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Abstract

We discuss the possibility of devising a tomographic scheme that makes use of the quantum Zeno
effect. We show that such a method works better than the standard one, provided that the different
levels of ‘‘gray” in the sample are not uniformly distributed.

PACS: 03.65.Xp

1. Introduction

The quantum Zeno effect (QZE) consists in the hindrance of the evolution of a quantum
system due to frequent measurements [1]. This phenomenon has been widely investigated
during the last few years, not only because of its intrinsic interest, but also for its potential
applications. We discuss here a remarkable application in tomography. In an ordinary tomo-
graphic setup one measures the attenuation of a beam of particles passing through a sample
and endeavors to infer the absorption coefficient (density) of the sample in the beam sec-
tion. The resolution is limited by two main factors: noise (beam intensity fluctuations) and
damage provoked by the radiation absorbed by the sample. In a recent paper [2] we have
discussed the possibility of carrying out ‘‘absorption-free” tomography by making use of
the QZE. Our proposal is related to other interesting work [3]. We review here our main
ideas.

2. Black, White and Gray Objects

Consider the Mach-Zender interferometer (MZI) with ‘‘feedback” shown in Fig. 1(a). A
semitransparent object, whose transmission amplitude is t (assumed real for simplicity) is
placed in the lower arm of the interferometer. The particle emitted by the source S is initi-
ally (at time t ¼ tin) injected from the left, crosses the interferometer L times and is finally
(at t ¼ tfin) detected by one of two detectors D. The two semitransparent mirrors M are
identical and their transmission and reflection coefficients are

c � cos qL ; s � sin qL ; ðqL ¼ p=4LÞ ð1Þ

respectively. Both coefficients depend on L, the number of ‘‘loops” in the MZI. Let
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0
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1
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¼ jorthogonali ð2Þ

Fortschr. Phys. 49 (2001) 10––11, 1071 –– 1076

# WILEY-VCH Verlag Berlin GmbH, 13086 Berlin, 2001 0015-8208/01/10-1111-1071 $ 17.50þ.50/0



be the extraordinary and ordinary channels of the MZI, respectively. We take the incoming
state of the particle to be jini ¼ jZenoi ¼ 1

0

� �
. The total effect of one ‘‘loop” in the MZI is

Vt ¼ BAB ; B ¼ c �s
s c

� �
; A ¼ 1 0

0 t

� �
: ð3Þ

Notice that A is not unitary: if t < 1 there is a probability loss. The angle qL is chosen so
that if t ¼ 1 (‘‘white” object in the lower arm of the MZI) the particle ends up in the
‘‘orthogonal” channel:

jouti ¼ VL
t¼1jini ¼ jorthogonali : ð8LÞ ð4Þ

On the other hand, if t ¼ 0 (‘‘black” object in the lower arm of the MZI), we readily
obtain

jouti ¼ lim
L!1

VL
t¼0 jini ¼ jZenoi : ð5Þ

In the infinite L limit the particle ends up in the ‘‘Zeno” channel (QZE). A classical mea-
suring apparatus (here the black sample), placed in one arm of the interferometer, projects
the illuminating particle into the other arm, destroying interference, freezing the evolution
and forcing the particle to exit through a different channel from that it would have chosen
had both arms been transparent (white sample). Equations (4) and (5) express the remark-
able result that ‘‘white” and ‘‘black” objects can be discriminated with unit probability with-
out any photon absorption by the sample. This is, in essence, a straightforward conse-
quence of QZE.

In practical applications, however, samples are normally neither black nor white: they are
gray. We are therefore interested in understanding what happens for 0 < t < 1 [4]. The
computation of VL

t is straightforward but lengthy [2] and yields

jouti ¼ lim
L!1

VL
t jini ¼ jZenoi ; t 6¼ 1 : ð6Þ

This shows that even for a semitransparent object, with transmission coefficient t 6¼ 1, a
bona fide QZE takes place and the particle ends up in the Zeno channel with probability
one.

This interesting result, however, does not solve the problem of distinguishing different
values of t (different ‘‘shades” or ‘‘levels” of gray). This is not a simple task, for after a
very large number of loops L the particle ends up in the orthogonal channel only if t ¼ 1
[see (4)]; by contrast, for any value of t 6¼ 1, the particle ends up in the Zeno channel [see
(6)] irrespectively of the particular value of t. However, the asymptotic corrections in VL

t
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Fig. 1. Comparison between
the Zeno interferometric setup
(a) and the standard transmis-
sion experiment (b). A sample
whose transmission amplitude
is t is analyzed in both cases.
S = source, M = semitranspar-
ent mirror, D = detector; o (z)
denotes the orthogonal (Zeno)
channel



do depend on t. One can show that the final state of the particle after Lð
 1Þ loops in the
MZI reads

VL
t

1
0

� �
¼ uz

uo

� �
¼ 1� p2

8L

1þ t

1� t
þ OðL�2Þ

OðL�1Þ

0
@

1
A ; ð7Þ

where uz and uo are the (real) amplitudes in the Zeno and orthogonal channels, respectively.
By exploiting this feature, we shall show in Sec. 3 that it is indeed possible to resolve
different gray levels by QZE, within a given statistical accuracy. Let ð0 � t < 1Þ

pzðtÞ ¼ u2z ¼ 1� p2

4L

1þ t

1� t
þ OðL�2Þ ; p0ðtÞ ¼ u2o ¼ OðL�2Þ ;

paðtÞ ¼ 1� pzðtÞ � p0ðtÞ ¼
p2

4L

1þ t

1� t
þ OðL�2Þ

ð8Þ

be the probabilities that the particle is detected in the Zeno, orthogonal channel or is absorbed
by the semitransparent object, respectively. We assume that a fixed number of particles N is
sent in the MZI during an experimental run. In this situation the distribution of particles in the
Zeno, orthogonal or absorption channels follows a multinomial statistics with probabilities
(8). However, by increasing the number of loops L, po vanishes much faster than pa, so that
for large L the distribution becomes in practice binomial with pa þ pz � 1. (Since pa is also
small in this limit, the detection statistics is effectively Poissonian.)

Notice that, if one performs a standard transmission experiment, like in Fig. 1(b), the
statistics is again binomial, with detection and absorption probabilities

p0dðtÞ ¼ t2 ; p0aðtÞ ¼ 1� t2 : ð9Þ

3. Statistics

The goal of a ‘‘Zeno tomography” is to get information about the distribution of the absorp-
tion coefficient in the sample, absorbing as few particles as possible. Let us first assume
that all levels of gray are uniformly distributed in the sample (i.e. t is continuously distrib-
uted between 0 and 1) and let us try to estimate t2 from the counted number of particles,
absorbing as few particles as possible for the requested precision. To perform this task in
an optimal way one should find optimal estimators for each scheme. A lower bound on the
variance of an unbiased estimator T̂T of the parameter T (here T ¼ t2) is the Cramér-Rao
lower bound (CRLB) [5],

ðDT̂TÞ2 � 1

F
� @

@T
ln pðn j TÞ

	 
2
* +�1

; ð10Þ

where F is the Fisher information, pðn j TÞ the probability of observing n particles condi-
tioned by the value T of the unknown parameter and h. . .i denotes ensemble average with
respect to n. In both cases (9) and (8) the probability p is binomially distributed and yields

ðDT̂TstÞ2 �
t2ð1� t2Þ

N
; ðDT̂TZeÞ2 �

4t2ð1� tÞ3 ð1þ tÞ L
p2N

ð11Þ
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for standard and Zeno tomography, respectively, N being the (fixed) number of input parti-
cles in both cases. Expressing the above inequalities in terms of the number of absorbed
particles NðstÞ

a ¼ Np0a and NðZeÞ
a ¼ Npa, they both reduce to the same bound

DT̂Tst;Ze � DT̂T opt
st;Ze ¼

tð1� t2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

ðstÞ; ðZeÞ
a

q ; ð12Þ

showing that the CRLB’s for standard and Zeno tomography are the same, given the num-
ber of absorbed particles. Furthermore, it is trivial to show that the unbiased estimator given
by the relative frequency of transmitted particles in the standard setup, T̂Tst ¼ nt=N, saturates
the CRLB (12). Hence the Zeno estimation can be at best as good as the standard one: it
cannot be better. This is bad news.

In spite of this result, we now show that Zeno performs better when one wants to distin-
guish two levels of gray that are not equally populated in the sample. This is good news,
for it enables one to find a method that in some cases works better than the standard one.
The fundamental observation is that paðtÞ in (8), unlike p0aðtÞ in (9), is an increasing
function of t. Therefore, with respect to absorbed particles, the Zeno tomographic image
(for sufficiently large L) yields a kind of negative of the standard absorption tomographic
image: denser samples absorb fewer particles. Indeed, the absorption probability in (8) re-
duces to the same form as the standard one (9) by introducing an ‘‘effective” transmission
coefficient tZe

eff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pa

p
. For example, if we take t1 ¼ 0:98, t2 ¼ 0:99 and choose

L ¼ 12000, then, according to Eq. (8), we get tZe
eff1 � 0:99 and tZe

eff2 � 0:98. The two gray
levels are interchanged by the Zeno apparatus. If most of the sample has transmission
coefficient t2 the absorbed energy is reduced by using the Zeno setup!

A more precise comparison of the performances of the Zeno and standard techniques can
be given in the framework of decision theory. For simplicity let us focus on distinguishing
only two gray levels t1 and t2 (t1 < t2) corresponding to hypotheses H1 and H2 that occur
in the sample with frequencies P0ðH1Þ ¼ a and P0ðH2Þ ¼ 1� a. Since both experiments
obey the same statistics we use the notation of the Zeno experiment. The decision is based
on the number of absorbed particles na: if na is smaller than or equal to a decision level nd,
H1 is chosen; otherwise H2 is chosen. The probability of making an error in identifying the
gray level of a given pixel is

Pe ¼ aPðH2 j H1Þ þ ð1� aÞ PðH1 j H2Þ ð13Þ

(PðHi j HjÞ being the probability of choosing hypothesis Hi when Hj is true), where

PðH1 j H2Þ ¼
P
na�nd

pðna j H2Þ ; PðH2 j H1Þ ¼
P
na>nd

pðna j H1Þ ð14Þ

and

pðna j HjÞ ¼
N

na

� �
paðtjÞna ½1� paðtjÞ�N�na ; ð15Þ

is the binomial probability of absorbing na particles when Hj is true. An optimal protocol is
given by determining nd that minimizes the error (13). Alternatively, one determines the
optimum nd by solving for

Likelihood ¼ L ¼ pðna j H1Þ P0ðH1Þ
pðna j H2Þ P0ðH2Þ

¼ apðna j H1Þ
ð1� aÞ pðna j H2Þ

¼ 1 : ð16Þ
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The likelihood criterion (16) is also valid for other (non binomial) statistics and can be
easily generalized to the case of more than two gray levels. Interestingly, the likelihood
method (16) and the minimization of the error probability (13) leads to the same conclusion
[this might be a fluke of our (simplifying) choice of discriminating between two levels of
gray only]. In both cases one gets

nd ¼
log

1� a

a

	 

� N log

1� paðt1Þ
1� paðt2Þ

	 


log
paðt1Þ
paðt2Þ

	 

� log

1� paðt1Þ
1� paðt2Þ

	 
 ð17Þ

and, substituting in (13),

Pe ¼ af1� BI ½N � ~nnd; 1þ ~nnd; 1� paðt1Þ�g

þ ð1� aÞ BI ½N � ~nnd; 1þ ~nnd; 1� paðt2Þ� ; ð18Þ
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Fig. 2. (a) Ratio of the number of ab-
sorbed particles in the Zeno (NðZeÞ

a ) and
standard (NðstÞ

a ) setup. Pe ¼ 1:5%;
dt ¼ 0:01;
t ¼ f0:8; 0:9; 0:95; 0:97; 0:98g. (b) Com-
parison of standard and Zeno tomo-
graphic techniques. The original object
(a turtle, center) consists of three levels
of gray t1 ¼ 0:99, t2 ¼ 0:98 and
t3 ¼ 0.92, occurring with relative fre-
quencies f1 ¼ 0:1, f2 ¼ 0:2 and f3 ¼ 0:7,
respectively. We fixed Na so that about
4.3 particles per pixel are absorbed on
the average in both cases and chose
L ¼ 12; 000 loops for the Zeno recon-
struction. The reconstructed objects
(above) and misinterpreted pixels (be-
low) are shown for standard (left) and
Zeno (right) tomography. The number of
misinterpreted pixels is half for the Zeno
reconstruction.



where BIða; b; zÞ is the regularized incomplete Beta function [6] and ~nnd is the greatest
integer less than or equal to nd. The mean number of absorbed particles is

NðZeÞ
a ¼ N½apaðt1Þ þ ð1� aÞ paðt2Þ� : ð19Þ

Using Eqs. (17) and (19), the average probability of error (18) can be expressed as a func-
tion of a, t � t1, dt ¼ t2 � t1 and NðZeÞ

a . The probability of error for the standard setup is
obtained in a completely analogous way.

The performances of the Zeno and standard methods are compared in Fig. 2(a). The
number of absorbed particles has been calculated by solving numerically Eqs. (17)––(19),
while keeping the mean error Pe constant. Their ratio is shown as a function of a for a few
values of the transmission coefficient t. Notice that there is no improvement for two
equally frequent levels of gray. On the other hand the exposition of the sample can be
significantly reduced if the distribution of gray levels in the sample is not uniform.

The results of a numerical simulation are shown in Fig. 2(b). The sample is a turtle (a
tribute to Zeno!) with 3 levels of gray. The original is at the center, the reconstructed
images with the Zeno and standard method are above, at the left and right, respectively.
Below there are the pixels that have been misinterpreted. For the same number of absorbed
particles, provided the object contains a small fraction of more transparent pixels and a
larger fraction of more absorbing material, the number of misinterpreted pixels is half for
the Zeno reconstruction. This proves that quantum Zeno tomography performs better than
standard tomography if a given prior knowledge about the distribution of grays in the sam-
ple is available. This is a common situation in radiography, where one is often interested in
detecting a small structure in a uniform background.
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