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Fractal entropy of a chain of nonlinear oscillators
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We study the time evolution of a chain of nonlinear oscillators. We focus on the fractal features of the
spectral entropy and analyze its characteristic intermediate time scales as a function of the nonlinear coupling.
A Brownian motion is recognized with an analytic power-law dependence of its diffusion coefficient on the

coupling.
DOI: 10.1103/PhysReVE.68.026211 PACS nuni®er05.45-a, 05.20--y, 05.40-a
[. INTRODUCTION nonintegrable system that does not possess enough integrals
of motion. The conjugate variables are q,p)
A system composed of a large number of partidigs- =(qy,...,dn,P1, ---.Pn), Where periodic boundary con-

nerically) relaxes toward an equilibrium state that is indepen-ditions qy.1=0;, Pn+1=pP; are understood. We taki

dent of the details of the initial state. This is one of the=27=128, for convenience of the numerical algorittiwe

fundamental hypotheses of statistical mechanics. Howeveppserved no significant difference for largéy. The Hamil-

from the point of view of Hamiltonian dynamics, the detailed gnjan (@* mode) reads

features of the relaxation are not thoroughly understood. One

of the unsolved fundamental questions is how equilibrium is H(g,p)=Ho(q,p)+gV(q) (g>0), (1)

approached when the underlying microscopic dynamics is

sufficiently chaotic, without introducing any randomization N

or coarse graining “by hand.” Ho(q,p)= 2
After the pioneering work on the time evolution of non- i=1

integrable systemjsl] and ergodicity 2], it is now clear that N

several additional factors play a primary role in characteriz-

ing the dynamical evolutiof3—6]. However, for a large V(q):Z,l

number of particles the Kolmogorov-Arnold-Mosg¢AM )

argument becomes less effecti&7] and the Nekhoroshev The quadratic part, is easily diagonalized by means of a

bound[4] for the equilibrium time appears too weak in com- discrete Fourier transform, in terms of th&l Jormal vari-
parison with numerical results. This scenario has motivated @plesq, , p,, with k=(k,a), wherek=0, ... N/2 anda

number of numerical studies of Fermi-Pasta-Ulam-like mod-=0,1, a=0 (a=1) corresponding to the cosinésing
els, in the attempt to clarify the dependence of the equilibtransform with wave numbekt. With this coordinate change
rium time (defined in terms of suitable indicatoren the  H  becomes
strength of the nonlinear terms and the number of particles
[8]. These studies yield stretched-exponential relaxation 1, 1,,
laws, enforcing the picture that macroscopic equilibrium Ho=2> E,, Ev=5 Pt 5 @il 4)
could be built out of local onef9)]. “

The aim of this paper is to investigate this issue by anayith the frequency spectrum
lyzing, both analytically and numerically, the dynamics of a

1 1
pi+ S Ml + S (G = )% (2)

N -

qr. A3)

IS

chain of N coupled anharmonic oscillators at intermediate — 27k

time scaleqfor states that are close to equilibriun®ne of wi=m°+2/1-co ~ /I

our main results is that at these intermediate time scales the

system performs a Brownian motion with a diffusion con- M= 0 < O O VAT, 5)

stant that can be accurately estimated and turns out to be
analytically diverging in the coupling constant: as a conse-
guence, a perturbative approach to this problem appears s
sible.

In this paper, we always set’=0.1. The value ofm deter-
Ehines the width of the spectrum and has profound conse-
quences on the dynamics, in particular at small nonlineari-
Il. THE SYSTEM ties: metastabl_e states, such as solitons and br_eathers, are
born more easily at smath and this can have drastic conse-
We will study a Hamiltonian made up of an integrable quences, both at intermediate and large time scales of the
part and alsmall) nonlinear perturbation. This is a classical equilibration proces§9].
We integrated the Hamilton equations deriving from Eqg.
(1) via a fourth-order Runge-Kutta algorithm in double pre-
*Present address: Center for Theoretical Physics, Massachuse@ision. Energy conservation is verified at least up to 1 part in
Institute of Technology, Cambridge, MA 02139. 10’ during the whole running time. Such a precision is nec-
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essary in order to assure that the fluctuations due to numerin time, fluctuates less than 1% around its mean védwen
cal integrations be negligible with respect to the physicalsmaller fluctuations are observed for very small nonlineari-

ones in which we are interested. ties). We can conclude that the primary role of the perturba-
tion V is only to allow “collisions” between normal modes
IIl. SPECTRAL ENTROPY (phonon exchangge provoking in this way the transition to

) ] ) equilibrium?! without “storing” any significant energy.
From the numerically integrated solutions we analyze therperefore, we can assunie=E, in the following.

behavior of the spectral entrop] For the spectral entropy at microcanonical equilibrium
E E one finds, after a straightforward but somewhat lengthy cal-
S(t)=—, —In=x, (6)  culation,
~ Eo Eo
_ 1
where Eq=H, is the unperturbed total energy. Whgr0 S=y(N+1)—(1—7y)=InN—(1—-y)+0O N)’ 9

all the E,’s, and thereforeS, are constant. As soon as the
nonlinearity is switched ong>0, the spectral entropy be-

comes a nontrivial function of time. , 5 = 33N+ (mP-6)N*
The purpose of this paper is to explore the dynamics of 0S'=5"-5"= 2 —¢'(N)
: U . . 3N“(N+1)
the system oveintermediatetime scales. Previous studies
[8,10] mainly concentrated on the long-time behavior of the 0.289 1
equilibration process, starting from states that are far to equi- =N +0| — |, (10
librium and smoothingS over sufficiently long-time inter- N

vals. Relaxation from states that are close to equilibrium has

been more seldom studi¢dil]. In our simulation, we always Wwhere ¢ is the Euler digamma functior{12] and y

set the initial conditions with the actiorfanperturbed ener- =0.5772 the Euler-Mascheroni constant. The asymptotic be-

gies randomly picked from a microcanonical ensemble andhavior of Eq.(9) is in agreement with previous resul&13],

the angles completely random. Therefore, the fluctuations opbtained at canonical equilibrium. In fact, as shown in the

S(t) will be studiedclose to equilibrium Appendix, the microcanonical and canonical averages of any
S displays wild time fluctuations, over a wide range of function of the spectral entropy coincide. Equati¢@sand

frequencies. We will show that useful, univocal information (10) are therefore valid also at canonical equilibrium. These

can be obtained from such an irregular function: we will firstanalytical results are well confirmed by numerical simula-

recognize a Brownian structure and then look at the charadions and provide a good test of the fact that our numerical

teristic time scales and study their dependence on the nosample was representative of an equilibrium situation and

linear coupling. free from “trend” components.
Let us first discuss some analytical properties. At equilib-
rium, average quantities and statistical properties should de- IV. CORRELATION FUNCTION

pend only on integrals of motion. For Hamiltoni&ah) one

argues that the only global integral of motion is the total We study the fractal dimension and the characteristic time
energy E=H or, equivalently, the energy per mode scales of the entropy by looking at the correlation functn
=E/N. The equations fog; possess the following scaling for the generalized Brownian proceSs

symmetry: ifg; is a solution of the Hamilton equations with
couplingg, theng = JAq; is solution of the Hamilton equa-
tions with couplingg’ =g/A. With this rescaling, the energy
is changed t&'=AE. A function X, representing the aver-

age of some quantity at equilibrium and having dlmensmnm general, one can identify a fractal, or generalized Brown-
[X]=lengtf, can only depend o& andg, whence ian motion, by the dependen&x 72", The exponent is
_ A2 related to the fractal dimension y;=2—-H. When using
XAEGA)=ATX(EQ). @ function (11) one should take care of “detrending3 [14].
Therefore, if v=0, X depends only on the dimensionless However, since the system starts at equilibrium, whére
product fluctuates about its constant mean val8e no detrending is
required. We emphasize, however, that we obtained the same
x=ge=gE/N, (8)  results also in nonequilibrium situatioriaot too far from
equilibrium), provided the trend component 8ft) was suit-
which may be considered as the effective strength of thebly removed.
nonlinearity. We will study the dynamical properties of our
system for 104<x<1.
Average quantities in the weakly nonlinear regime can be ! action-angle variables, one can renormalize the free Hamil-
calculated by using the microcanonical distribution. The us&onian with a positive, nonlinear correction of the orderofrhe
of this distribution is motivated by the empirical observationtotal Hamiltonian is accordingly split into a new free part and a new
that the totalunperturbedenergyE,, although not constant perturbation.

1(T
C(7)=lim Tf dt[S(t+ 7)—S(t)]2. (11
0

T—oo
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the law Ce« 7 must break down at a certain time. Let us call
4x10°F T this time scaler,. It is easy to show that at equilibrium, for
sufficiently larger we haveC(7)=248S?, so we can inter-
210°F i pret 7, as the time at which the autocorrelation of the en-
tropy vanishes:
C
2x10°F . (S(t+7)S(t))—(S(t+ 7))}(S(1))=0 for >1,.
(15
1x10°F J 7 This means tha§(t+ 7) and S(t) can be considered uncor-
2 related random numbers chosen from a sample of n&an
) ) X X . 2 . .
% 100 700 300 20 and variance’S®. In terms of motion in phase space one can

a7 argue that the system starts tat0 at (or very close to
_ equilibrium and at~ 7, it has explored a sufficiently large
FIG. 1. C vs w7. Notice the quadratic region extending up to part of the equilibrium region, such that the microcanonical
times of the order ofr; (insey and the linear regiori20) in the averageg9) and (10) can be used. The theoretical predic-
ranger;<7<,. The saturation leveC=25S?=0.0044 is in full tions (10) [with N=128], (12), and(13) are very well veri-
agreement with Eq(10) [for N=128]. We setx=0.09 andm®  fjaq hy the numerical data shown in Fig. 1.
=5, so thatw=2.62. Observe that,=200r; is clearly an inter- The relaxation of the system, when it starts from a state
mediate time scale, orders of magnitude smaller thap,. Larger  f4r to equilibrium, takes place on a time scdlg,, that can

ratios 7,/ 7, are observed for smaller values xfbut the chain of be defined in terms of the effective number of excited modes
inequalities(19) always remains valid. (8]

For a Brownian process, one expects a linear dependence Ne=exp(S): (16)
of Con 7 [14,19, i.e., D{=3/2,
clearly, if the system is initially far from equilibrium,

. . . L . . ANg(Tretad =Ne(Treiad —Ne(0) =O(N). (17)
Brownian motions are useful idealizations to describe physi-
cal processes in a simple and coherent mathematical wagn the other hand, due to Eg®) and (10), for a system
However, in order to treat an analytic functiGuch asS) as  close to equilibrium
a Brownian process, one must identifgt least one time
scale, sayr;. This time scale is such that by “observing” the Ang(p)=e5" - eS= §Se=0(|N). (18
function at time scales=< r, one obtains a smooth function,
while by observing it with a time resolutior> 7, one rec-  In this senser, is an intermediate time scale, characterizing,
ognizes a Brownian process. It is possible to unambiguouslgs we have seen, local fluctuations in phase space.

C(r)ecT. (12

identify the time scaler; sinceC~ 72 for sufficiently small Finally, if one considers that only a few oscillators can
T exchange energy in a timg, one can summarize the above
discussion by writing
A ..., . 2
c=1m ?fo dt W7+ 55~ +0(m) Ane<n>=0<1><Ane<rz>=0<JN><Ane<Tre|ax>=ou:né)
1
=S(t)?72+0(71%). (13)

V. DIFFUSION COEFFICIENT AND INTERMEDIATE
At larger 7, the quadratic dependence changes into the linear TIME SCALES
one (12): the time scale at which this change takes place is
7. See inset in Fig. 1. It is important to stress thatis
nothing but the linear time scale for phonons, of the order o
an inverse characteristic frequen@) of the oscillators

The presence of the linear regi¢oh?2) for the correlation
unction C is observed in the whole range »finvestigated.
his enables us to define a diffusion coefficiénas the rate
at whichC increases in its linear regime, so that in the region
<7<ty We have

N

T ) 2 41 (14
=2 = .
OminT Omax M+ 4+ m? C=Dr7+C,, (20)

(0]

Up to this time scale, one is able to observe the microscopiwhereD andC, have in general a nontrivial dependence on

details of the motion in phase space. At larger time scaless. In the following, we will perform a systematic study Df

the motion appears very irregular and the microscopic detailgrhich is the physically most relevant quantity and character-

are lost. izes the Brownian fluctuations. Notice th@t is related to
For a Brownian process which is also bounded anothethe initial quadratic regioii13) and therefore depends on the

time scale appears, sin&bounded impliesC bounded and microscopic details of the motion.
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Rk B DAL ARG (10), as discussed in connection with Fig. 1. A consistent and
natural definition isr,=26S?/D, so that forx<0.1

10X P=x"2, (22)

Note that in order to measurs it is not even necessary to
perform a numerical integration of the Hamilton equations
for times of the order of,. It suffices to integrate them up to
times larger tharr; (< 7,), getD and hencer,.

The analytic dependend@2) of 7, onx is in full agree-
ment with previous results and suggests the validity of a
perturbative approacfLl]. One expects that for sufficiently

10 10° smallx a sensible fraction of the phase space is covered with
X KAM tori, allowing only Arnol'd diffusion and yielding a
consistent suppression of diffusion and a rapid divergence of
the macroscopic equilibrium time. Related analytical and nu-
merical work hints at a nonanalytic divergengich as a
stretched exponentjabf the macroscopic time scalésuch

The diffusion coefficientD has no length dimensiojw as Treia) [4,7.8 for x—0. The fact that the intermediate
time scale here analyzed diverges with a power [2®)

=0 in Eq. (7)] and therefore one expects it to be only a. . e
function gf)fz):ljeng/N (at fixedN angm). This expecta}—/ indicates thelocal presence of a Brownian motiofin the

tion is numerically confirmed with high accuracy. In particu- ;?JgIope;)sfeza(;ﬁmn?;irrzsitgdi?:ecrioict)rljzt o‘:'mﬁ?gg SSh;CL:ald be
lar, D is a monotonically increasing function &f as can be PP P 9 P pace.

— 2 i i
seen from Fig. 2. Each point in the figure is obtained by. ;I;]he dependefncel_(gft—D?xEonsz n(c)jt F”V'?l' However,
averaging at least five numerical solutions with the samd" tn€ region ot validity q(21) and for large ';“alff_es

. : ’>1, one expects a power-law dependeacem™
lue ofx. Forx=<0.1, D tely fit | m-=>1, '
value ofx. Forx=0.1, D is accurately fit by a power law deed, for largen® we get from Eq(2) e~m?g?, so that, at

D=axf B=1.987+0.040. 21) fixed €q sca!es like Ih. Therefore, the §trengtg of the
quartic potentialand hencex=ge) scales likem®. Consid-

This is an indication that the intermediate dynamics at thes&"N9 that[D]=t " and the characteristic oscillation time
time scales can be tackled by a perturbative approach. Notide® Scales like Ih, an additional factom is obtained,
that, if one endeavors to fit the curves in Fig. 2 with aY'€lding
stretched-exponential law of the tyg@«exp(consk ?),

one finds the very small valu&=9.4x 10~ 4. In our opinion,

this is a rather strong indication in support of a power-lawas shown in Fig. 3, this prediction is well confirmed by our
behavior. On the other hand, for large D saturates 10 @ numerical data, provideth?=15. For 0..m2?<15, we nu-
constant (n-independentvalue. Observe that the coefficient yerically found@xm™32 for which we offer no explana-

B in Eq. (21) doesnot depend orm; the m dependence ok jon. Moreover, form—0 one expects a qualitatively differ-
will be analyzed in the followingsee Fig. 3 ent situation, SiNC® ./ wmin= 4+ m?/m— o, such a ratio
_The intermediate time scale, is strictly related to the  ygpresenting the available primary resonances between nor-
diffusion coefficientD, via the saturation value&s? in Eq. mal modeg6]. Actually, we observed the formation of meta-
stable states fon?<0.05 (not shown in Fig. ® as a conse-

FIG. 2. D vs x=ge=gE/N for different masses. The lines are
the power law(21) and the error bars are included in the size of the
dots.

acm™’ for m?=15. (23

10.1;_' 6 T T S '_; quence, the correlation function showed marked oscillations
of definite frequency, hindering a consistent definition of a
0%k ] diffusion coefficient.
i o E
i ] VI. CONCLUSIONS
« a \Q\\ 1 The analytic(power-law divergenceg(22) of the interme-
10 e E diate time scales describing the Brownian motion on the con-
St ] stant energy surface suggests that a perturbative approach,
10°¢ i T 3 based on a Liouville-Fokker-Planck equatid] should ap-
o ] ply, at leastocally, and that an eventually nonanalytic diver-
0°F e gence of the relaxation time from far to equilibrium should
0.1 1 10 be ascribed to a nontrivial structure of the phase space at

larger scales. The dependence of the intermediate time scale
FIG. 3. a=D/x? vsm? [in the quadratic regiof21)]. The solid  on the mass and the presence of long-lived metastable states

line is theoretical prediction for large massesm~’. The dashed indicates that the problem is very involved also at (hep-

line is the fitawscm™33, posedly simplerlevel of the local dynamics in phase space.
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In this context, one might speculate that the relaxation from 1 v [* c E
states that are not too far to equilibrium depends on the “me-(F>c=Z—f d EJO d§5( 5—2 Ei)e_ﬁ J(Ei)F(E)
C

soscopic” features of phase spad&he expression meso-

scopic is not used here in its most familiar meaning, related 1 (=
to the interplay of classical and quantum effects, but ratherin =~ = Z_Jo dfe"g%’\"lj deJ(gxi)(S( 1-2, xi) F(x;)
C |

the sense of intermediate between “microscopic” and “mac-

roscopic,” i.e., pertaining to the total systenthe approach

1 ©
we propose enables one to extract sensible information from = Z—f dggN- 1 Nag=B¢
cJ O

the dynamics at intermediate time scalgem close to equi-

librium) that are usually less studied than the longer ones,
describing the relaxation from far to equilibrium. This has
obvious positive spinoffs from the perspective of numerical

xf deJ(xi)B(l—E Xi)F(Xi)

investigations, as it requires less computing time. From a 1
more conceptual viewpoint, we have proved the existence of = — g NITIT[N(1+a)]

a diffusive procesgwithout introducing any randomization

“by hand”) that constitutes a building block for the global

equilibration process.

APPENDIX

Let us show that, in order to compute the average of an

function of the spectral entrop$ the microcanonical and

Z
xJ deJ(xi)(s(l—Z xi)F(xi), (A3)

wherel is the gamma function, we defingg=E; /=;E; and

>l,|sed the homogeneity of the Jacobian to write

J(éxi)=ENNI(x)), (A4)

the canonical ensemble are equivalent. This conclusion is a

consequence of the following theorem.

which defines the quantity. By repeating the same deriva-

In an ensemble ofN noninteracting integrable classical tion with F=1, one readily shows that

systems, where the energies>0 are homogeneous func-

tions of the action variablek, the average of functions of
the kind F(E;/E), whereE=XE,;, computed according to

m

C —
- EN-1+Na’

ijﬁz:;; F[N(l*‘&)]

(A5)

the Boltzmann distribution, is equal to that computed accord-
ing to the microcanonical distribution. Moreover, this aver-where theZ,, is the microcanonical partition function

age is independent of the temperat@eof the canonical

ensemble and the energyof the microcanonical ensemble.
We prove this theorem by calculating the canonical aver-

age of a quantityF (the angle variables are trivially inte-
grated over since they do not contribute to the eneygies

<F>czzicj dNIeﬁEF(%)
:zicj dNEJ(Ei)eﬁEF<%), (A1)
where
zczf dNle A& (A2)

is the canonical partition function and=|/dl;/JE| the

zm=f dV18(E—-E). (AB)

Incidentally, notice that both sides of EGA5) are indepen-
dent of 8 and&. In conclusion,

—1+Na
<F>c=£NZ—f deJ(xi)ﬁ( 1-2 Xi) F(x)

(A7)

—ldelag e)F 2| =
- Z_m ( - ) E _< >m-
This proves our assertion. Equatioi® and(10) are readily
obtained by explicitly calculating thesimplep canonical av-
erage ofF=S andF=S2.

As a corollary, one sees that if tigs are random vari-
ables distributed witte i, the variabless;=E; /X E; are

Jacobian. Due to our hypotheses, this is a homogeneouistributed like 5(1—2x;). This provides a fast numerical

function of theE;’s. We obtain

recipe to generate microcanonically distributed variables.
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