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Slow Relaxation, Confinement, and Solitons
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Millisecond crystal relaxation has been used to explain anomalous decay in doped alkali halides. We
attribute this slowness to Fermi-Pasta-Ulam solitons. Our model exhibits confinement of mechanical
energy released by excitation. Extending the model to long times is justified by its relation to solitons,
excitations previously proposed to occur in alkali halides. Soliton damping and observation are also
discussed.
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Crystals respond in picoseconds. This is the character-
istic time for lattice adjustments, for example passage to
a “relaxed excited state.” Nevertheless, an anomaly in the
decay of luminescence in doped alkali halides has led us
to conclude [1,2] that relaxation can sometimes take place
on a scale of milliseconds. It is as if the tides moved like
tectonic plates. Other explanations were offered for the
anomalous decay in the decade since its discovery, mainly
connected to lattice defects or other irregularities. But
improved crystals, annealing, and experimental technique
have left relaxation slowdown as the only candidate. More-
over, as detailed in [2], the slowdown hypothesis allows
good data fits across a variety of compounds and tempera-
tures. Millisecond crystal relaxation thus demands an ex-
planation. In this article we propose that the formation
and slow decay of Fermi-Pasta-Ulam (FPU) solitons (or
breathers) [3,4] can account for this dramatic slowdown.
The presence of FPU solitons in alkali halides has been pre-
viously proposed [5] and we believe that particular features
of our system enable their production and observation.

We begin with an overview. KBr (say) is dilutely doped
with Pb21. One can think of the Pb and its six surrounding
Br atoms as a quasimolecule. This quasimolecule is ex-
cited by a UV flash and because of the Jahn-Teller effect
distorts considerably. Absent the constraining lattice, one
would expect expansion along one of the axes of perhaps
15%. The distortion is asymmetric and the Jahn-Teller in-
teraction causes well-understood degeneracy breaking. It
is the subsequent return to the ground state that provides
evidence for slow lattice relaxation. The excited quasi-
molecule can go to a radiative level with a 25 ns lifetime or
to a metastable level with an 8 ms lifetime. The lumines-
cence decay, however, is not the sum of two exponentials;
rather, after the initial radiative level burst, molecules in
the metastable level exhibit an enhanced, but gradually de-
clining, decay rate, which we have explained as being due
to lattice-induced coupling to the fast level. This continues
for milliseconds and implies that the lattice itself takes ms
to accommodate to the distortion. This is the slow relaxa-
tion, and our ability to use this assumption to fit a variety
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of systems in a large range of temperatures is the evidence
for this phenomenon.

Because the quasimolecule’s distortion is asymmetric, a
reasonable model [6] is a linear diatomic chain in which
a particle on one end is subject to a strong push. (This
is the Br adjacent to the Pb.) Nonlinearity enters be-
cause of the large displacements. To account for the three-
dimensional environment we add a potential (simulating
off-chain neighbors) that tends to return each ion to its
normal lattice position. This model displays a remarkable
property: reverberations in the chain due to the push are
confined. Oscillations occur only in the 2 to 4 neighbors
of the first ion. Almost no energy escapes. These asser-
tions are based on numerical integration for &500 lattice
time units. Accurate integration of even the 1-dimensional
case for 109 units (�ms) appears out of reach, so if we
claim this confinement underlies slow relaxation, more
general arguments are needed.

As shown below, the confinement reflects the creation of
a FPU soliton. This structure lives essentially forever. We
thus go from the problem of fast relaxation to that of no
relaxation. To explain the ultimate decay of the soliton we
note the apparent coincidence of rates for lattice relaxation
and metastable electromagnetic decay. This suggests that
the electronic degrees of freedom draw energy from the
soliton. This damping yields patterns of lattice relaxation
that follow the time dependence used [2] in explaining the
experiments. We also found (numerically) that even after
quasimolecule decay the soliton remains.

This explanation introduces the question of direct ob-
servation. If indeed for �5 ms bunches of atoms vibrate
at a frequency above the acoustical phonon branch, what
probe could reveal this? This leads to another point. Our
desire for independent probes reflects our orientation: it is
the dramatic relaxation slowdown that drives our investi-
gation; we do not claim that the model presented below is
by itself of sufficient precision to offer compelling predic-
tive evidence.

Details of the model.—Following the UV pulse, and
faster than any scale considered here, the electronic wave
© 2002 The American Physical Society 224101-1
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function, c, distorts. The quasimolecule is pushed hard
along one axis and shrunk along the others. We focus on
a ray of atoms along the expansion axis. The first atom is
subjected to a large force which it transmits to the others.
We simplify the influence of c by pretending there is a
fictitious zeroth particle displaced by a fixed amount from
its equilibrium. To allow the use of a one-dimensional
chain we supply each atom on the chain with a “neighbor”
force that attracts the atom to its nominal lattice location.
Note that the asymmetric stresses imply lesser deformation
for off-axis atoms. The interatomic potential is taken to be
V �u� � Mv

2
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where n is the effective number of neighbors. Q1 is the first
atom to the right of the Pb, followed by q1, Q2, etc. The
Q particles have mass M, the qs, M�r—but we rescale so
that M � 1 and v0 � 1. For KBr, r � 2. The impact of
c is expressed by setting (the nondynamic) q0 fi 0.

The system was solved classically by numerical integra-
tion. All positions and momenta were initially zero, with
q0 providing the driving force. Figure 1 shows runs with
n � 0 and 4 (l � 1). In the first case there is wave propa-
gation, but with n � 4 the energy is confined. A small
pulse leaves the system initially, but afterward only the
first atoms oscillate, mostly just the first two. Figure 2
shows the positions for n � 4, l � 0. Evidently there is
no confinement. These results are insensitive to the exact
parameters, including run time and N . They become more
dramatic as r moves away from unity, consistent with the
trend in anomalous decay [1,2].

We next study the frequencies of the confined vibrations.
To connect to solitons this will be related to lattice phonon
properties. When n � 4, r � 2, N � 15, the phonon
spectrum has a gap between the acoustical and optical
branches running from 2.45 to 3.46 (v0 � 1). In Fig. 3
we plot the intensity of the Fourier transform of q1�t�,
0 # t # 200, for 3 values of l. The curve peaked near
2.45 is l � 0. The curves for l � 0.5 and 1 are domi-
nated by their peaks at 2.86 and 3.27, respectively (within
the gap). [The bump near 3.9 (2.86) is part of the l �
1�0.5� spectrum.] If q0 is varied, peak locations change,
consistent with scaling.

Besides the extreme spatial localization, another prop-
erty of our confinement curves —perhaps the characteristic
soliton feature in the FPU study —is the failure of energy
to disperse among the normal modes. Figure 4 shows en-
ergy dispersal for various times. Unlike FPU, our initial
conditions preclude concentration in one mode. Neverthe-
less, it is clear that while energy can shift from mode to
mode (cf. time-25 in the Fig. 4), it tends to return repeat-
224101-2
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FIG. 1. Position vs time. The unconfined history has n � 0
(upper panel), no force from off-axis atoms. There is wave
propagation. The reflection is an artifact of the boundary. The
case n � 4 (lower panel) gives confinement (for which the
boundary is irrelevant). The lowest curve is Q1�t�; above it
is q1�t�, etc. Common parameters are l � 1, q0 � 1, N � 15
(30 atoms), r � 2.

edly. Note that we show only quadratic contributions to
energy, whose sum need not be conserved.

An extensive recent literature on FPU solitons exists
[5,7–10], and their presence in alkali halide crystals has
been suggested [5]. Like our confinement mode, these ex-
citations are dominated by a single frequency (although in
[10] this assumption is not made). Experimental obser-
vation of breathers is reported for quasi-one-dimensional
systems in [11]. In [8] the diatomic chain is studied, and
the soliton frequency is found between the acoustical and
optical phonon bands. The ability of our systems [1,2]
to support solitons can be attributed to several features.
(i) The distortion (à la Jahn-Teller) makes the system closer
to 1D than 3D, bearing in mind [5] the lesser tendency to
form solitons in 3D. (ii) Considerable enhancement of all
soliton effects develops as jr 2 1j ". (iii) Numerically we
224101-2
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FIG. 2. Position vs time for a system that with nonlinearity
would show confinement. Parameters as in Fig. 1 (n � 4), but
l � 0.

find that the boundary condition at the impurity site, based
on our physical picture, enhances localization.

Decay of the soliton.— Given the confinement-soliton
connection, why does the crystal relax at all? In fact the
FPU soliton may not live forever. Reference [4] shows
that FPU dynamics is equivalent to Henon-Heiles chaos.
For our parameters, however, as for FPU, the excitation is
extremely long-lived, disappearing only in case of Arnold
diffusion. However, even if for KBr:Pb21 that diffusion
time would be ms, its sensitivity would leave unexplained
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FIG. 3. Fourier transform (intensity) of Q1�t� with varying
nonlinearity. The dashed curve is l � 0.5. The two solid-line
curves do not overlap, with amplitude to the left of 2.45 cor-
responding to l � 0 and to the right of 3, to l � 1. For
l � 0, the peak is just within the acoustical band. With l � 0.5
(dashed line) almost all energy is in the peak, now well within
the gap. Finally, with l � 1 (solid line, again) the peak has al-
most reached the optical branch and a second small peak beyond
the optical spectrum is more pronounced.
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the coincidence of relaxation and metastable decay times
in other doped alkali halides. Note too that the soliton is
robust. Defects may shift its properties but not the fact of
its existence. Moreover, anomalous decay has been seen
with various levels of crystal defects. For these reasons
we turn to other degrees of freedom, and in view of the
coincidence of time scales, it is the electronic coupling
that we argue provides decay.

The decay of the metastable A1u level (cu) to the A1g

ground state (cg) is electromagnetically forbidden, and the
decay occurs by coupling cu to vibronic modes. Calling
H the Hamiltonian of the quasimolecule, metastable de-
cay involves �cujH jvib.	 �vib.jHjcg	. For soliton decay
we invoke almost the same matrix elements, but in a dif-
ferent order: �vib.jHjcu	 �cujHjvib.	: the soliton disturbs
the electron, which in turn interacts with the surrounding
ions. Density of states factors may differ. Nevertheless, it
is plausible that the rates are comparable, and this is our
assumption.

To incorporate this in our classical model we view the
coupling as a damping: soliton energy is converted to un-
differentiated vibrational energy via electronic coupling.
This affects primarily the Br in the quasimolecule, so
that classically we included 2g �Q1. In Fig. 5 we show
a smoothing (average) of the oscillations of Q1 over an
extended time period with damping. This is also superim-
posed on 1 2 exp�2Gt�, with g � G. This comparison
is essential to the main goal of this article. The lattice
relaxation pattern 1 2 exp�2Gt� is adopted in [2] in the
slow-relaxation explanation of anomalous decay. Its recov-
ery from the soliton theory is vital to connecting the origi-
nal experimental observations to the soliton explanation.

Remarks.—(i) We expect the quantum version of our
theory to give similar results. The quantization of the
soliton should be doable by path integral, WKB (EBK),
and numerical methods [12]. Semiclassical quantization is
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FIG. 4. Energy per normal mode at various times. Parameters
as in Fig. 1, n � 4.
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FIG. 5. The function Q1�t�, partially smoothed, calculated
with damping (g). Also shown is 1 2 exp�2Gt� for G � g �
0.01. Q1�t� is from the confinement run of Fig. 1.

aided by the fact that the phase space trajectory of this soli-
ton is a torus. Weak phonon coupling provides damping, as
in [13], and a lifetime. (ii) For nonzero temperature other
mechanisms of soliton decay enter and indeed our data
fits [2] indicate increased “G” with temperature. Mecha-
nisms such as those studied in [14] should play a role, al-
though as observed there, the effect may be sensitive to
system details.

Detection of solitons.—Our explanation of slow relaxa-
tion implies that for periods �5 ms subsequent to a UV
pulse, small bunches of atoms (perhaps 5 on a side) oscil-
late at frequencies above the acoustical phonon band. For
KBr this is at roughly na � 3 3 1012 s21 [15]. A direct
way to see these would be by off-resonant Raman scatter-
ing, to avoid the difficulties of strong luminescence. The
crystal would simultaneously be illuminated with a Raman
laser and, for soliton creation, UV light (e.g., a hydrogen
lamp). One would then look for new peaks, in addition
to the characteristic peaks of PbBr6 and the second or-
der Raman spectrum of KBr. At liquid He temperatures
we expect Raman lines above the acoustical branch and
therefore any new peak is expected to be near the laser
excitation line. When the UV light is switched off (ter-
minating A-band excitation of Pb21) these Raman lines
should disappear. We also anticipate requiring a higher Pb
concentration than is now used in decay experiments.

Finally we observe that the soliton frequency corre-
sponds to an energy, h̄v � 10 meV. The energy dumped
into the soliton vibrational modes is uncertain and bounded
from above by 650 meV. If as much as 50 meV is avail-
able for the soliton, the semiclassical approach taken here
should be qualitatively reliable.
224101-4
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