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Optimization of a neutron-spin test of the quantum Zeno effect
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A neutron-spin experimental test of the quantum Zeno effé@E) is discussed from a practical point of
view, where the nonideal efficiency of the magnetic mirrors, used for filtering the spin state, is taken into
account. In the idealized case, the numbkpof (idea) mirrors can be indefinitely increased, yielding an
increasingly better QZE. In contrast, in a practical situation with imperfect mirrors, there is an optimal number
of mirrors, Ng;, at which the QZE becomes maximum: more frequent measurements would deteriorate the
performance. However, a quantitative analysis shows that a good experimental test of the QZE is still feasible.
These conclusions are of general validity: in a realistic experiment, the presence of losses and imperfections
leads to an optimal frequendy,,, which is in general finite. One should not incred¢éeyondNg,. A
convenient formula folN,, valid in a broad framework, is derived as a function of the parameters charac-
terizing the experimental setup.
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[. INTRODUCTION of the observable to be measured. In this sense, it yields no
wave-function collapse. It is known, and will be reviewed in
If very frequent measurements are made on a quanturBec. ll, that a frequent series of spectral decompositions is
system in order to ascertain whether it is still in the initial sufficient for obtaining a QZ3,9,13.
state, its evolution is slowed down and eventually totally In the proposed neutron-spin experimental test of the QZE
hindered in the limit of infinite frequency. This is the quan- [9], the spectral decomposition is realized by a magnetic mir-
tum Zeno effect(QZE) [1-3], which was considered little ror, with its inevitable imperfections, leading to nonideal ef-
more than a curiosity until the experimental confirmations byficiency. The main purpose of this paper is to quantitatively
ltano et al. [4] (which followed a theoretical proposal by analyze the consequences of these imperfections: clearly,
Cook[5]) and by Raizen and co-workers in TeX&d. This  they tend to deteriorate the performance of the experimental
last experiment proved the existence of the QZE for bon&etup; yet, for reasonable values of the experimental param-
fide unstable systems and the occurrence of the inverse QzEters[10,11], a good test is still clearly feasible with high
i.e., acceleration of decay by repeatewt extremely fre- €fficiency. This will be shown in Sec. Ill, where we will
quen} measurements[7]. The temporal behavior of determine aroptimumvalue N of the frequency of mea-
quantum-mechanical systems and, in particular, the nonexpgurements: more frequent measurements would simply dete-
nential features at short times, on which QZE and inversdiorate the overall performance of the setup, masking the
QZE hinge, are reviewed in Rdf3]. QZE. These conclusions are of general validity: the presence
We are now going through a phase of experimental veriof losses and imperfections always leads to an optimal fre-
fication of the QZE. It is therefore important to understandduency, which is in general finite. Our analysis will be ex-
the physical meaning of “infinitely” frequent measurements, tended and generalized in Sec. IV to an arbitrary lossy quan-
focusing on practical applications, imperfections of the aptum Zeno experiment, and a convenient formulaNgg, will
paratus, experimental losses, as well as theoretical boundge derived. We summarize our results in Sec. V.
Some of these problems were tackled in Ré&fl. In this
paper, we reconsider the proposal of an experimental test of Il. NEUTRON-SPIN TEST OF THE QZE
the QZE, which makes use of neutron sgh In view of the WITH IDEAL MIRRORS
recent progress in the perfect-crystal neutron-storage tech-
nology [10,11], it is necessary to investigate the physical Let us first briefly review the original proposal of the
properties of a Zeno setup, focusing, in particular, on practineutron-spin test of the QZB]. The basic setup is shown in
cal limits. Fig. 1(a@). We prepare, equally spaced along thexis, N
In this paper, we will Study the practic'ﬂhperfections in identical regions in each of which a static magnetic fielid
the spectral decompositioin a few words, a “spectral de- applied in thex direction. A neutron wave packet, whose
composition” in Wigner’s sensgL2] is a unitary process that initial spin is oriented in the direction, travels along thg

associates additional degrees of freedom to different value@Xis and undergoes a spin rotation at each interaction with
the magnetic field, according to the Hamiltonian
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" through the mirror and keeps traveling right, otherwise it is
L v § § (a) § reflected out by the mirror. Detector D counts those neutrons
7 7 7 that have “survived” at each of thesd measurements, so
— — — that the detection probability at D is nothing but the survival
* ......... * @ probability _of the initial state1). _ _ _
As clarified in Refs[3] and[9], the insertion of a mirror
1 2 N does not represent a measurement of the spin state; it just
constitutes a generalized spectral decomposit®sD) in
\ \ b \/ Wigner’s sensg12], namely, a(unitary) physical process
(b) that associates an “external” degree of freedomiose role
is played here by the wave packet of the neuttordifferent
A E / E / """"" E / 4 )D values of the observable to be measuitbé neutron spin a

frequent sequence of GSD is sufficient for the occurrence of
a QZE. In a magnetic field, the spin state of the incident
FIG. 1. (a) Basic setup for the neutron-spin test of QZE. We setneutron is changed from the initial oné) to e "HU/N%|1)
t/.TZ:ﬂ/Z’ so that = =. (b) Neutron-spin test of QZE with ideal gnd the neutron is thedecomposedy the mirror into two
mirrors. branch waves: the spin-up component going rightward and
the spin-down one going upward in Fig(bl. The state of

[So)=|T) (spin up along thez direction. The final state, the neutron just after the first mirror is hence given by

after crossing thé\ regions with the magnetic fields, reads

|S(t)>=e‘iH”ﬁ|T>=cosMTm|T>—i sin'uTBtH), 2.2 gy =Te” "Ny ot) + Re™ N 1) @][ry), (2.8

wheret is the total time spent in the magnetic field and We L ere the spectral decomposition with respect to the spin
have ignored, for simplicity, the spatial degrees of freedom P P P P

of the neutron. By defining state is expressed in terms of the projection operators

uBt ot
= T 23 T=[1)(11, R=[1)(L], 2.9

where 7, (=#(T|H?|1) Y2 in this casg is the so-called _
Zeno time and 2 the classical precession angle of the spin,and [t,) and |r,) are the transmitted and reflected wave

the survival probability of the initial stat) reads packets after thath mirror [and before ther(+1)th mag-
_ netic field|, representing the spatial degrees of freedom of the
P(6)=|(1]e "MV |1}|2=coe. (2.4 neutron. Repeating these operatidisimes, we obtain the

) . ) , final state of the neutron
Note that ifBt is adjusted so as to satisfy

o=, (2.5 |y = (Te HNON ) o ty)
N
the spin is completely flipped + 21 Re HUNI(Te HUNI NI )@ [r ),
i
|S(t)y ="M 1)=—i[1). (2.6 (2.10
In this case the survival probability of the initial stdtg)
vanishes: so that the probability for the neutron to be detected at de-
P(6)=0. 2.7 tector D, i.e., the survival probability of the initial spin state
|T), reads
This situation, shown in Fig.(d), is the one usually consid-
ered in the literature. However, the whole analysis that fol- N 5
lows identically applies to the general caged and(2.4). PM(0)=[{{T]®(tn[} ¥l
Let us now check, at every step, whether the spin remains = [(1](Te"THUNIYN| 1|2
in the initial state]T) despite the spin rotation in tHgfield.
To this end, we insel magnetic mirrors after everi re- =[(1le” N )N
gion, as in Fig. 1b). The incident neutron undergods N
“spin-measurements” until it reaches the detector D. At each ~|co ‘ 2.12)
step, if the spin state remains up, the neutron is transmitted N ' '
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e Neutron Guide

FIG. 2. Schematic setup of the VESTAI-

_ Radio Frequency ennese neutron storage apparptagperiment.

C‘fy"'g:f;fa‘fes Spin Flipper (Courtesy: the Vienna groupNeutrons are fed
Monochromator from the right and bounce back and forth in the
l ‘ guide between the reflecting plates. Their spin is

H l ) rotated when they go through tiefield in the rf
Perfoct Single [ &< E—— ) spin flipper. The neutrons are finally extracted

Crystal - Detector ‘ from the storage apparatus and detected at the
Vacuum Box left.
Static Magnetic Field

where we have made use of E&.3) (within our approxi-
mations, the total duration of the experimenttjswith or
without magnetic mirrors Under condition(2.5 (and, in
general, ford</2), this is nonvanishing for anM=2 and
is an increasing function df. Frequent “checks” of the spin
state slow down the evolution of the initial stdtg): the

fields at the plates, thereby making the whole apparatus less
sensitive to depolarization effects.

It should be clear by now that it is of primary importance
to analyze the effect of losses and imperfections, in order to
understand whether the experiment is still meaningful in a
realistic situation. Note that the numbkrof traverses and

survival probabilityP™)(6) increases with the frequency of interactions should be very large, in order to get a good
measurements. This is a QZE. Furthermore, in the limit ofmanifestation of the QZE. This, on the other hand, entails a
infinite frequency, dramatic(exponentigl propagation of “errors.” This will be
investigated in the following two sections.
lim PN(9)=1 (9 fixed),

N— o0

(2.12
Ill. NEUTRON-SPIN TEST OF THE QZE

WITH NONIDEAL MIRRORS

i.e., the spin is frozen and ceases to evolve, in agreement | gsses are unavoidable in real experiments and must be
with the theorem by Misra and SudarsHa. duly taken into account. A magnetic mirror, for example, is

~ Anexperiment s at present being perforniéd] by mak-  notideal, as tacitly assumed in the preceding section. It has a
ing use of a recently developed neutron-storage techniqugonvanishing probability of failing to correctly decompose
[10]. Neutrons with a well-defined energy and in a given spinthe spin state. Assume that the magnetic mirror has transmis-
state are stored in a 1-m-long perfect-crystal reson@®e  sjon T, |, and reflectionR; |, coefficients for a spin-up
Fig. 2). The neutrons, at the given energy, satisfy the Braggspin-down neutron(Fig. 3). (They are in general complex
reflection condition and bounce back and forth between thggjued and constrained bM—T(i)|2+|RT(L)|2:1') We as-

two reflecting crystal plates at both ends of the silicon crys;med in the preceding section tHat|=|R |=1 andR;

tal. A neutron guide is inserted between the crystal plates in T,=0, but this is not the case for actual magnetic mirrors.
order to minimize the lateral losses. In this way, at presentgg the question arises as to whettemd to which extentit
neutrons can be reflected a few thousand times, traveling fqg possible to observe the QZE with nonideal mirrors. In
a few kilometers in the resonatpt0,11. In the central part  gther words, whether the QZE still takes place if the mea-
of the resonator, a spin-rotating radio frequefidy field can surementsi.e., the spectral decompositiorareimperfect

be applied, playing the role of the magnetic field in Fig. 1. At the nth (nonideal mirror, the spin-up component of a
The Zeno effect can be obtained as follows. A neutron,q tron 11)®|ty_1), is split into two waves

traveling in the guide, whose wavelength satisfies the Bragg
condition at the crystal plate, is reflected back inside the 1Y@ th- )= 1)@ (Tita) + Ry |r)) (3.13
guide. However, if a static magnetic field is applied at one of

the crystal plates, yielding different potentials for different 54 5 similar expression holds for the spin-down component
spin states of the neutron, the neutrons are selected according
to their spin state: if, say, a spin-up neutron satisfies the
Bragg condition at a plate, the neutron is reflected back and
kept inside the resonator; if, on the other hand, the spin is
flipped by the spin-rotating rf field, the neutron is transmitted
out of the resonator. The crystal plates with the magnetic
fields play therefore the role of the “magnetic mirrors” in
Fig. 1(b), performing the GSDs. Hence, in this experimental
setup, the probability for the neutron to remain in the perfectm ) 1)

single crystal is the survival probability of the initial spin

state. In the most recent setup, displayed in Fig. 2, a static (@) ®)

magnetic field has been added in the central part of the

perfect-crystal resonator, in order to minimize the mechani- FIG. 3. Transmission and reflection coefficients (@ra spin-up
cal vibrations due to the on-off switching of the magneticneutron andb) a spin-down neutron.

|l>®|tnfl>_>|l>®(-ri|tn>+R1|rn>)- (3.1b

RBi[1) Ri[1)

T)|l)
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(No spin flip is assumed to occur at the magnetic mirror. Thd The eigenvalueg.. (N) will henceforth be writteré.. , un-
most general case, where such spin flips take place, is invekess confusion arisglsBy rewriting operator(3.6) as

tigated in the Appendix.The right arrows in Eqs(3.1) and o

in the following stand for theunitary) physical processes Te MUNI=L(g +& )V+3(E,—E )0y, (3.9
that are responsible for the spectral decomposition. Hence ) o
for a neutron in a general spin sta&, the magnetic mirror Whereo,=n-a, n being a complex-valued vector satisfying
provokes the following spectral decomposition: n’=nz+nj+n2=1, we readily obtain

1S9 ®[th-)=(c;[T)+c [1)®th-1) (Te THUNIN_ LN L oNy 1NNy (3.9)

+ _ . . .
= (T4 1) +¢, T (1)) ®]ty) A series of elementary calculations yields the following ex-

+(ciRy[T)+c R [1))®]ry) act expression for the probability:
=7 R ~ 02 0|2
where the operators (3.10
T=INDT(H+IDT L R=IDR(THIDR (] with
(3.3
. ] ] ) N+1(N)_§N+1(N)
incorporate the effects due to the imperfections of the mirror. A(N) = + - , (3.113
These operator§ and R, even though they are no longer £+ (N)=&-(N)
projection operators, play the same role as the projection N N
operatorsZ andR in the ideal cas¢2.8) and(2.9). The final B(N) = E-(N)=E2(N) (3119
state of the neutron after the finall{h) magnetic mirror is EL(N)—E_(N)’ '
iven b
J ~y o We are now in a position to see whether it is possible to
)= (Te"™NN 1) @ [ty) observe the QZE with nonideal mirrors. In order to analyze
N its N dependence, let us expand probabi(@yl0 as a func-
= iHUNA S iHUNA D=1 tion of |T,/T;|<1. (In the experiment[10], |T /T2
+n21 Re (Te )@l <10 %) For anyN=2, the eigenvalues in Eq3.7) are
(3.4 expanded as
and the probability for the neutron to be detected at detector _ o1, T _,0 2,2
D reads £.=Tcogy |1 TTtanzNJrO(Tl/TT) ., (3.123
PMN(g)=||(tn| dn)l? T, 0 -
_ N § =¢ || 1+tarP—|+O(TYT?)|, (3.12h
— [ (Te HUNI)N, (@HUNKTTING (35 T, N T

where po=|1)(1| is the initial density operator of the neu- from which one obtains
tron spin.[The spin state observed at the detector is not

N
necessarily| 1); it is probability (3.5 that one measures in _ N [
the actual experiment. AN)=&4 1+ £ ot £
Let us evaluate probabilit{3.5). The eigenvalueg-.(N) N - 0
of the operator z(TTcosﬁ) 1- T—L( (N—l)tanzﬁ— 1) +oes
. T
-~ . 1 0 I 0
Te_lHt/NﬁZE(TT—FTl)CO%_O-XE(TT—i_Tl)SinN (313
1 p 1 p and a similar expansion holds f&(N). We thus easily ob-
+Uy§(TT_T¢)5inﬁ+Uz§(TT_T1)C°ﬁq tain an approximate expression for probabili8/10
~ 0 2N
(3.6 PN (g)=|T,[2N co%)
are given by
1-2 R —| (N=1)tar? 2 3.1
g:(N):E (TT‘l’TL)CO%

valid for N=2. [For N=1, P®(g)=sirPe H|T
+cog6 H|T,? exactly] It is clear from formula(3.14 that
the probabilityP™)(6) is well approximated by

* \/(TTnLTl)ZcosZ%—MTTL . 397
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(@) (b)
=N NN reasonable value of-1|T;|? is of order 10* [10]) and N
PN (9)=|T,|?N| co (3.15 . :
T N is expected to be large. The maximum of the functi¢r)

This shows that neither the transmission coefficiepfor a
spin-down neutron, nor the phases Bf and T| bear any

important influence on the probabili®™)(6); the only rel-
evant quantity is the transmission probabillfwz. Since
|T;|?=1, for N not too large the factdiT,|?" is almost unity

and the probabilityP™)(6) behaves like

_ 7] 2N
p(N)( 0)= ( CO%) (N not too large. (3.16

This is the same as the survival probability with ideal mirrors

given in Eq.(2.11), and is an increasing function b How-
ever, for largeiN, the factorf cos@N)*N is almost unity, and
the probability behaves like
PMN(g)=|T,|?N (largerN), (3.17
decreasing exponentially to zerolds-~<: as the number of
mirrors, N, is increased, the mirror imperfection$T(|2N
<1) dominate over the increasing facfaos@N)]N, sup-
pressing the QZE for very largd. (Clearly, the meaning of

=a*cos(26/x), with a<1, is given by one of the solutions
of the equationa cos(¥/x)=exyd —(26/X)tan(26/x)] and is
approximatelyX,,=26/+/In a 2. Applying this result to the
probability (3.15 one obtains

(IT412=1), (3.18

Nopt2

0
NG
where[x] is the closest integer te. The maximum is then
readily evaluated as

~ 262
P(Nopd(g)=1—

N_ (Nopt>>1) (3-193
opt
=1-26\1-[T,> (|T|>=1). (3.19D

Some values ofN,, and PMNord(g) estimated from Egs.
(3.18 and(3.193, respectively, are listed in Table | for some
|TT|2- The agreement with the numerical results shown in
Fig. 4, based on the exact formy& 10, is excellen{except

for | T,|2=0.99, wherePMNowd(¢) differs by about5%)].

“large” N in the two previous equations must be precisely Notice that for 1-|T;|?~10"* [10], the estimated opti-
defined. This will be done in the following. mal number isNg,= 157, which is much smaller than the
There must be therefore an optimal number of mirrorsso-far achievable number of traverség,,~4000 in the ex-

Nopt. in order to observe the QZE if the losses in the meaperiment [10,11; yet the survival probabilityPMord( )
surement processéspectral decompositiopgre taken into  =0.97 is already very close to unity. This estimate shows

account. In Fig. 4, the probability™)(6), computed accord- that a good test of the QZE can be performed in this case.
ing to the exact expressidB.10), is plotted as a function of Of course, actual experiments suffer from other losses
N for a few values of the transmission coefficiefits and than those considered here. However, such additional losses
T,. The figures corroborate the previous discussion. Théan be taken into accoufiio a large extentby duly renor-
QZE can be observed even with nonideal mirrordy is not ~ malizing the transmission probability;|?. We therefore ex-

too large, namely if one does not check the system’s state taeect that the present analysis essentially maintains its valid-
frequently: this is good news from an experimental point of

view, since one need not and should not attempt to indefi- TABLE I. N, from Eq.(3.18 andPMow(¢) from Eq.(3.193
nitely increase the number of mirrofer reflections in the versus|T|%. The exact values, obtained from E(B.10 with
neutron resonator experimeii order to achieve an optimal |T,|°=0, are indicated in parentheses.

QZE. Notice also that the probabilitp™(6) significantly

2 ~

depends off;, but displays almost no dependenceTon T Nopt )
It is possible to estimate the optimal number of measure- 0.99 16 (16) 0.69 (0.73)
ments, N, yielding the maximum probabilitypNord (). 0.999 50 (50) 0.90(0.91)
This can be done from the approximate form(8l5 as 0.9999 157 (157) 0.97 (0.97)

follows. For actual magnetic mirrorts‘l}|2 is almost unity(a
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ity. For example, if the maximum number of traversesina d _ N t,L"(t;/N)
neutron-spin test of the QZE is of ordsf,,,=4000, one can an! PM(9)=InL(t/N)+Inp(t,/N)— NG /N)
roughly estimate that 4 |T,|>~losses=1/4000. This yields !
Nop=99 andPMNord(9)=0.95, a very reasonable value. _ Lp'(t/N) 6
Np(t,/N) ' ’

IV. QZE WITH NONIDEAL MEASUREMENTS: . - .
GENERAL FRAMEWORK where the prime denotes derivative with respect to the whole

argument. By expanding for lardé, according to Eqsi4.4)
It is possible to extend the conclusions of the precedingand (4.5), this yields
section to a broader framework, by making use of the well-
known characteristics of the QZBhort-time behavior of the _1 Nopt as o[ a1
evolved wave functionand of some sensible assumptions ToptETzW z(
regarding the GSD. Assume thdtis large and the losses are z
small, so that the quantum Zeno survival probability be

given by an expression of the typé& 14 and(3.15), Plugging this result into Eqg4.4), (4.5), and(4.1), we ob-

ap

- tain
PM(O)=[L(ty/N)IV[p(ta/N)IN  (ty+t,=t=1,0),
(41) ~ tl t1 2] Nop t2 27 Nopt
P(Nopd () ~ a+b— el — 1-|
where the factot. represents lossddue to imperfect trans- opt opt 7z opt
mission, measurements, and sg,omhile p is the survival b c ti 1 p2 ti tg
probability of the quantum system in its initial state. We =aNopt exp —t1+———§—2—— 5
require that a” aNept 2a?Nopt 75N,y
b
0=<L(t), p(H=L. 4.2 — g 2Non exp(gtl). @8

Equations(4.1) and (4.2) describe the Zeno survival prob-

ability in an experiment in which a quantum evolution fol- Where we used Ed4.7) in the last equality. The fact@Nor
lowed by a lossy spectral decomposition is repe&tdimnes.  is due to the twqalmost equaltermsL andp in Eq. (4.1,

In short, the system spends a tire evolving under the €ach contributinga™or. Equations(4.7) and (4.8 are the
action of a given Hamiltoniahi and a timet; in GSDs.(We main results of this section and express the optimal fre-
note thatt, plays the same role asf the preceding section, quency of GSDs7;, and the maximal survival probability

where the GSD timé; was neglectegl.We will write PMNopd( §) as a function of the parameters characterizing the
) system and the apparatus.
ti=ajt, ;>0 (j=1,2, a;ta,=1. (4.3 Let us look at some particular casesal-1 (andVb,c),

] ] - corresponding tqalmos} lossless GSDs7,,—0 and one
The quantum-mechanical survival probability has the fol-gets the usual QZE, with no limitations on the frequency of
lowing short-time expansiof8]: GSDs: infinitely frequent GSDs slow down the evolution
away from the initial quantum state. However, due to the
presence of losses, the survival probability is not unity, even
in the limit of infinitely frequent GSDs:

t2
p(t)~1——2 (t<ty), (4.4
Tz

where 7, is the Zeno time. Note that, in gener@nd, in Pterd(6)=P)( )
particular, for bona fide unstable systgimhie above equa- —exp—|blty) (a—1), (4.9
tion is valid on a(much shortertime scale tharr,, but this
will not be discussed here: see Rgff4] and the last paper in  where we took into account the fact that<0 due to Eq.
Ref. [7]. (4.2 anda=1. This result is intuitively clear: due to the
We assume, in general, that presence of linear losses irin Eq. (4.5), one cannot hope
that the Zeno mechanism can work better than(Ed). It is
L(t)~a+bt+ct?, O=a=<1 (smallt). (45  worth noticing that there are analogies between this approach
) _ and the interesting work by Berry and Klein on twisted
Whena=1, the GSD is very effective and losses appear Orstacks of light polarizer15]. It should be emphasized that
a time scale of the order db| "*. In contrast, whera<1,  the practical limitations one has to face in the case of very
losses are “instantaneous” and have serious consequences fBquent “pulsed” measurementdl(large are encompassed
a realistic test of the QZE(Note that the above formula \yhen one considers “continuous” measurement processes,
includes the case in which is independent of whenb=c  gue to a Hamiltonian interaction with an external system

=0.) _ playing the role of the apparatus. This is relevant in the light
The strategy is to maximize B(N(¢) in Eq. (4.1) as a  of the physical equivalence between the pulsed and continu-
function of N, at fixedt, andt,. We get ous formulations of the QZEEL6].
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If, on the other handa<1, corresponding to instanta- additional mistakes and was neglected in Sec. lll. In this
neous losses, occurring on a GSD time scalkich we as- appendix, we take it into account and clarify its role in the
sume to be much shorter than any other time sdal&t, QZE.

=t, or ¢;<a,=1), Eq.(4.7) yields The effects of thenth magnetic mirror on a spin-up and a
spin-down neutron read
t t
Nopt2 (4.10 |T>®|tn—1>_’(TTT|T>+TiT|i>)®|tn>

ina t r,l-a
+(Ry [ +Rfl 1) @]r) (AL)

This is the case considered in the preceding section: if one

recalls the definition ofg in Eq. (2.3) and identifiesa

=|T|?, one recovers Eq(3.18. In this case the survival t (T 4T t
probability (4.8) reduces to Eq(3.193. [D®lta-2)= (T D+TrID) @]t
Equations (4.7) and (4.8) enable one to look at the (R IR M) ®[r), (A2)

“lossy” Zeno phenomenon from a more general perspective. ] -
Clearly, inany physical situation, the optimal frequengy.7) ~ respectively, wherd ,, Ty, (R, Ry ) are the probability
to obtain a QZE is smaller than and the optimal survival amplitudes for spin-flips when the neutron is transmittes

probability (4.8) is smaller than 1. flected, and the two constraint§T|%+|T |+ |R|?
V. SUMMARY Hence the action of the magnetic mirror on a neutron in a

general spin statgS) reads
We have discussed a neutron-spin experimental test of the

QZE from a practical point of view, taking account of the IS)®[th-1)=(c[T)+c|[1))®[th-1)
inevitable imperfection in the GSD at the magnetic mirror.

We endeavored to clarify that losses are important, but do =Le (Tl +Tul)

not make an experimental test of the QZE unrealistic. This is +e (Tl D)+ T [THe|ty)
probably somewhat at variance with expectation, for losses

exponentiallypropagate in a Zeno setup, involvilgrepeti- e (R )+ Ry (1))

tions of one and the same GSD. However, we have seen that, te Ry +R[I)]®]r)
if duly taken into account, the disruptive effect of losses can T T n

be controlled and an interesting test is still feasible for rather =798t + RIS)@|r) (A3)
large values ofN. This is a positive conclusion, from an . e
experimental perspective. Our conclusions are of general vayhere

lidity for any practical test of the QZE.

?:|T>TN<T|+|T>Tu<l|+|l>Tu<T|+|l>Tu<l|iA4
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1f 0 6]

1 0 6]

(A5)

APPENDIX: SPIN-FLIP EFFECTS AT THE MAGNETIC and its eigenvalues. (N) are given by
MIRRORS

. . . fr(N):Ci\/CZ_(TMTLL_T”T”). (A6a)
In practice, one cannot exclude the possibility that a spin
flip occurs at the magnetic mirrors. This effect introduceswith
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. (A6b)

1 0 0
C= 5[(TTT+TH)CO%—I(T”-I-T“)SIHN

A calculation similar to that in Sec. Il yields the survival

probability

2

- o .0
P<N>(a)=‘A(N)—B(N)(Tuco%—ﬂusmﬁ)

2

+ , (A7)

.0 4
B(N)(TusmﬁﬂT”coN)

where A(N) and B(N) are defined as in Eq¢$3.113 and
(3.11b, respectively, but with the eigenvalués(N) in Eq.

PHYSICAL REVIEW A 68, 012107 (2003

(A6). For [T [, [Ty, [T;;|<|Ty], probability (A7) is
readily evaluated as

- 0 2N
PMN(g)= |TTT|2N( co%)

X

1-2 Re(T—M)(N—l)tarFN

Ty

0
+2 Im(TM)(N—l)tanNJr -1, (A8)

which shows that the probability")(6) is again dominated
by factor (3.19 (with |T,| replaced by|T;|), and the spin
flips at the mirrors yield only a first-order correction.
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