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Dipartimento di Fisica, Università di Bari and Istituto Nazionale di Fisica Nucleare,
Sezione di Bari
I-70126 Bari, Italy

Abstract

We analyze the notion of quantum coherence in an interference experiment. We let the phase shifts
fluctuate according to a given statistical distribution and introduce a decoherence parameter, defined in
terms of a generalized visibility of the interference pattern. One might naively expect that a particle
ensemble suffers a greater loss of quantum coherence by interacting with an increasingly randomized
distribution of shifts. As we shall see, this is not always true.

PACS: 03.75.Dg, 05.40.–a, 42.50.–p

1. Introduction

Decoherence is an interesting phenomenon and a topic that attracts widespread attention
[1]. However, it is not easy to give a quantitative definition of decoherence [2]. All attempts
at defining it always depend on the experimental configuration and on the authors’ taste.
An interesting related quantity is the square of the density matrix [3]. This quantity enjoys
interesting features [4], but also yields results which are at variance with naive expectations
based on entropy [2]. We consider here an alternative, operational definition of decoher-
ence, based on a fluctuation approach [5], and discuss its physical meaning by considering
some examples.

2. Fluctuating Phase Shifter

Consider a Mach-Zender interferometer (MZI), with a phase shifter D in one of its two
arms. If jyini is the incoming state, the output state in the ordinary channel is

jyOi ¼
1

2
½1þ e

i
�h p̂pD� jyini � ÔOðDÞ jyini ð1Þ

or, in terms of the density matrix,

q̂qO � jyOi hyOj ¼ ÔOðDÞ jyini hyinj ÔOðDÞy ¼ ÔOðDÞ q̂qinÔOðDÞy ; ð2Þ

where q̂qin is the density matrix of the incoming state. Suppose now that the shift D fluctuates
according to a probability function wðD � D0Þ. The trace of the average density matrix is

Tr q̂qO ¼ Tr
Ð
dD wðD � D0Þ ÔOðDÞ q̂qinÔOðDÞy ¼ Tr ðq̂qinÔOðDÞy ÔOðDÞÞ ð3Þ
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and one obtains, after some algebra,

ÔOðDÞy ÔOðDÞ ¼ 1

2
1þ cos

p̂pD

�h

� �
: ð4Þ

Consider now the Fourier transform of the probability density of the fluctuations

Wðp̂pÞ �
ð
dD wðDÞei

�h p̂pD ¼
ð
dD wðDÞ cos p̂pD

�h
þ i

ð
dD wðDÞ sin p̂pD

�h
: ð5Þ

If we assume that the distribution of fluctuations is symmetric, wðDÞ ¼ wð�DÞ, we get

cos
p̂pD

�h
¼
ð
dD wðD � D0Þ cos

p̂pD

�h
¼ cos

p̂pD0

�h
Wðp̂pÞ ð6Þ

and (4) becomes

ÔOðDÞy ÔOðDÞ ¼ 1

2
1þ Wðp̂pÞ cos p̂pD0

�h

� �
: ð7Þ

We notice that the same results are obtained with a different setup: consider a polarized
neutron that interacts with a magnetic field perpendicular to its spin. Due to the longitudi-
nal Stern-Gerlach effect, its wave packet is split into two components that travel with differ-
ent speed and are therefore separated in space [6]. After a projection onto the initial spin
state, the final state reads

jyki ¼
1

2
½e� i

2�h p̂pD þ e
i
2�h p̂pD� jyini � ÔO0ðDÞ jyini ; ð8Þ

where D is in this case the spatial separation between the two wave packets corresponding
to the two spin components. By averaging over D it is easy to show that one obtains again
(7).
By plugging the average operator (7) into (3) one finally gets

Tr q̂qO ¼ 1

2
1þ Wðp̂pÞ cos p̂pD0

�h

� �� �
; ð9Þ

where h� � �i denotes the expectation value over state qin. On the other hand, the momentum
distribution is easily proved to read

POðpÞ ¼ hpj q̂qO jpi ¼ 1

2
PinðpÞ 1þ WðpÞ cos pD0

�h

� �
; ð10Þ

where

PinðpÞ ¼ hpj q̂qin jpi ; WðpÞ ¼ hpj Wðp̂pÞ jpi : ð11Þ

We now introduce the visibility of the interference pattern

VðpÞ � POðpÞmax � POðpÞmin

POðpÞMmax þ POðpÞmin

¼ jWðpÞj ; ð12Þ
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where POðpÞmax (POðpÞmin) is the maximum (minimum) value assumed by POðpÞ when D0

varies. Notice that, according to this definition, the visibility is a function of momentum p.
By using (5) and (11), one infers that the visibility is the modulus of the Fourier transform
of the distribution of the shifts D and is therefore a quantity which is closely related to the
physical features of the phase shifter. We now turn to a definition of decoherence.

3. Operational Definition of Decoherence

Consider the MZI introduced in the previous section. The relative frequency of particles
detected in the ordinary channel is, by (9),

N OðD0Þ ¼ Tr q̂qO ¼ 1

2
1þ Wðp̂pÞ cos p̂pD0

�h

� �� �
: ð13Þ

On the other hand, in the extraordinary (E) channel we get

N EðD0Þ ¼ Tr q̂qE ¼ 1

2
1� Wðp̂pÞ cos p̂pD0

�h

� �� �
: ð14Þ

(Note that N O þN E ¼ 1.) Their difference is

N OðD0Þ � N EðD0Þ ¼ Wðp̂pÞ cos p̂pD0

�h

� �
¼
ð
dp PinðpÞ WðpÞ cos pD0

�h
ð15Þ

and one can define a generalized visibility

V ¼ max
D0

jN OðD0Þ � N EðD0Þj ¼ max
D0

Wðp̂pÞ cos p̂pD0

�h

� �				
				 : ð16Þ

Notice that when Pinðp0Þ ¼ dðp0 � pÞ (normalized monochromatic incoming state, to be
improperly referred to as plane wave of momentum p), the generalized visibility reduces to
the standard ‘‘local” visibility (12)

V ¼ max
D0

ð
dp0 dðp0 � pÞ Wðp0Þ cos p0D0

�h

				
				 ¼ max

D0

WðpÞ cos pD0

�h

				
				 ¼ VðpÞ : ð17Þ

In general one gets

V � max
D0

ð
dp PinðpÞ jWðpÞj cos

pD0

�h

				
				 ¼

ð
dp PinðpÞ VðpÞ � 1 : ð18Þ

The generalized visibility yields the maximum ‘‘distance” between the intensities N O and
N E and is bounded by the ‘‘local” visibility averaged over the momentum distribution of
the incoming state.

For a fluctuation-free phase shifter, i.e. for wðDÞ ¼ dðDÞ, one obtains WðpÞ ¼ 1 and the
generalized visibility (16) becomes

V ¼ max
D0

cos
p̂pD0

�h

� �				
				 ¼ max

D0

ð
dp PinðpÞ cos

pD0

�h

				
				 ¼

ð
dp PinðpÞ ¼ 1 ; ð19Þ
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for any incoming state Pin. The example of an incoming Gaussian wave packet

PinðpÞ ¼

ffiffiffiffiffiffiffiffi
2d2

�h2p

s
exp � 2d2

�h2
ðp� p0Þ2

 !
ð20Þ

is shown in Fig. 1, where it is apparent that V ¼ 1.
If, on the other hand, the phase shifter fluctuates, the amplitude of the envelope function

decreases and V < 1. We therefore give an operational definition of decoherence, by means
of a decoherence parameter:

e � 1� V ¼ 1�max
D0

Wðp̂pÞ cos p̂pD0

�h

� �				
				 : ð21Þ

Notice that, by Eq. (19), e ¼ 0 for a fluctuation-free phase shifter (quantum coherence
perfectly preserved), while e ! 1 when the magnitude of the fluctuations increases,
WðpÞ ! 0 and the envelope function in Figure 1 squeezes out all oscillations, eventually
yielding N OðD0Þ ¼ N EðD0Þ, independently of D0. Observe also that V and e are inde-
pendent of the coherence of the initial state (namely, they do not depend on the off-
diagonal terms of the density matrix). In this sense they measure the loss of quantum
coherence.

4. Examples

Let us now look at some particular cases of fluctuations. Let the phases be distributed
according to a Gaussian law with standard deviation s

wðDÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p exp � D2

2s2

� �
; ð22Þ

so that WðpÞ ¼ exp � p2s2

2�h2

� �
and the decoherence parameter reads

e ¼ 1�max
D0

ð
dp PinðpÞ exp � p2s2

2�h2

� �
cos

pD0

�h

� �				
				 : ð23Þ
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Fig. 1. N O and N E versus k0D0

(k0 ¼ p0=�h) for an incoming Gauss-
ian wave packet (20) with
k0d ¼ 12 and no fluctuations. The
two intensities differ in phase by p
and their sum is 1. The general-
ized visibility (16) is 1



For Gaussian wave packets (20) one gets

e ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

d2 þ s2=4

s
exp � d2

d2 þ s2=4

s2k20
2

 !
; ð24Þ

with k0 ¼ p0=�h. In this case, as it is clear from Fig. 2, at fixed d the decoherence parameter
(21) increases with s, although the details of its behavior are strongly dependent on the
spatial width of the packet d. This behavior is in agreement with expectation: decoherence
e increases with the magnitude of fluctuations s.

For plane waves [Pinðp0Þ ¼ dðp� p0Þ]

ek ¼ 1�max
D0

ð
dp0 dðp� p0Þ e�

p02s2

2�h2 cos
p0D0

�h

� �				
				 ¼ 1� e�

k2s2

2 ; ð25Þ

with k ¼ p=�h. This is shown in Fig. 3(a) and can be obtained from (24) in the d ! 1
limit. Notice that high momenta are more fragile against fluctuations [7].

Let now the phase shifts be distributed according to the law [2]

wðDÞ ¼ 1

p

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4s2 � D2

p : ð26Þ

This is convenient from an experimental perspective and follows from a phase
DðtÞ ¼ 2s sin t, where t (‘‘time”) is a parameter, uniformly distributed between 0 and 2p.
From (11) and (5)

WðpÞ ¼
ð2s

�2s

dD

p

ei
pD
�hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4s2 � D2
p ¼

ðp=2
�p=2

dt

p
exp i

2ps

�h
sin t

� �
¼ J0

2ps

�h

� �
; ð27Þ

where J0 is the Bessel function of order zero. The decoherence parameter (21) reads

e ¼ 1�max
D0

ð
dp PinðpÞ J0

2ps

�h

� �
cos

pD0

�h

� �				
				 ð28Þ

and for plane waves one obtains (k ¼ p=�h)

ek ¼ 1�max
D0

J0
2ps

�h

� �
cos

pD0

�h

� �				
				 ¼ 1� jJ0ð2ksÞj : ð29Þ
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Fig. 2. Decoherence parameter e (24) versus
width d of the Gaussian wave packet and stand-
ard deviation s of the fluctuating shifts
(k0 ¼ p0=�h)



This function is shown in 3(b): observe that decoherence is not a monotonic function of the
noise s in (26).
A comparison between Figures 3(a) and 3(b) is interesting. In both cases one observes

fragility at high momenta p ¼ �hk. On the other hand, the behavior of decoherence in
Fig. 3(b) is somewhat anomalous and against naive expectation. For a given k, there are
situations where decoherence e decreases by increasing the size of fluctuations s. Note also
that we are considering incoming plane waves, whence, according to (17), Ek ¼ 1� VðpÞ
and the decoherence parameter is strictly related to the standard visibility of the interference
pattern. Therefore, in the anomalous regions, one observes an increase in visibility by in-
creasing the fluctuations of the phase shifter, a phenomenon similar to stochastic resonance
[8]. However, this is true not only for plane waves, but also for narrow packets in momen-
tum space.
These results are related to well known phenomena in the classical theory of partially

coherent light [9], where the visibility is expressed as the Fourier transform of the spectral
distribution of an incoherent source.

5. Conclusions

We have introduced and discussed a decoherence parameter defined in terms of a general-
ized visibility of the interference pattern in a double-slit experiment (MZI). Although the
notion of visibility is not directly related to that of decoherence (see post-selection experi-
ments [10]) our results corroborate the ideas expressed in [2] and make it obvious that the
concept of ‘‘loss“ of quantum mechanical coherence deserves clarification and additional
investigation.
It would also be interesting to discuss analogies and differences with conceptual experi-

ments in which decoherence is complemented by Welcher-Weg information [11].
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