linear interaction is
switched on the system gets dressed and the energy
spectrum changes. A careful adjustment of the cou-
pling strength κ makes then possible to tune the nonlin-
ear interaction back to resonance. In this way the prob-
ability of pump photon decay can be greatly enhanced.
This occurs when κ � ±∆ and explains why the anti-Ze-
no effect takes place along the line κ = ∆ in Fig. 3.

6. CONCLUSION

In this article a downconversion process disturbed
by the presence of a linear coupling between the idler
and some auxiliary mode has been discussed. Al-
though, strictly speaking, such a coupling is not a mea-
surement in von Neumann’s sense, we found a striking
similarity between the dynamics of our system and the
dynamics of the downconversion processes taking

as
†
as〈 〉 vac

Γ
2

-------L 
  , κ ∆±=( ) ∆ � 1/L( )sh

2
=

2

place in a sliced nonlinear crystal, where a Zeno inter-
pretation is feasible and appealing.

In some sense, the Zeno effect is a consequence of
the new dynamical features introduced by the coupling
with an external agent that (through its interaction)
“looks closely” at the system. When this interaction can
be effectively described as a projection operator a la
nov Neumann, we obtain the usual formulation of the
quantum Zeno effect in the limit of very frequent mea-
surements. In general, the description in terms of pro-
jection operators may not apply, but the dynamics can
be modified in a way that is strongly reminiscent of Ze-
no. Examples of the type analyzed in this paper call for
a broader definition of “quantum Zeno effect”.
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Fig. 4. Energy scheme of a mismatched downconversion
process subject to linear coupling. The bottom solid lines
denote a resonant process. 


