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Abstract

The time evolution of an unstable quantum mechanical system coupled with an external measuring
agent is investigated. According to the features of the interaction Hamiltonian, a quantum Zeno effect
(hindered decay) or an inverse quantum Zeno effect (accelerated decay) can take place, depending on
the response time of the apparatus. The transition between the two regimes is analyzed for both pulsed
and continuous measurements.

PACS: 03.65.Xp

1. Quantum Zeno Effect: Fundamentals

Let H be the total Hamiltonian of a quantum system. The survival probability of the system
in state jai is

PðtÞ ¼ jAðtÞj2 ¼ jhaj e�iHt jaij2 : ð1Þ

An elementary expansion yields a quadratic behavior at short times

PðtÞ 	 1� t2=t2Z ; t�2Z 
 haj H2 jai � haj H jai2 ; ð2Þ

where tZ is called Zeno time. Observe that if one divides the Hamiltonian into a free and
an interaction part H ¼ H0 þ HI, with H0 jai ¼ wa jai and haj HI jai ¼ 0, the Zeno time
reads t�2Z ¼ haj H2

I jai and depends only on the off-diagonal part of the Hamiltonian.
We first consider “pulsed” measurements, as in the seminal approach [1]. The comple-

mentary notion of “continuous measurement” will be discussed in Sec. 4. Perform N (in-
stantaneous) measurements at time intervals t ¼ t=N (pulsed observation), in order to check
whether the system is still in its initial state jai. The survival probability after the measure-
ments reads

PðNÞðtÞ ¼ PðtÞN ¼ P t=Nð ÞN	 exp ð�t2=t2ZNÞ ���!N!1
1 : ð3Þ

The (mathematical) limit is the quantum Zeno paradox: “A watched pot never boils”. For
large (but finite) N the evolution is slowed down (quantum Zeno effect). Indeed, the survi-
val probability after N pulsed measurements (t ¼ Nt) is interpolated by an exponential law
[2]

PðNÞðtÞ ¼ PðtÞN ¼ exp ðN log PðtÞÞ ¼ exp ð�geffðtÞ tÞ ; ð4Þ
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with an effective decay rate

geffðtÞ 
 � 1

t
log PðtÞ � 0 : ð5Þ

For t ! 0 one gets PðtÞ 	 exp ð�t2=t2ZÞ, whence

geffðtÞ 	 t=t2Z : ðt ! 0Þ ð6Þ

increasingly frequent measurements hinder the evolution and tend to “freeze” it. The Zeno
evolution is represented in Fig. 1.

2. Unstable Systems

Consider the spontaneous decay of state jai into state jbi described by the Hamiltonian

H ¼ H0 þ HI ¼ wa jai haj þ
P
k

wka
y
kak þ

P
k

fkðak jai hbj þ ayk jbi hajÞ ; ð7Þ

with ha j ai ¼ hb j bi ¼ 1 and ½ak; ayk0 � ¼ dkk0 , other commutators = 0. As is well known,
the Fourier-Laplace transform of the survival amplitude AðtÞ in (1) is the expectation value
of the resolvent

GaðEÞ ¼
ð1

0

dt eiEt AðtÞ ¼ haj i

E � H
jai ; AðtÞ ¼

ð
B

dE

2p
e�iEt GaðEÞ ; ð8Þ

the Bromwich path B being a horizontal line ImE ¼constant> 0 in the half plane of con-
vergence of the Fourier-Laplace transform (upper half plane). By performing Dyson’s re-
summation, the resolvent Ga can be expressed in terms of the self-energy function Sa

GaðEÞ ¼
i

E � wa � SaðEÞ
; SaðEÞ ¼

P
k

fkj j2

E � wk
¼

ð1

0

dw
jaðwÞ
E � w

; ð9Þ

where jaðwÞ ¼ haj HIdðw � H0Þ HI jai ¼
P

k fkj j2 dðw � wkÞ is the form factor of the in-
teraction (spectral density function).
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Fig. 1. Evolution with frequent ‘‘pulsed“ measure-
ments: quantum Zeno effect. The dashed (full) line
is the survival probability without (with) measure-
ments. The gray line is the interpolating exponen-
tial (4)



If �Sað0Þ < wa (which happens for sufficiently smooth form factors and small cou-
pling), the resolvent is analytic in the whole complex plane cut along the positive real axis
(continuous spectrum of H). On the other hand, there exists a pole Epole located just below
the branch cut in the second Riemann sheet, solution of the equation
Epole � wa � SaIIðEpoleÞ ¼ 0, SaII being the determination of the self-energy function in the
second sheet. The pole has a real and imaginary part Epole ¼ wa þ dwa � ig=2 given by

dwa ¼ Re SaIIðEpoleÞ ’ Re Saðwa þ i0þÞ ¼ P
ð
dw

jaðwÞ
wa � w

¼ P
P
k

jfkj
2

wa � wk
;

ð10Þ

g ¼ �2 Im SaIIðEpoleÞ ’ �2 Im Saðwa þ i0þÞ ¼ 2pjaðwaÞ ; ð11Þ

up to fourth order in the coupling constant. One recognizes the second-order energy shift dwa

and the celebrated Fermi “golden” rule g [3]. The survival amplitude has the general form

AðtÞ ¼ ApoleðtÞ þ AcutðtÞ ; ð12Þ

where ApoleðtÞ ¼ e�iðwaþdwaÞt�gt=2=½1� S0
aIIðEpoleÞ�, Acut being the branch-cut contribution.

At intermediate times, the pole contribution dominates the evolution (Weisskopf-Wigner
approximation [4]) and

PðtÞ ’ jApoleðtÞj2 ¼ Z e�gt ; Z ¼ 1� S0
aIIðEpoleÞ

�� ���2 ; ð13Þ

where Z, the intersection of the asymptotic exponential with the t ¼ 0 axis, is the wave
function renormalization. As is well known the exponential law is corrected by the cut
contribution, which is responsible for a quadratic behavior at short times and a power law
at long times.

3. Inverse Quantum Zeno Effect

Consider an unstable system with decay rate g given by (11). By performing a single
measurement at a sufficiently long time t, when the exponential behavior PðtÞ ’ e�gt is
dominant, one infers from (4) that the effective decay rate is simply the natural (undis-
turbed) one

geffðtÞ���!
‘‘long t

g : ð14Þ

We now ask whether it is possible to find a finite time t* such that

geffðt*Þ ¼ g : ð15Þ

If such a time exists, then by performing measurements at time intervals t* the system
decays according to its undisturbed decay rate g, as if no measurements were performed.
The related concept of ‘‘jump“ time was considered in [5]. By (5) and (15) we get
Pðt*Þ ¼ e�gt� : the time t* is the intersection between the curves PðtÞ and e�gt. In the
situation depicted in Fig. 2(a) such a time t* exists: the full line is the survival probability
PðtÞ and the dashed line the exponential e�gt [the dotted line is the asymptotic exponential
Ze�gt, see (13)]. By looking at Fig. 2(b) we realize that t* represents a transition time

”
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from a quantum Zeno to an inverse quantum Zeno regime [2]. Indeed

if t ¼ t1 < t* ) geffðt1Þ < g Quantum Zeno Effect (QZE);

if t ¼ t2 > t* ) geffðt2Þ > g Inverse quantum Zeno Effect (IZE):

If t* exists, frequent measurements first accelerate decay (IZE) [2, 6], then, eventually,
slow it down (QZE) when the frequency of measurements becomes larger than 1=t* [2, 7].
Note that the existence of such a transition time t* is related to the value of the wave
function renormalization Z: if Z < 1 a finite t* certainly exists [2] and the system exhibits
both QZE and IZE, depending on the frequency of measurements. (This is the case consid-
ered in Fig. 2.) The transition from a Zeno to an inverse Zeno regime has been recently
confirmed in a beautiful experiment performed by Raizen’s group [7].

4. Pulsed versus Continuous Observation

We now introduce some alternative descriptions of a measurement process and discuss the
notion of continuous measurement. This is to be contrasted with the idea of pulsed mea-
surements, discussed in the previous sections and hinging upon von Neumann’s projections.
We will show that the use of instantaneous pulsed measurements is not essential to obtain
QZE [8, 9] or (possibly) IZE. We will provide a dynamical picture of the measurement
process by introducing a Hamiltonian description of the interaction with the detector and
show that the detector response time plays a role very similar to that of the period between
measurements in the pulsed version [5]. We will also show that irreversibility is not an
essential ingredient of this picture. By replacing an irreversible detector with an oscillating
one, we show that QZE and IZE are a simple consequence of a strong interaction between
the ‘‘observed” decaying system and an ‘‘observing” agent (the ‘‘detector”) which closely
‘‘looks” at the system [10].

4.1. Pulsed observation (period t)

We start by considering pulsed measurements performed at time intervals t. For simplicity
we choose a Lorentzian form factor jaðwÞ ¼ l2L=pðw2 þ L2Þ, from which an analytical
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Fig. 2. (a) Determination of the transition time t*. The full line is the survival probability
PðtÞ, the dashed line the exponential e�gt and the dotted line the asymptotic exponential
Ze�gt in (13). (b) Quantum Zeno vs inverse Zeno (‘‘Heraclitus“) effect. The dashed line
represents the undisturbed survival probability PðtÞ. The full lines represent the survival
probabilities with measurements at time intervals t and the dotted lines their exponential
interpolations (4). For t1 < t* < t2 the effective decay rate geffðt1Þ [geffðt2Þ] is smaller
(QZE) [larger (IZE)] than the ‘‘natural“ decay rate g. When t ¼ t* one recovers the natural
lifetime, according to (15)



expression of the survival amplitude can be easily obtained. (Notice that the Hamiltonian in
this case is not lower bounded and one expects no deviations from exponential behavior at
very large times.) We chose l ¼ 0:1, L ¼ 1 and wa ¼ 3, so that Z ¼ 0:998 < 1, a finite t*
exists and the system exhibits a QZE-IZE transition. The effective decay rate (5) is shown
in the left frame of Figure 3 as a function of t. Notice the linear behavior (6) for t ! 0,
with slope 1=t2Z. Observe that for the chosen value of the parameters, the linear approxima-
tion (6) is valid well beyond the intersection t* and one gets t* ’ t2Zg ¼ 0:2. For t > t*
the system decays faster, with a decay rate geff that first increases up to 2g, then decreases
and eventually relaxes to the natural decay rate g according to (14).

4.2. Continuous observation (response time G�1)

Let us consider now a continuous measurement process. This is accomplished, for instance,
by adding to (7) the following interaction Hamiltonian

HmeasðGÞ ¼
ffiffiffiffiffiffiffi
G

2p

r ð
dw dðwÞ jbi hMj þ dyðwÞ jMi haj

� �
; ð16Þ

with ½dðwÞ; dyðw0Þ� ¼ dðw � w0Þ, other commutators = 0. As soon as it becomes populated,
state jbi decays into state jMi, with a decay rate G . This yields a continuous monitor-
ing of the decay process jai ! jbi, with a response time 1=G . The presence of the interac-
tion Hamiltonian (17) simply modifies the self-energy function in (9) as
SaðE;GÞ ¼ SaðE � iG=2Þ, whence, by (11),

geffðGÞ ¼ �2 Im Sa wa � i
G

2

� 	
¼ 4

G

ð
dw jaðwÞ

G2

4

ðw � waÞ2 þ
G2

4

: ð17Þ

The effective decay rate (18) is shown in the central frame of Fig. 3 as a function of 4=G .
The behavior is similar to that described in Sec. 4.1. For large values of G one gets a linear
behavior

geffðGÞ 	 4=Gt2Z ; for G ! 1 ; ð18Þ

which, when compared with (6), yields Schulman’s relation t ’ 4=G [5]. When
G < G* ¼ 4=t*, i.e. when the response of the apparatus is not very quick, the decay is
accelerated (IZE). For G ! 0 one recovers the natural decay rate g.

Fortschr. Phys. 49 (2001) 10––11 945

0 1 2 3 4 5
0

1

2

0 1 2 3 4 5
0

0.5

1

1.5

0 0.5 1 1.5 2
0
1
2
3
4
5

ÿ
4

ÿ

1

Kÿ
ÿ

4

ÿÿ
1

Kÿ

ÿeþ(þ)=ÿ ÿeþ(ÿ)=ÿ ÿeþ(K)=ÿ

Fig. 3. Effective decay rate as a function of the detector response time: pulsed observation (period t);
continuous observation (decay time G�1); continuous Rabi observation (Rabi period 2p=K)



4.3. Continuous ‘‘Rabi” observation (response time K�1)

The previous example is nothing but a more refined model of (the first stage of) a detection
process than that given by the projection prescription. In this sense one might be led to
think that irreversibility is a fundamental requisite for obtaining quantum Zeno effects: the
observed system has to be coupled to a bona fide detector that irreversibly records its state.
This expectation would be incorrect. In order to hinder (or accelerate) decay it is enough to
introduce an external agent which couples differently to the initial state jai and to the
‘‘decay” products ð1� jai hajÞ jwi (w being the wave function of the system). In other
words, one only needs an interaction which is able to distinguish whether the system is in
its initial state or not: in this (very) loose sense the external agent can be viewed as a
detector [10]. Let us illustrate this point by adding to (7) the following interaction Hamilto-
nian

HmeasðKÞ ¼ K jbi hMj þ jMi hbjð Þ ; ð19Þ

which is probably the simplest way to include an external apparatus: as soon as state jbi
becomes populated it undergoes Rabi oscillations to state jMi with Rabi frequency K
(detector response time ¼ 1=K) [11]. The interaction modifies the self-energy function as
SaðE;KÞ ¼ ½SaðE þ KÞ þ SaðE � KÞ�=2, whence the effective decay rate reads [12]

geffðKÞ ¼ gðwa þ KÞ þ gðwa � KÞ½ �=2 ¼ p jaðwa þ KÞ þ jaðwa � KÞ½ � ð20Þ

and is shown in the right frame of Fig. 3 as a function of 1=K. The behavior is similar to
those previously described. For large values of K one gets the behavior

geffðKÞ 	 pjaðKÞ 	 L=t2ZK
2; for L ! 1: ð21Þ

Note, however, that this quadratic law, unlike the linear laws (6) and (18), is not generic,
for it depends on the specific asymptotic behavior of the chosen form factor ja. As in the
previous cases, when K < K*, i.e. when the response of the apparatus is not very quick,
the decay is accelerated (IZE) and for K ! 0 the system eventually decays with the natural
rate g.

5. Conclusions

We have shown that the only requisite to obtain QZE is a coupling which is able to ‘‘pick
out” the initial state of the system. For unstable systems this can also give rise to IZE. The
recent experiment [7] has proved the existence of a transition from QZE to IZE in the case
of pulsed measurements for a bona fide unstable system. It would be interesting to check
the presence of such a transition also in the other cases envisaged in this paper (continuous
and continuous Rabi observation).
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