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Optimization of a neutron-spin test of the quantum Zeno effect
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A neutron-spin experimental test of the quantum Zeno effect~QZE! is discussed from a practical point of
view, where the nonideal efficiency of the magnetic mirrors, used for filtering the spin state, is taken into
account. In the idealized case, the numberN of ~ideal! mirrors can be indefinitely increased, yielding an
increasingly better QZE. In contrast, in a practical situation with imperfect mirrors, there is an optimal number
of mirrors, Nopt , at which the QZE becomes maximum: more frequent measurements would deteriorate the
performance. However, a quantitative analysis shows that a good experimental test of the QZE is still feasible.
These conclusions are of general validity: in a realistic experiment, the presence of losses and imperfections
leads to an optimal frequencyNopt , which is in general finite. One should not increaseN beyondNopt . A
convenient formula forNopt , valid in a broad framework, is derived as a function of the parameters charac-
terizing the experimental setup.
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tu
ia
lly
n-

b
y

n
Z

f
xp
rs

er
nd
ts
p
n

st

ec
a
ct

-
t
lu

no
in
s is

ZE
ir-
f-

ely
arly,
ntal
am-
h
ll

ete-
the
nce
fre-
x-
an-

e
n

e

ith

is
I. INTRODUCTION

If very frequent measurements are made on a quan
system in order to ascertain whether it is still in the init
state, its evolution is slowed down and eventually tota
hindered in the limit of infinite frequency. This is the qua
tum Zeno effect~QZE! @1–3#, which was considered little
more than a curiosity until the experimental confirmations
Itano et al. @4# ~which followed a theoretical proposal b
Cook @5#! and by Raizen and co-workers in Texas@6#. This
last experiment proved the existence of the QZE for bo
fide unstable systems and the occurrence of the inverse Q
i.e., acceleration of decay by repeated~not extremely fre-
quent! measurements@7#. The temporal behavior o
quantum-mechanical systems and, in particular, the none
nential features at short times, on which QZE and inve
QZE hinge, are reviewed in Ref.@3#.

We are now going through a phase of experimental v
fication of the QZE. It is therefore important to understa
the physical meaning of ‘‘infinitely’’ frequent measuremen
focusing on practical applications, imperfections of the a
paratus, experimental losses, as well as theoretical bou
Some of these problems were tackled in Ref.@8#. In this
paper, we reconsider the proposal of an experimental te
the QZE, which makes use of neutron spin@9#. In view of the
recent progress in the perfect-crystal neutron-storage t
nology @10,11#, it is necessary to investigate the physic
properties of a Zeno setup, focusing, in particular, on pra
cal limits.

In this paper, we will study the practicalimperfections in
the spectral decomposition. In a few words, a ‘‘spectral de
composition’’ in Wigner’s sense@12# is a unitary process tha
associates additional degrees of freedom to different va
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of the observable to be measured. In this sense, it yields
wave-function collapse. It is known, and will be reviewed
Sec. II, that a frequent series of spectral decomposition
sufficient for obtaining a QZE@3,9,13#.

In the proposed neutron-spin experimental test of the Q
@9#, the spectral decomposition is realized by a magnetic m
ror, with its inevitable imperfections, leading to nonideal e
ficiency. The main purpose of this paper is to quantitativ
analyze the consequences of these imperfections: cle
they tend to deteriorate the performance of the experime
setup; yet, for reasonable values of the experimental par
eters@10,11#, a good test is still clearly feasible with hig
efficiency. This will be shown in Sec. III, where we wi
determine anoptimumvalue Nopt of the frequency of mea-
surements: more frequent measurements would simply d
riorate the overall performance of the setup, masking
QZE. These conclusions are of general validity: the prese
of losses and imperfections always leads to an optimal
quency, which is in general finite. Our analysis will be e
tended and generalized in Sec. IV to an arbitrary lossy qu
tum Zeno experiment, and a convenient formula forNopt will
be derived. We summarize our results in Sec. V.

II. NEUTRON-SPIN TEST OF THE QZE
WITH IDEAL MIRRORS

Let us first briefly review the original proposal of th
neutron-spin test of the QZE@9#. The basic setup is shown i
Fig. 1~a!. We prepare, equally spaced along they axis, N
identical regions in each of which a static magnetic fieldB is
applied in thex direction. A neutron wave packet, whos
initial spin is oriented in thez direction, travels along they
axis and undergoes a spin rotation at each interaction w
the magnetic field, according to the Hamiltonian

H5mBsx , ~2.1!

m being the neutron magnetic moment ands i ( i 5x,y,z) the
Pauli matrices. The initial state of the incident neutron
©2003 The American Physical Society07-1
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uS0&5u↑& ~spin up along thez direction!. The final state,
after crossing theN regions with the magnetic fields, read

uS~ t !&5e2 iHt /\u↑&5cos
mBt

\
u↑&2 i sin

mBt

\
u↓&, ~2.2!

wheret is the total time spent in the magnetic field and w
have ignored, for simplicity, the spatial degrees of freed
of the neutron. By defining

u5
mBt

\
5

t

tZ
, ~2.3!

where tZ (5\^↑uH2u↑&21/2 in this case! is the so-called
Zeno time and 2u the classical precession angle of the sp
the survival probability of the initial stateu↑& reads

P~u!5u^↑ue2 iHt /\u↑&u25cos2u. ~2.4!

Note that ifBt is adjusted so as to satisfy

u5
p

2
, ~2.5!

the spin is completely flipped

uS~ t !&5e2 iHt /\u↑&52 i u↓&. ~2.6!

In this case the survival probability of the initial stateu↑&
vanishes:

P~u!50. ~2.7!

This situation, shown in Fig. 1~a!, is the one usually consid
ered in the literature. However, the whole analysis that
lows identically applies to the general case~2.3! and ~2.4!.

Let us now check, at every step, whether the spin rem
in the initial stateu↑& despite the spin rotation in theB field.
To this end, we insertN magnetic mirrors after everyB re-
gion, as in Fig. 1~b!. The incident neutron undergoesN
‘‘spin-measurements’’ until it reaches the detector D. At ea
step, if the spin state remains up, the neutron is transm

FIG. 1. ~a! Basic setup for the neutron-spin test of QZE. We
t/tZ5p/2, so that 2u5p. ~b! Neutron-spin test of QZE with idea
mirrors.
01210
,
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through the mirror and keeps traveling right, otherwise it
reflected out by the mirror. Detector D counts those neutr
that have ‘‘survived’’ at each of theseN measurements, so
that the detection probability at D is nothing but the surviv
probability of the initial stateu↑&.

As clarified in Refs.@3# and @9#, the insertion of a mirror
does not represent a measurement of the spin state; it
constitutes a generalized spectral decomposition~GSD! in
Wigner’s sense@12#, namely, a~unitary! physical process
that associates an ‘‘external’’ degree of freedom~whose role
is played here by the wave packet of the neutron! to different
values of the observable to be measured~the neutron spin!: a
frequent sequence of GSD is sufficient for the occurrence
a QZE. In a magnetic field, the spin state of the incide
neutron is changed from the initial oneu↑& to e2 iHt /N\u↑&
and the neutron is thendecomposedby the mirror into two
branch waves: the spin-up component going rightward
the spin-down one going upward in Fig. 1~b!. The state of
the neutron just after the first mirror is hence given by

uc1&5Te2 iHt /N\u↑& ^ ut1&1Re2 iHt /N\u↑& ^ ur 1&, ~2.8!

where the spectral decomposition with respect to the s
state is expressed in terms of the projection operators

T5u↑&^↑u, R5u↓&^↓u, ~2.9!

and utn& and ur n& are the transmitted and reflected wa
packets after thenth mirror @and before the (n11)th mag-
netic field#, representing the spatial degrees of freedom of
neutron. Repeating these operationsN times, we obtain the
final state of the neutron

ucN&5~Te2 iHt /N\!Nu↑& ^ utN&

1 (
n51

N

Re2 iHt /N\~Te2 iHt /N\!n21u↑& ^ ur n&,

~2.10!

so that the probability for the neutron to be detected at
tector D, i.e., the survival probability of the initial spin sta
u↑&, reads

P(N)~u!5u$^↑u ^ ^tNu%ucN&u2

5u^↑u(Te2 iHt /N\)Nu↑&u2

5u^↑ue2 iHt /N\u↑&u2N

5S cos
u

ND 2N

, ~2.11!

t
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FIG. 2. Schematic setup of the VESTA~Vi-
ennese neutron storage apparatus! experiment.
~Courtesy: the Vienna group.! Neutrons are fed
from the right and bounce back and forth in th
guide between the reflecting plates. Their spin
rotated when they go through theB field in the rf
spin flipper. The neutrons are finally extracte
from the storage apparatus and detected at
left.
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where we have made use of Eq.~2.3! ~within our approxi-
mations, the total duration of the experiment ist, with or
without magnetic mirrors!. Under condition~2.5! ~and, in
general, foru,p/2), this is nonvanishing for anyN>2 and
is an increasing function ofN. Frequent ‘‘checks’’ of the spin
state slow down the evolution of the initial stateu↑&: the
survival probabilityP(N)(u) increases with the frequency o
measurements. This is a QZE. Furthermore, in the limit
infinite frequency,

lim
N→`

P(N)~u!51 ~u fixed!, ~2.12!

i.e., the spin is frozen and ceases to evolve, in agreem
with the theorem by Misra and Sudarshan@2#.

An experiment is at present being performed@11# by mak-
ing use of a recently developed neutron-storage techn
@10#. Neutrons with a well-defined energy and in a given s
state are stored in a 1-m-long perfect-crystal resonator~see
Fig. 2!. The neutrons, at the given energy, satisfy the Bra
reflection condition and bounce back and forth between
two reflecting crystal plates at both ends of the silicon cr
tal. A neutron guide is inserted between the crystal plate
order to minimize the lateral losses. In this way, at prese
neutrons can be reflected a few thousand times, traveling
a few kilometers in the resonator@10,11#. In the central part
of the resonator, a spin-rotating radio frequency~rf! field can
be applied, playing the role of the magnetic field in Fig. 1

The Zeno effect can be obtained as follows. A neutr
traveling in the guide, whose wavelength satisfies the Br
condition at the crystal plate, is reflected back inside
guide. However, if a static magnetic field is applied at one
the crystal plates, yielding different potentials for differe
spin states of the neutron, the neutrons are selected acco
to their spin state: if, say, a spin-up neutron satisfies
Bragg condition at a plate, the neutron is reflected back
kept inside the resonator; if, on the other hand, the spi
flipped by the spin-rotating rf field, the neutron is transmitt
out of the resonator. The crystal plates with the magn
fields play therefore the role of the ‘‘magnetic mirrors’’ i
Fig. 1~b!, performing the GSDs. Hence, in this experimen
setup, the probability for the neutron to remain in the perf
single crystal is the survival probability of the initial sp
state. In the most recent setup, displayed in Fig. 2, a s
magnetic field has been added in the central part of
perfect-crystal resonator, in order to minimize the mecha
cal vibrations due to the on-off switching of the magne
01210
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fields at the plates, thereby making the whole apparatus
sensitive to depolarization effects.

It should be clear by now that it is of primary importanc
to analyze the effect of losses and imperfections, in orde
understand whether the experiment is still meaningful in
realistic situation. Note that the numberN of traverses and
interactions should be very large, in order to get a go
manifestation of the QZE. This, on the other hand, entail
dramatic~exponential! propagation of ‘‘errors.’’ This will be
investigated in the following two sections.

III. NEUTRON-SPIN TEST OF THE QZE
WITH NONIDEAL MIRRORS

Losses are unavoidable in real experiments and mus
duly taken into account. A magnetic mirror, for example,
not ideal, as tacitly assumed in the preceding section. It h
nonvanishing probability of failing to correctly decompo
the spin state. Assume that the magnetic mirror has trans
sion T↑(↓) and reflectionR↑(↓) coefficients for a spin-up
~spin-down! neutron~Fig. 3!. ~They are in general comple
valued and constrained byuT↑(↓)u21uR↑(↓)u251.! We as-
sumed in the preceding section thatuT↑u5uR↓u51 and R↑
5T↓50, but this is not the case for actual magnetic mirro
So the question arises as to whether~and to which extent! it
is possible to observe the QZE with nonideal mirrors.
other words, whether the QZE still takes place if the me
surements~i.e., the spectral decompositions! are imperfect.

At the nth ~nonideal! mirror, the spin-up component of
neutron,u↑& ^ utn21&, is split into two waves

u↑& ^ utn21&→u↑& ^ ~T↑utn&1R↑ur n&) ~3.1a!

and a similar expression holds for the spin-down compon

u↓& ^ utn21&→u↓& ^ ~T↓utn&1R↓ur n&). ~3.1b!

FIG. 3. Transmission and reflection coefficients for~a! a spin-up
neutron and~b! a spin-down neutron.
7-3
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~No spin flip is assumed to occur at the magnetic mirror. T
most general case, where such spin flips take place, is in
tigated in the Appendix.! The right arrows in Eqs.~3.1! and
in the following stand for the~unitary! physical processe
that are responsible for the spectral decomposition. He
for a neutron in a general spin stateuS&, the magnetic mirror
provokes the following spectral decomposition:

uS& ^ utn21&[~c↑u↑&1c↓u↓&) ^ utn21&

→~c↑T↑u↑&1c↓T↓u↓&) ^ utn&

1~c↑R↑u↑&1c↓R↓u↓&) ^ ur n&

5T̃ uS& ^ utn&1R̃uS& ^ ur n&, ~3.2!

where the operators

T̃5u↑&T↑^↑u1u↓&T↓^↓u, R̃5u↑&R↑^↑u1u↓&R↓^↓u
~3.3!

incorporate the effects due to the imperfections of the mir
These operatorsT̃ and R̃, even though they are no longe
projection operators, play the same role as the projec
operatorsT andR in the ideal case~2.8! and~2.9!. The final
state of the neutron after the final (Nth! magnetic mirror is
given by

uc̃N&5~ T̃e2 iHt /N\!Nu↑& ^ utN&

1 (
n51

N

R̃e2 iHt /N\~ T̃e2 iHt /N\!n21u↑& ^ ur n&

~3.4!

and the probability for the neutron to be detected at dete
D reads

P̃(N)~u!5i^tNuc̃N&i2

5tr@~ T̃e2 iHt /N\!Nr0~eiHt /N\T̃ †!N#, ~3.5!

wherer05u↑&^↑u is the initial density operator of the neu
tron spin. @The spin state observed at the detector is
necessarilyu↑&; it is probability ~3.5! that one measures i
the actual experiment.#

Let us evaluate probability~3.5!. The eigenvaluesj6(N)
of the operator

T̃e2 iHt /N\5
1

2
~T↑1T↓!cos

u

N
2sx

i

2
~T↑1T↓!sin

u

N

1sy

1

2
~T↑2T↓!sin

u

N
1sz

1

2
~T↑2T↓!cos

u

N

~3.6!

are given by

j6~N!5
1

2 F ~T↑1T↓!cos
u

N

6A~T↑1T↓!2cos2
u

N
24T↑T↓G . ~3.7!
01210
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@The eigenvaluesj6(N) will henceforth be writtenj6 , un-
less confusion arises.# By rewriting operator~3.6! as

T̃e2 iHt /N\5 1
2 ~j11j2!1 1

2 ~j12j2!sn , ~3.8!

wheresn5n•s, n being a complex-valued vector satisfyin
n25nx

21ny
21nz

251, we readily obtain

~ T̃e2 iHt /N\!N5 1
2 ~j1

N 1j2
N !1 1

2 ~j1
N 2j2

N !sn . ~3.9!

A series of elementary calculations yields the following e
act expression for the probability:

P̃(N)~u!5UA~N!2B~N!T↓cos
u

NU2

1UB~N!T↓sin
u

NU2

,

~3.10!

with

A~N!5
j1

N11~N!2j2
N11~N!

j1~N!2j2~N!
, ~3.11a!

B~N!5
j1

N ~N!2j2
N ~N!

j1~N!2j2~N!
. ~3.11b!

We are now in a position to see whether it is possible
observe the QZE with nonideal mirrors. In order to analy
its N dependence, let us expand probability~3.10! as a func-
tion of uT↓ /T↑u!1. ~In the experiment@10#, uT↓ /T↑u2
&1024.! For any N>2, the eigenvalues in Eq.~3.7! are
expanded as

j1.T↑cos
u

N F12
T↓
T↑

tan2
u

N
1O~T↓

2/T↑
2!G , ~3.12a!

j2.j1FT↓
T↑

S 11tan2
u

ND1O~T↓
2/T↑

2!G , ~3.12b!

from which one obtains

A~N!5j1
N F11

j2

j1
1•••1S j2

j1
D NG

.S T↑cos
u

ND NF12
T↓
T↑

S ~N21!tan2
u

N
21D1•••G

~3.13!

and a similar expansion holds forB(N). We thus easily ob-
tain an approximate expression for probability~3.10!

P̃(N)~u!.uT↑u2NS cos
u

ND 2N

3F122 ReS T↓
T↑

D ~N21!tan2
u

N
1•••G , ~3.14!

valid for N>2. @For N51, P̃(1)(u)5sin2u HuT↓u2
1cos2u HuT↑u2 exactly.# It is clear from formula~3.14! that
the probabilityP̃(N)(u) is well approximated by
7-4
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FIG. 4. ~a! T↑ dependence and
~b! T↓ dependence of the probabi

ity P̃(N)(u) in Eq. ~3.10!. In both
figures, argT↑5argT↓50.
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P̃(N)~u!.uT↑u2NS cos
u

ND 2N

. ~3.15!

This shows that neither the transmission coefficientT↓ for a
spin-down neutron, nor the phases ofT↑ and T↓ bear any
important influence on the probabilityP̃(N)(u); the only rel-
evant quantity is the transmission probabilityuT↑u2. Since
uT↑u2.1, for N not too large the factoruT↑u2N is almost unity
and the probabilityP̃(N)(u) behaves like

P̃(N)~u!.S cos
u

ND 2N

~N not too large!. ~3.16!

This is the same as the survival probability with ideal mirro
given in Eq.~2.11!, and is an increasing function ofN. How-
ever, for largerN, the factor@cos(u/N)#2N is almost unity, and
the probability behaves like

P̃(N)~u!.uT↑u2N ~largerN!, ~3.17!

decreasing exponentially to zero asN→`: as the number of
mirrors, N, is increased, the mirror imperfections (uT↑u2N

,1) dominate over the increasing factor@cos(u/N)#2N, sup-
pressing the QZE for very largeN. ~Clearly, the meaning of
‘‘large’’ N in the two previous equations must be precis
defined. This will be done in the following.!

There must be therefore an optimal number of mirro
Nopt, in order to observe the QZE if the losses in the m
surement processes~spectral decompositions! are taken into
account. In Fig. 4, the probabilityP̃(N)(u), computed accord-
ing to the exact expression~3.10!, is plotted as a function o
N for a few values of the transmission coefficientsT↑ and
T↓ . The figures corroborate the previous discussion. T
QZE can be observed even with nonideal mirrors, ifN is not
too large, namely if one does not check the system’s state
frequently: this is good news from an experimental point
view, since one need not and should not attempt to ind
nitely increase the number of mirrors~or reflections in the
neutron resonator experiment! in order to achieve an optima
QZE. Notice also that the probabilityP̃(N)(u) significantly
depends onT↑ , but displays almost no dependence onT↓ .

It is possible to estimate the optimal number of measu
ments,Nopt, yielding the maximum probabilityP̃(Nopt)(u).
This can be done from the approximate formula~3.15! as
follows. For actual magnetic mirrors,uT↑u2 is almost unity~a
01210
,
-

e

oo
f
fi-

-

reasonable value of 12uT↑u2 is of order 1024 @10#! andNopt

is expected to be large. The maximum of the functionf (x)
5axcosx(2u/x), with a&1, is given by one of the solution
of the equationa cos(2u/x)5exp@2(2u/x)tan(2u/x)# and is
approximatelyxopt.2u/Aln a22. Applying this result to the
probability ~3.15! one obtains

Nopt.F u

A12uT↑u2
G ~ uT↑u2.1!, ~3.18!

where @x# is the closest integer tox. The maximum is then
readily evaluated as

P̃(Nopt)~u!.12
2u2

Nopt
~Nopt@1! ~3.19a!

.122uA12uT↑u2 ~ uT↑u2.1!. ~3.19b!

Some values ofNopt and P̃(Nopt)(u) estimated from Eqs.
~3.18! and~3.19a!, respectively, are listed in Table I for som
uT↑u2. The agreement with the numerical results shown
Fig. 4, based on the exact formula~3.10!, is excellent@except
for uT↑u250.99, whereP̃(Nopt)(u) differs by about5%].

Notice that for 12uT↑u2;1024 @10#, the estimated opti-
mal number isNopt5157, which is much smaller than th
so-far achievable number of traversesNmax;4000 in the ex-
periment @10,11#; yet the survival probabilityP̃(Nopt)(u)
.0.97 is already very close to unity. This estimate sho
that a good test of the QZE can be performed in this cas

Of course, actual experiments suffer from other los
than those considered here. However, such additional lo
can be taken into account~to a large extent! by duly renor-
malizing the transmission probabilityuT↑u2. We therefore ex-
pect that the present analysis essentially maintains its va

TABLE I. Nopt from Eq. ~3.18! and P̃(Nopt)(u) from Eq. ~3.19a!
versus uT↑u2. The exact values, obtained from Eq.~3.10! with
uT↓u250, are indicated in parentheses.

uT↑u2 Nopt P̃(Nopt)(u)

0.99 16 (16) 0.69 (0.73)
0.999 50 (50) 0.90 (0.91)
0.9999 157 (157) 0.97 (0.97)
7-5
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FACCHI et al. PHYSICAL REVIEW A 68, 012107 ~2003!
ity. For example, if the maximum number of traverses in
neutron-spin test of the QZE is of orderNmax.4000, one can
roughly estimate that 12uT↑u2; losses.1/4000. This yields
Nopt.99 andP̃(Nopt)(u).0.95, a very reasonable value.

IV. QZE WITH NONIDEAL MEASUREMENTS:
GENERAL FRAMEWORK

It is possible to extend the conclusions of the preced
section to a broader framework, by making use of the w
known characteristics of the QZE~short-time behavior of the
evolved wave function! and of some sensible assumptio
regarding the GSD. Assume thatN is large and the losses ar
small, so that the quantum Zeno survival probability
given by an expression of the types~3.14! and ~3.15!,

P̃(N)~u!.@L~ t1 /N!#N@p~ t2 /N!#N ~ t11t25t5tZu!,
~4.1!

where the factorL represents losses~due to imperfect trans
mission, measurements, and so on!, while p is the survival
probability of the quantum system in its initial state. W
require that

0<L~ t !, p~ t !<1. ~4.2!

Equations~4.1! and ~4.2! describe the Zeno survival prob
ability in an experiment in which a quantum evolution fo
lowed by a lossy spectral decomposition is repeatedN times.
In short, the system spends a timet2 evolving under the
action of a given HamiltonianH and a timet1 in GSDs.~We
note thatt2 plays the same role ast of the preceding section
where the GSD timet1 was neglected.! We will write

t j5a j t, a j.0 ~ j 51,2!, a11a251. ~4.3!

The quantum-mechanical survival probability has the f
lowing short-time expansion@3#:

p~ t !;12
t2

tZ
2 ~ t,tZ!, ~4.4!

where tZ is the Zeno time. Note that, in general~and, in
particular, for bona fide unstable systems!, the above equa
tion is valid on a~much! shortertime scale thantZ , but this
will not be discussed here: see Ref.@14# and the last paper in
Ref. @7#.

We assume, in general, that

L~ t !;a1bt1ct2, 0<a<1 ~small t !. ~4.5!

Whena51, the GSD is very effective and losses appear
a time scale of the order ofubu21. In contrast, whena,1,
losses are ‘‘instantaneous’’ and have serious consequenc
a realistic test of the QZE.~Note that the above formula
includes the case in whichL is independent oft whenb5c
50.!

The strategy is to maximize lnP̃(N)(u) in Eq. ~4.1! as a
function of N, at fixedt1 and t2. We get
01210
g
l-

-

n

on

d

dN
ln P̃(N)~u!5 ln L~ t1 /N!1 ln p~ t2 /N!2

t1L8~ t1 /N!

NL~ t1 /N!

2
t2p8~ t2 /N!

Np~ t2 /N!
50, ~4.6!

where the prime denotes derivative with respect to the wh
argument. By expanding for largeN, according to Eqs.~4.4!
and ~4.5!, this yields

topt
21[

Nopt

t
.

a2

tZAln a21
A12tZ

2S a1

a2
D 2S c

a
2

b2

2a2D .

~4.7!

Plugging this result into Eqs.~4.4!, ~4.5!, and ~4.1!, we ob-
tain

P̃(Nopt)~u!;Fa1b
t1

Nopt
1cS t1

Nopt
D 2GNoptF12S t2

tZNopt
D 2GNopt

.aNopt exp S b

a
t11

c

a

t1
2

Nopt
2

1

2

b2

a2

t1
2

Nopt
2

t2
2

tZ
2Nopt

D
.a2Nopt exp S b

a
t1D , ~4.8!

where we used Eq.~4.7! in the last equality. The factora2Nopt

is due to the two~almost equal! termsL andp in Eq. ~4.1!,
each contributingaNopt. Equations~4.7! and ~4.8! are the
main results of this section and express the optimal
quency of GSDs,topt

21 , and the maximal survival probability

P̃(Nopt)(u) as a function of the parameters characterizing
system and the apparatus.

Let us look at some particular cases. Ifa→1 ~and;b,c),
corresponding to~almost! lossless GSDs,topt→0 and one
gets the usual QZE, with no limitations on the frequency
GSDs: infinitely frequent GSDs slow down the evolutio
away from the initial quantum state. However, due to t
presence of losses, the survival probability is not unity, ev
in the limit of infinitely frequent GSDs:

P̃(Nopt)~u!5 P̃(`)~u!

5exp~2ubut1! ~a→1!, ~4.9!

where we took into account the fact thatb,0 due to Eq.
~4.2! and a51. This result is intuitively clear: due to th
presence of linear losses int in Eq. ~4.5!, one cannot hope
that the Zeno mechanism can work better than Eq.~4.9!. It is
worth noticing that there are analogies between this appro
and the interesting work by Berry and Klein on twiste
stacks of light polarizers@15#. It should be emphasized tha
the practical limitations one has to face in the case of v
frequent ‘‘pulsed’’ measurements (N large! are encompasse
when one considers ‘‘continuous’’ measurement proces
due to a Hamiltonian interaction with an external syste
playing the role of the apparatus. This is relevant in the lig
of the physical equivalence between the pulsed and cont
ous formulations of the QZE@16#.
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If, on the other hand,a&1, corresponding to instanta
neous losses, occurring on a GSD time scale~which we as-
sume to be much shorter than any other time scale:t1!t2
.t, or a1!a2.1), Eq. ~4.7! yields

Nopt.
t

tZAln a21
.

t

tZA12a
. ~4.10!

This is the case considered in the preceding section: if
recalls the definition ofu in Eq. ~2.3! and identifiesa
5uT↑u2, one recovers Eq.~3.18!. In this case the surviva
probability ~4.8! reduces to Eq.~3.19a!.

Equations ~4.7! and ~4.8! enable one to look at the
‘‘lossy’’ Zeno phenomenon from a more general perspecti
Clearly, inanyphysical situation, the optimal frequency~4.7!
to obtain a QZE is smaller thaǹ and the optimal surviva
probability ~4.8! is smaller than 1.

V. SUMMARY

We have discussed a neutron-spin experimental test o
QZE from a practical point of view, taking account of th
inevitable imperfection in the GSD at the magnetic mirr
We endeavored to clarify that losses are important, but
not make an experimental test of the QZE unrealistic. Thi
probably somewhat at variance with expectation, for los
exponentiallypropagate in a Zeno setup, involvingN repeti-
tions of one and the same GSD. However, we have seen
if duly taken into account, the disruptive effect of losses c
be controlled and an interesting test is still feasible for rat
large values ofN. This is a positive conclusion, from a
experimental perspective. Our conclusions are of genera
lidity for any practical test of the QZE.
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APPENDIX: SPIN-FLIP EFFECTS AT THE MAGNETIC
MIRRORS

In practice, one cannot exclude the possibility that a s
flip occurs at the magnetic mirrors. This effect introduc
01210
e
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additional mistakes and was neglected in Sec. III. In t
appendix, we take it into account and clarify its role in t
QZE.

The effects of thenth magnetic mirror on a spin-up and
spin-down neutron read

u↑& ^ utn21&→~T↑↑u↑&1T↓↑u↓&) ^ utn&

1~R↑↑u↑&1R↓↑u↓&) ^ ur n& ~A1!

and

u↓& ^ utn21&→~T↓↓u↓&1T↑↓u↑&) ^ utn&

1~R↓↓u↓&1R↑↓u↑&) ^ ur n&, ~A2!

respectively, whereT↓↑ , T↑↓ (R↓↑ , R↑↓) are the probability
amplitudes for spin-flips when the neutron is transmitted~re-
flected!, and the two constraintsuT↑↑u21uT↓↑u21uR↑↑u2

1uR↓↑u251 and uT↓↓u21uT↑↓u21uR↓↓u21uR↑↓u251 hold.
Hence the action of the magnetic mirror on a neutron in
general spin stateuS& reads

uS& ^ utn21&[~c↑u↑&1c↓u↓&) ^ utn21&

→@c↑~T↑↑u↑&1T↓↑u↓&)

1c↓~T↓↓u↓&1T↑↓u↑&)] ^ utn&

1@c↑~R↑↑u↑&1R↓↑u↓&)

1c↓~R↓↓u↓&1R↑↓u↑&)] ^ ur n&

5T̃ uS& ^ utn&1R̃uS& ^ ur n&, ~A3!

where

T̃5u↑&T↑↑^↑u1u↑&T↑↓^↓u1u↓&T↓↑^↑u1u↓&T↓↓^↓u,
~A4a!

R̃5u↑&R↑↑^↑u1u↑&R↑↓^↓u1u↓&R↓↑^↑u1u↓&R↓↓^↓u.
~A4b!

Compare with Eq.~3.3!. The operatorT̃e2 iHt /N\ now reads

T̃e2 iHt /N\5
1

2 F ~T↑↑1T↓↓!cos
u

N
2 i ~T↑↓1T↓↑!sin

u

NG
1sx

1

2 F ~T↑↓1T↓↑!cos
u

N
2 i ~T↑↑1T↓↓!sin

u

NG
1sy

i

2 F ~T↑↓2T↓↑!cos
u

N
2 i ~T↑↑2T↓↓!sin

u

NG
1sz

1

2 F ~T↑↑2T↓↓!cos
u

N
2 i ~T↑↓2T↓↑!sin

u

NG
~A5!

and its eigenvaluesj6(N) are given by

j6~N!5C6AC22~T↑↑T↓↓2T↑↓T↓↑!, ~A6a!

with
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C5
1

2 F ~T↑↑1T↓↓!cos
u

N
2 i ~T↑↓1T↓↑!sin

u

NG . ~A6b!

A calculation similar to that in Sec. III yields the surviva
probability

P̃(N)~u!5UA~N!2B~N!S T↓↓cos
u

N
2 iT↓↑sin

u

ND U2

1UB~N!S T↓↓sin
u

N
1 iT↓↑cos

u

ND U2

, ~A7!

where A(N) and B(N) are defined as in Eqs.~3.11a! and
~3.11b!, respectively, but with the eigenvaluesj6(N) in Eq.
In

d

n
ur

d

ys

01210
~A6!. For uT↓↓u, uT↑↓u, uT↓↑u!uT↑↑u, probability ~A7! is
readily evaluated as

P̃(N)~u!.uT↑↑u2NS cos
u

ND 2N

3F122 ReS T↓↓
T↑↑

D ~N21!tan2
u

N

12 ImS T↑↓
T↑↑

DNtan
u

N

12 ImS T↓↑
T↑↑

D ~N21!tan
u

N
1•••G , ~A8!

which shows that the probabilityP̃(N)(u) is again dominated
by factor ~3.15! ~with uT↑u replaced byuT↑↑u), and the spin
flips at the mirrors yield only a first-order correction.
ett.
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