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QUANTUM ZENO SUBSPACES AND DYNAMICAL
SUPERSELECTION RULES

PAOLO FACCHI AND SAVERIO PASCAZIO
Dipartimento di Fisica, Universitd di Bari
and Istituto Nazionale di Fisica Nucleare, Sezione di Bart
1-70126 Bari, Italy

The quantum Zeno evolution of a quantum system takes place in a proper sub-
space of the total Hilbert space. The physical and mathematical features of the
“Zeno subspaces” depend on the measuring apparatus: when this is included in
the quantum description, the Zeno effect becomes a mere consequence of the dy-
namics and, remarkably, can be cast in terms of an adiabatic theorem, with a
dynamical superselection rule. We look at several examples and focus on quantum
computation and decoherence-free subspaces.

1 Introduction

The quantum Zeno effect has a curious history. It was first understood by von
Neumann, in 1932 !: while analyzing the thermodynamic features of quantum
ensembles, at page 195 of his book on the Mathematical Foundations of Quantum
Mechanics (page 366 of the English translation), von Neumann proved that any
given state ¢ of a quantum mechanical system can be “steered” into any other state
1 of the same Hilbert space, by performing a series of very frequent measurements.
If ¢ and ¥ coincide (modulo a phase factor), the evolution is “frozen” and, in
modern language, a quantum Zeno effect takes place.

This remarkable observation did not trigger much interest, neither in the mathe-
matical, nor in the physical literature. It took 35 years before Beskow and Nilsson 2
applied the same ideas to a rather concrete physical problem (a particle in a bubble
chamber) and wondered whether it is possible to influence the decay of an unsta-
ble system by performing frequent “observations” on it (a bubble chamber can be
thought of as an apparatus that “continuously” checks whether the particle has
decayed). This interesting idea was subsequently physically analyzed by several
authors >%5¢, The classical allusion to the sophist philosopher Zeno of Elea is
due to Misra and Sudarshan 4, who were also the first to provide a consistent and
rigorous mathematical framework. During those years it was also realized that the
formulation of the “Zeno effect” (or “paradox” as people tended to regard it) hinged
upon difficult mathematical issues 7#%, most of which are yet unsolved.

The interest in the quantum Zeno effect (QZE) was revived in 1988, when
Cook 10 proposed to test it on oscillating (mainly, two-level) systems, rather than
on bona fide unstable ones. This was an interesting and concrete idea, that led
to experimental test a few years later !!. The discussion that followed 213 pro-
vided alternative insight and new ideas 4, eventually leading to new experimental
tests. The QZE was successfully checked in experiments involving photon polar-
ization 15, chiral molecules ¢ and ions !7 and new experiments are in preparation
with neutron spin '®. One should emphasize that the first experiments were not
free from interpretational criticisms. Some of these criticisms could be successfully
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countered (e.g., the serious problem related to the so-called “repopulation” of the
initial state 192 was avoided in 17), but some authors insisted in arguing that the
QZE had not been successfully demonstrated on bona fide unstable systems, as in
the seminal proposals.

Fortunately (or unfortunately, depending on the perspective) the recent exper-
iments by Raizen and collaborators are conclusive, in our opinion: the presence of
a short-time quadratic region for an unstable quantum mechanical system (particle
tunnelling out of a confining potential) was experimentally confirmed in 1997 2!
and then, a few years later, the existence of the Zeno effect (hindered evolution
by frequent measurements) was demonstrated ?2. This last experiment is of great
conceptual interest, for it also proved the occurrence of the so-called inverse (or
anti) Zeno effect (IZE) 23:242%)  first suggested in 1983 (!), according to which the
evolution can be accelerated if the measurements are frequent, but not foo frequent.

The QZE is a direct consequence of general features of the Schrédinger equation
that yield quadratic behavior of the survival probability at short times 2620, Ac-
cording to the standard formulation, the hindrance of the evolution is due to very
frequent measurements, aimed at ascertaining whether the quantum system is still
in its initial state. We call this a “pulsed measurement” formulation 20, according
to von Neumann’s projection postulate !. However, from a physical point of view,
a “measurement” is nothing but an interaction with an external system (another
quantum object, or a field, or simply a different degree of freedom of the very sys-
tem investigated), playing the role of apparatus. If the apparatus is included in
the quantum description, the QZE can be reformulated in terms of a “continuous”
measurement 202725 without making use of projection operators and non-unitary
dynamics, obtaining the same physical effects. It is important to stress that the
idea of a “continuous” formulation of the QZE is not new 5%, but a quantitative
comparison with the “pulsed” situation is rather recent 28.

Nowadays, it seems therefore more appropriate to frame the Zeno effects in
a dynamical scenario 13 by making use of a continuous-measurement formula-
tion 20:27:28,29.30  Algo it is important to focus on additional issues, in view of
possible applications. For instance, it is interesting to notice that a quantum Zeno
evolution does not necessarily freeze the dynamics. On the contrary, for frequent
projections onto a multidimensional subspace, the system can evolve away from its
initial state, although it remains in the subspace defined by the “measurement” 3!,
By blending together these three ingredients (dynamical framework, continuous
measurement and Zeno dynamics within a subspace) the quantum Zeno evolution
can be cast in terms of an adiabatic theorem 32: under the action of a continuous
measurement process (and in a strong coupling limit to be defined in the follow-
ing) the system is forced to evolve in a set of orthogonal subspaces of the total
Hilbert space and an effective superselection rule arises. The dynamically disjoint
quantum Zeno subspaces are the eigenspaces (belonging to different eigenvalues) of
the Hamiltonian that describes the interaction between the system and the appa-
ratus: in words, they are those subspaces that the measurement device is able to
distinguish.

This paves the way to possible interesting applications of the QZE: indeed, if
the coupling between the “observed” system and the “measuring” apparatus can
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be tailored in order to slow (or accelerate) the evolution, a door is open to control
unwanted effects, such as decoherence and dissipation. It is therefore important to
understand in great detail when an external quantum system can be considered a
good “apparatus,” able to yield QZE and IZE, and why.

We have organized our discussion as follows. We first review in Sec. 2 some
notions related to the (familiar) “pulsed” formulation of the Zeno effect and sum-
marize the celebrated Misra and Sudarshan theorem in Sec. 3. This theorem is then
extended in Sec. 4, in order to accommodate multiple projectors, and the notion
of continuous measurement is introduced in Sec. 5, by locking at several exam-
ples. We propose in Sec. 6 a broader definition of QZE (and IZE) 20 and prove
in Sec. 7 an adiabatic theorem, defining the Zeno subspaces 3233, Finally, in Secs.
8-12, we elaborate on some interesting examples, focusing in particular on quantum
computation and applications. We conclude in Sec. 13 with a few comments.

2 Notation and preliminary notions:
pulsed measurements

Let H be the total Hamiltonian of a quantum system and |a) its initial state at
t = 0. The survival probability in state |a} is

p(t) = [A@®)® = [{ale™""*|a)|? (1)
and a short-time expansion yields a quadratic behavior
pt) ~1—t%/r3,  17° = (a|lH?|a) - (a|Hla)?, )

where 77 is the Zeno time 34. Observe that if the Hamiltonian is divided into a free
and an (off-diagonal) interaction parts

H = Hy + Hiy,, with  Hpla) = wala), (a|Hina) =0, 3)
the Zeno time reads
722 = (alHiyla) 4)

and depends only on the interaction Hamiltonian.

Perform N (instantaneous) measurements at time intervals 7 = t/N, in order
to check whether the system is still in state |a). The survival probability after the
measurements reads

p™M(t) = p(r)V = p(t/N)" ~ exp (—£2/r2N) "= 1. (5)

If N = oo the evolution is completely hindered. For very large (but finite) N the
evolution is slowed down: indeed, the survival probability after NV pulsed measure-
ments (t = N7) is interpolated by an exponential law 2

pM(t) = p(r)N = exp(N logp(1)) = exp(—7er (T)1), (6)

with an effective decay rate

et () = —% log p(r) = -é log |A()| = —g Re [log A(r)] > 0 . (7)
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Figure 1. Evolution with frequent “pulsed” measurements: quantum Zeno effect. The dashed
(full) line is the survival probability without (with) measurements. The gray line is the interpo-
lating exponential (6).

For 7 — 0 (i.e. N — o0) one gets p() ~ exp(—72/72), whence
Vet (1) ~ 7/75. (T —0) (8)

Increasingly frequent measurements tend to hinder the evolution. The physical
meaning of the mathematical expression “r — 0” is a subtle issue 34:24.20:35 in_
volving quantum field theoretical considerations 36:3%:25 that will not be considered
here. The Zeno evolution for “pulsed” measurements is pictorially represented in
Figure 1. The notion of “continuous” measurement will be discussed later (Sec. 5).

3 Misra and Sudarshan’s theorem

We briefly sketch Misra and Sudarshan’s theorem and introduce more notation.
Let Q be a quantum system, whose states belong to the Hilbert space H and whose
evolution is described by the unitary operator U(t) = exp(—:Ht), where H is a
time-independent lower-bounded Hamiltonian. Let P be a projection operator and
RanP = Hpit s range. We assume that the initial density matrix pg of system Q
belongs to Hp:

po = PpoP,  Tr[poP]=1. 9)

Under the action of the Hamiltonian H (i.e., if no measurements are performed in
order to get information about the quantum state), the state at time ¢ reads

p(t) = U(t)poU'(t) (10)

and the survival probability, namely the probability that the system is still in Hp
at time ¢, is

p(t) = Tr [U()poUM () P] . (11)

No distinction is made between one- and multi-dimensional projections.
The above evolution is “undisturbed,” in the sense that the quantum systems
evolves only under the action of its Hamiltonian for a time ¢, without undergoing



255

any measurement process. Assume, on the other hand, that we do perform a
selective measurement at time 7, in order to check whether Q has survived inside
Hp. By this, we mean that we select the survived component and stop the other
ones. {Think for instance of spectrally decomposing a spin in a Stern-Gerlach setup
and absorbing away the unwanted components.)

The state of Q changes (up to a normalization constant) into

po — p(r) = PU(1)poU'(7)P (12)
and the survival probability in Hp is
p(r)=Tr [U(T)poUT(T)P] =1Tr [V(T)poVT(T)] , V(r)= PU(r)P. (13)

The QZE is the following. We prepare Q in the initial state pg at time 0 and
perform a series of (selective) P-observations at time intervals 7 = ¢/N. The state
of Q at time ¢ reads (up to a normalization constant)

PM(t) = Vv (O)poVi(8),  Vw(t) = [PU(/N)PIY (19)
and the survival probability in Hp is given by
P (1) = T [V (DpoV (8)] (15)

In order to consider the N — oo limit, one needs some mathematical requirements:
assume that the limit

V() = lim V(0 (16)
exists (in the strong sense) for ¢ > 0. The final state of Q is then
p(t) = lim p™M(E) = V(t)poV'(2) 17
and the probability to find the system in Hp is
P(t) = Jim p™M () = Tr [V(t)poV'(t)] - (18)

By assuming the strong continuity of V(t) at t =0
lim V() = P, 19
Jim, V() (19)
Misra and Sudarshan proved that under general conditions the operators
V(t) exist for all real ¢ and form a semigroup. (20)

Moreover, by time-reversal invariance

Vi) = V(-t), (21)
one gets VI(t)V(t) = P. This implies, by (9), that
P(t) = Tr [poV! ()V(8)] = Tr [poP] = 1. (22

If the particle is very frequently observed, in order to check whether it has sur-
vived inside Hp, it will never make a transition to H3 (QZE). In general, if N is
sufficiently large in (14)-(15), all transitions outside Hp are inhibited.
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We emphasize that close scrutiny of the features of the survival probability
has clarified that if N is not too large the system can display an inverse Zeno
effect 232425 by which decay is accelerated. Both effects have recently been seen
in the same experimental setup 2. We will not elaborate on this here.

Notice also that the dynamics (14)-(15) is not reversible. On the other hand,
the dynamics in the N — oo limit is often time reversible 3! (although, in general,
the operators V(t) in (20) form a semigroup).

The theorem just summarized does not state that the system remains in its
initial state, after the series of very frequent measurements. Rather, the system
evolves in the subspace Hp, instead of evolving “naturally” in the total Hilbert
space H. The features of this evolution will be the object study of the following
sections.

4 Multidimensional measurements

We now analyze the (most interesting) case of multidimensional measurements.
We will apply the von Neumann-Liiders 137 formulation in terms of projection
operators, by adopting some definitions given by Schwinger 8.

4.1  Incomplete measurements

We will say that a measurement is “incomplete” if some outcomes are lumped
together. This happens, for example, if the experimental equipment has insuffi-
cient resolution (and in this sense the information on the measured observable is
“incomplete”). See, for example, 3. The projection operator P, which selects a
particular lump, is therefore multidimensional. Let us first consider a finite dimen-
sional Hp = RanP,

dimHp = TrP = s < oo. (23)

The resulting time evolution operator is a finite dimensional matrix and has the
explicit form

V(t) = lim V() = I}iinm[PU(t/N)P}N = Pexp(—iPHP?). (24)

It is easy to show that if Hp C D(H), the domain of the Hamiltonian H, then
V(t) in (24) is unitary within Hp and is generated by the self-adjoint Hamiltonian
PHP (an example is given in %°). Reversibility is recovered in the N — oo limit.

For infinite dimensional projections, s = oo, one can always formally write the
limiting evolution in the form (24), but has to define the meaning of PHP. In such
a case the time evolution operator V(t) may be not unitary and one has to study
the self-adjointness of the limiting Hamiltonian PH P 34789,

In general, for incomplete measurements, system Q does not remain in its initial
state. Rather, it is confined in the subspace Hp and evolves under the action of
V(t), instead of evolving “naturally” in the total Hilbert space H.
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4.2  Nonselective measurements

We will say that a measurement is “nonselective” 38 if the measuring apparatus

does not “select” the different outcomes, so that all the “beams” (after the spec-
tral decomposition %%'342) undergo the whole Zeno dynamics. In other words, a
nonselective measurement destroys the phase correlations between different branch
waves, provoking the transition from a pure state to a mixture.

We now consider the case of nonselective measurements and extend Misra and
Sudarshan’s theorem in order to accommodate multiple projectors and build a
bridge for our subsequent discussion. Let

{Palns  PuPn=0maPn, D Pu=1, (25)

be a (countable) collection of projection operators and RanP, = Hp, the relative
subspaces. This induces a partition on the total Hilbert space

H=PHo»,. (26)
Conlsi:ger the associated nonselective measurement described by the superopera-
tor &
Pp=3 PupP.. ' 27)
The free evolution reads
Upo = U(t)poU'(t),  U(t) = exp(~iH1) (28)

and the Zeno evolution after N measurements in a time ¢ is governed by the super-
operator

7N =P (0e/mP) (29)
This yields the evolution
pt) =V = D VI (1) po VL, ), (30)
where
VAN, (#) = PayU (¢/N) Pay_, -+ Pa,U (¢/N) Py, (31)

which should be compared to Eq.-(14). We follow Misra and Sudarshan * and
assume, as in Sec. 3, the time-reversal invariance and the existence of the strong
limits (¢ > 0)

Va(t) = lim_ VN (1), Jim Va(t) = Pa, ¥n. (32)
Then V,(t) exist for all real £ and form a semigroup %, and

Vi) Vn(t) = P,. (33)
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Moreover, it is easy to show that
lim viM, (t)y=0, for n'#n. (34)
-0

Notice that, for any finste N, the off-diagonal operators (31) are in general non-
vanishing, i.e. va.].V)'...(t) # 0 for n’ # n. It is only in the limit (34) that these

.
operators become diagonal. This is because U (t/N) provokes transitions among

different subspaces Hp,. By Egs. (32)-(34) the final state is
p(t) = Vipo = 3 Va®)poV(®), with Y VIEValt) =D Pa=1. (35)

The components V,,(t)poV}(t) make up a block diagonal matrix: the initial density
matrix is reduced to a mixture and any interference between different subspaces
Hp,is destroyed (complete decoherence). In conclusion,

pn(t) =Tr [p(t)Pn] =Tr [pOPn] = pn(0)7 Vn. (36)

In words, probability is conserved in each subspace and no probability “leakage”
between any two subspaces is possible: the total Hilbert space splits into invariant
subspaces and the different components of the wave function (or density matrix)
evolve independently within each sector. One can think of the total Hilbert space
as the shell of a tortoise, each invariant subspace being one of the scales. Motion
among different scales is impossible. (See Fig. 4 in the following.)

If TrP, = s, < oo, then the limiting evolution operator V,(t) (32) within the
subspace Hp has the form (24),

Va(t) = P, exp(—iP, HP,t). 37)

If Hp, C D(H), then the resulting Hamiltonian P, HP, is self-adjoint and V,(t) is
unitary in Hp, .

The original limiting result (22) is reobtained when p,(0) = 1 for some n, in
(36): the initial state is then in one of the invariant subspaces and the survival
probability in that subspace remains unity. However, even if the limits are the
same, notice that the setup described here is conceptually different from that of
Sec. 3. Indeed, the dynamics (31) allows transitions among different subspaces
Hp, — Hp,,, while the dynamics (14) completely forbids them. Therefore, for
finite N, (31) takes into account the possibility that a given subspace Hp, gets
repopulated 1929 after the system has made transitions to other subspaces, while
in (14) the system must be found in Hp, at every measurement.

5 Continuous observation

The formulation of the preceding sections hinges upon von Neumann’s concept of
“projection” !. A projection is (supposed to be) an instantaneous process, yielding
the “collapse” of the wave function, whose physical meaning has been debated since
the very birth of quantum mechanics 42. Repeated projections in rapid succession
yield the Zeno effect, as we have seen.

A projection d la von Neumann is a handy way to “summarize” the complicated
physical processes that take place during a quantum measurement. A measurement
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process is performed by an external (macroscopic) apparatus and involves dissipa-
tive effects, that imply an interaction and an exchange of energy with and often
a flow of probability towards the environment. The external system performing
the observation need not be a bona fide detection system, namely a system that
“clicks” or is endowed with a pointer. It is enough that the information on the state
of the observed system be encoded in the state of the apparatus. For instance, a
spontaneous emission process is often a very effective measurement process, for it
is irreversible and leads to an entanglement of the state of the system (the emit-
ting atom or molecule) with the state of the apparatus (the electromagnetic field).
The von Neumann rules arise when one traces away the photonic state and is left
with an incoherent superposition of atomic states. However, it is clear that the
main features of the Zeno effects would still be present if one would formulate the
measurement process in more realistic terms, introducing a physical apparatus, a
Hamiltonian and a suitable interaction with the system undergoing the measure-
ment. Such a point of view was fully undertaken in 2°, where a novel and more
general definition of QZE and IZE was given, that makes no explicit use of pro-
jections d la von Neumann. It goes without saying that one can still make use of
projection operators, if such a description turns out to be simpler and more eco-
nomic (Occam’s razor). However, a formulation of the Zeno effects in terms of a
Hamiltonian description is a significant conceptual step. When such a formulation
is possible and when the Hamiltonian has (at most) a smooth dependence on time,
we will speak of QZE (or I1ZE) realized by means of a continuous measurement
process.
A few examples will help us clarify these concepts.

5.1 Non-Hermitian Hamiltonian

The effect of an external apparatus can be mimicked by a non-Hermitian Hamilto-
nian. Consider a two-level system

(1|= (170)7 (2|= (01 1)7 (38)
with Hamiltonian
= (g _hx ) =200+ (D - 2K (39)

This yields Rabi oscillations of frequency (2, but at the same time absorbs away the
[2) component of the Hilbert space, performing in this way a “measurement.” Due
to the non-Hermitian features of this description, probabilities are not conserved.

Prepare the system in the initial state [1). An elementary calculation 20 yields
the survival probability

pH)(t) = |(1e=Hxt 1) = 'l (1 + KK 2) o~ (K—VET=0)t

2 T_Q
1 K z
L —(K+VRET=—O)t
+2(1 2_92)6 ,  (40)

which is shown in Fig. 2 for K = 0.4,2, 10Q. As expected, probability is (exponen-
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Figure 2. Survival probability for a system undergoing Rabi oscillations in presence of absorption
(K = 0.4,2,109). The gray line is the undisturbed evolution (K =0).

tially) absorbed away as t — co. However, as K increases, the survival probability
reads
Wy (14 L L ) -1

p ) <1+2K)exp< Kt , tZK™) 41)
and the effective decay rate vog (K) = Q2/K becomes smaller, eventually halting the
“decay” (and consequent absorption) of the initial state and yielding an interesting
example of QZE: a larger K entails a more “effective” measurement of the initial
state. Notice that the expansion (41) is not valid at very short times (where there
is a quadratic Zeno region), but becomes valid very quickly, on a time scale of order
K~ (the duration of the Zeno region 20:34:3%),

The (non-Hermitian) Hamiltonian (39) can be obtained by considering the evo-
lution engendered by a Hermitian Hamiltonian acting on a larger Hilbert space and
then restricting the attention to the subspace spanned by {|1},[2)}: consider the
Hamiltonian

A =l + 20D + [ dolodel+ 25 [ (21D, @)

which describes a two-level system coupled to the photon field {|w)} in the rotating-
wave approximation. It is not difficult to show 2° that, if only state |1) is initially
populated, this Hamiltonian is “equivalent” to (39), in that they both yield the
same equations of motion in the subspace spanned by |1) and |2). QZE is obtained
by increasing K: a larger coupling to the environment leads to a more effective
“continuous” observation on the system (quicker response of the apparatus), and
as a consequence to a slower decay (QZE). The quantity 1/K is the response time
of the “apparatus.”

5.2 Continuous Rabi observation

The previous example might lead one to think that absorption and/or probability
leakage to the environment (or in general to other degrees of freedom) are funda-

T T T U

e

G
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Q/r

Figure 3. Survival probability for a continuous Rabi “measurement” with K = 1, 3,9Q: quantum
Zeno effect. The gray line is the undisturbed evolution (K = 0).

mental requisites to obtain QZE. This expectation would be incorrect. Even more,
trreversibility is not essential. Consider, indeed, the 3-level system

(1= (1,0,0), (2= (0,1,0), (3I= (0,0,1) (43)

and the (Hermitian) Hamiltonian

0 2 0
Haiey = Q[1)(2] + [2)(1]) + K(12)(3] + I3)(2]) = g I% 10( (44

where K € R is the strength of the coupling between level |2) (“decay products”)
and level 3 (that will play the role of measuring apparatus). This model, first con-
sidered by Peres 5, is probably the simplest way to include an “external” apparatus
in our description: as soon as the system is in |2) it undergoes Rabi oscillations
to |3). We expect level {3)t o perform better as a measuring apparatus when the
strength K of the coupling becomes larger.

A straightforward calculation 2° yields the survival probability in the initial
state |1)

2
PIO() = [(tfeHamt i) = ot (K2 4 0 eos(VEE @) . ()
(K2 +Q2)2

This is shown in Fig. 3 for K = 1,3,90. We notice that for large K the state of
the system does not change much: as K is increased, level |3) performs a better
“observation” of the state of the system, hindering transitions from |1) to |2). This
can be viewed as a QZE due to a “continuous,” yet Hermitian observation performed
by level |3).

In spite of their simplicity, the models shown in this section clarify the physical
meaning of a “continuous” measurement performed by an “external apparatus”
(which can even be another degree of freedom of the system investigated). Also,
they capture and elucidate many interesting features of a Zeno dynamics.
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6 Novel definition of quantum Zeno effect

The examples considered in the previous section call for a broader formulation of
Zeno effect, that should be able to include “continuous” observations as well as
other situations that do not fit into the scheme of the “pulsed” formulation. We
proposed such a definition in Ref. 2°. It comprises all possible cases (oscillating as
well as unstable systems) and situations (quantum Zeno effect as well as inverse
quantum Zeno effect). Although in this article we are mostly concerned with the
QZE for oscillating systems, we give here all definitions for the sake of completeness.

Consider a quantum system whose evolution is described by a Hamiltonian H.
Let the initial state be po (not necessarily a pure state) and its survival proba-
bility p(t). Consider the evolution of the system under the effect of an additional
interaction, so that the total Hamiltonian reads

Hyg = H + Hueas(K), (46)

where K is a set of parameters (such as coupling constants) and Hmeas (K = 0) = 0.
Notice that H is not necessarily the free Hamiltonian; rather, one should think of
H as a full Hamiltonian, containing interaction terms, and Hyeas(K) should be
viewed as an “additional” interaction Hamiltonian performing the “measurement.”
If K is simply a coupling constant, then the above formula simplifies to

Hi = H + K Hueas. (47)

Notice that if a projection is viewed as a shorthand notation for a (generalized %)
spectral decomposition 4!, the above Hamiltonian scheme includes, for all practical
purposes, the usual formulation of quantum Zeno effect in terms of projection op-
erators. In such a case the scheme (46) is more appropriate, for a fine tuning of K
might be required 3.

All the examples considered in the previous sections (for both “pulsed” and
“continuous” measurements) can be analyzed within the scheme (47) and a fortior:
(46). We can now define all possible Zeno effects.

6.1 Oscillating systems

We shall say that an oscillating system displays a QZE if there exist an interval
I = [th),th)] such that

PR >pt), VtelI®), (48)

where p()(t) and p(t) = p{®(t) are the survival probabilities under the action of
the Hamiltonians Hyx and H, respectively. We shall say that the system displays
an IZE if there exist an interval IX) such that

pUO) < p(t),  Vte I, (49)
The time interval I®) must be evaluated case by case. However,

5 < Ty, (50)
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where Tp is the Poincaré time of the system. Obviously, in order that the definition
(48)-(49) be meaningful from a physical point of view, the length of the interval
I5) must be of order Tp.

The above definition is very broad and includes a huge class of systems [even
trivial cases such as time translations p(t) — p(t — to)]. We would like to stress
that we have not succeeded in finding a more restrictive definition and we do not
think it would be meaningful: many phenomena can be viewed or reinterpreted as
Zeno effects and this is in our opinion a fecund point of view 2.

In order to elucidate the meaning of the above definition, let us look at some
particular cases considered in the previous sections. The situations considered in
Figs. 2 and 3 are both QZEs, according to this definition: one has t(lK) = 0 and
th) <Tp =7/ [and (th) - th)) = O(Tr)]. The case outlined in Fig. 1 is also a
QZE, with th) =0 and th) < Tp (notice that Tp may even be infinite).

6.2 Unstable systems

In this paper we mostly deal with few-level systems. However, for unstable systems,
the definition of Zeno effect can be made more stringent and expressed in terms of
a single parameter, the decay rate. In fact, in such a case, one need not refer to a
given interval I¥), but can consider the global behavior of the survival probability.
Let us consider Egs. (3} and (47). For an unstable system, the off-diagonal
interaction Hamiltonian Hi,, in Eq. (3) is responsible for the decay. Let

v = 2m{a|Hined(wa — Ho)Hiqtla) (51)

be the decay rate (Fermi “golden” rule 43, valid at second order in the decay coupling
constant), |a) being the initial state, which is an eigenstate of Howit h energy wo.
We define the occurrence of a QZE or an IZE if

Vet (K) $ 7, (52)
respectively, where g (K) is the new (effective) decay rate under the action of Hy,
Vet (K) = 2m(a|(Hins + K Hmeas) 6(wa — Ho) (Hiny + K Hneas)|a). (53)

Notice that this case is in agreement with the definitions (48)-(49). Moreover,
£ — oo for IZE, while t§*) < t,u for QZE, where t,0, is the time at which a
transition from an exponential to a power law takes place. (Such a time is of order
log(coupling constant), at least for renormalizable quantum field theories )

It is worth noticing that (52) is of general validity when it refers to physical
decay rates, even when the perturbative expressions (51) and (53) are not valid. In
such a case the decay rate is simply given by the imaginary part of the pole Epqle
of the resolvent nearest to the real axis in the second Riemann sheet of the complex
energy plane 26. The pole is the solution of the equation

Epo]e =w, + 2II(Epole)a 7= —2Im [Epolely (54)

where ¥y1(E) is the determination of the proper self-energy function

S(E) = <alHimE+HoHim;a> (55)
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on the second Riemann sheet. Analogously for yeg(K), with the substitution
Hin, — Hino + KHppeos in Eq. (55). For a more detailed discussion, see 2°,

7 Dynamical quantum Zeno effect

The broader formulation of quantum Zeno effect (and inverse quantum Zeno effect)
elaborated in Sec. 6 triggers a spontaneous question about the form of the interac-
tion Hamiltonian Hy,..s between system and apparatus [Eq. (47)]. In the case of
pulsed measurements, in order to get a Zeno effect one has to prepare the system
in a state belonging to the measured subspace Hp as in Eq. (9) [or to any subspace
‘Hp, of the partition (26) for nonselective measurements|. On the other hand, in the
case of a continuous measurement it is not clear which relation must hold between
the initial state of the system pg and the structure of the interaction Hamiltonian
Hypeas in order to get a Zeno effect. We have introduced two paradigmatic exam-
ples in Sec. 5, but we still do not know why they work. It is therefore important to
understand in more detail which features of the coupling between the “observed”
system and the “measuring” apparatus are needed to obtain a QZE. In other words,
one wants to know when an external quantum system can be considered a good
apparatus and why. We shall try to clarify these issues and cast the dynamical
quantum Zeno evolution in terms of an adiabatic theorem. We will show that the
evolution of a quantum system under the action of a continuous measurement pro-
cess is in fact similar to that obtained with pulsed measurements: the system is
forced to evolve in a set of orthogonal subspaces of the total Hilbert space and
an effective superselection rule arises in the strong coupling limit. These quantum
Zeno subspaces 32 are just the eigenspaces (belonging to different eigenvalues) of
the Hamiltonian describing the interaction between the system and the apparatus:
they are subspaces that the measurement process is able to distinguish.

7.1 A theorem

Our answer to the afore-mentioned question is contained in a theorem 3332 which
is the exact analog of Misra and Sudarshan’s theorem for a general dynamical
evolution of the type (47). Consider the time evolution operator

Uk (t) = exp(—iHgt). (56)

We will prove that in the “infinitely strong measurement” (“infinitely quick detec-
tor”) limit K — oo the evolution operator

U) = lim Ug(t), (57)
K—oo
becomes diagonal with respect t0 Hpeas:
[Ll(t), Pn] = 0, where HmeasPn = ﬂan (58)

P, being the orthogonal projection onto Hp_, the eigenspace of Hneas belonging to
the eigenvalue 7,. Note that in Eq. (58) one has to consider distinct eigenvalues,
i.e., Ny # N for n # m, whence the Hp, s are in general multidimensional.
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Moreover, the limiting evolution operator has the explicit form
U(t) = exp[—‘l:(deag + KHmeas)t], (59)
where

Hdiag = Z PnHPn (60)

is the diagonal part of the system Hamiltonian H with respect to the interaction
Hamiltonian Hess.
In conclusion, the generator of the dynamics is the Zeno Hamiltonian

HZ=Hdiag+KHmeas=Z(PnHPn+K7InPn)7 (61)

n

whose diagonal structure is explicit, and the evolution operator is

U(t) = exp(—iH?%t). (62)

7.2 Dynamical superselection rules

Before proving the theorem of Sec. 7.1 let us briefly consider its physical impli-
cations. In the K — oo limit, due to (58), the time evolution operator becomes
diagonal with respect t0 Hpeas,

[U(t), Hmeas] =0, (63)
a superselection rule arises and the total Hilbert space is split into subspaces Hp,
which are invariant under the evolution. These subspaces are simply defined by the
P.’s, i.e., they are eigenspaces belonging to distinct eigenvalues ln: in other words,
they are subspaces that the apparatus is able to distinguish. On the other hand, due
to (61)-(62), the dynamics within each Zeno subspace Hp, is essentially governed
by the diagonal part P,HP, of the system Hamiltonian H (the remaining part of
the evolution consisting in a (sector-dependent) phase). The evolution reads
p(t) = U(t)pold!(2) = e~ "t pye™™ (64)
and the probability to find the system in each Hp,
Pa(t) = Tr [o(t) Pa] = Tr [U(t)pold! () Pn) = T [U(t)po Puld ' (1)]
=Tr [pOPn] = pn(0) (65)
is constant. As a consequence, if the initial state of the system belongs to a specific
sector, it will be forced to remain there forever (QZE):

Yo € Hp, — Y(t) € Hp,. (66)

More generally, if the initial state is an incoherent superposition of the form py =
Ppy, with P defined in (27), then each component will evolve separately, according
to

p(t) = L((t)pouf(t) — Z e—intPnpOPneint

= Ze_iP"HP"tPnPOPneiP"HP"t = Z vn(t)POVI(t)v (67)
n n
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Figure 4. The Hilbert space of the system: a dynamical superselection rule appears as the coupling
K to the apparatus is increased.

with V,(t) = P, exp(—iP, HP,t), which is exactly the same result (35)-(37) found
in the case of nonselective pulsed measurements. This bridges the gap with the
description of Sec. 4.2 and clarifies the role of the detection apparatus: it defines
the Zeno subspaces. In Fig. 4 we endeavored to give a pictorial representation of
the decomposition of the Hilbert space as K is increased.

Notice, however, that there is one important difference between the dynamical
evolution (64) and the projected evolution (35). Indeed, if the initial state pg
contains coherent terms between any two Zeno subspaces Hp, and Hp_ , PrpoPm #
0, these vanish after the first projection in (35), P,p(0%)P, = 0, and the state
becomes an incoherent superposition p(0%) # pg, whence Trp(07)2 < Trp2. On
the other hand, such terms are preserved by the dynamical (unitary) evolution (64)
and do not vanish, even though they wildly oscillate. For example, consider the
initial state

po = (Pn+ Pm)po(Pn+ Pm),  PupoPm #0. (68)
By Eq. (64) it evolves into

p(t) = Va(t)poVi(t) + Vi (t)po V] (2)
+e T KM=ty (1) po VI (8) + e K1)y (1) o VE(E), (69)

at variance with (67) and (35). Therefore Trp(t)? = Trp? for any t and the Zeno
dynamics is unitary in the whole Hilbert space H. We notice that these coherent
terms become unobservable in the large- K limit, as a consequence of the Riemann-
Lebesgue theorem (applied to any observable that “connects” different sectors and
whose time resolution is finite). This interesting aspect is reminiscent of some re-
sults on “classical” observables 4%, semiclassical limit 46 and quantum measurement
theory 47-%8,
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It is worth noticing that the superselection rules discussed here are de facto
equivalent to the celebrated “W3” ones 48, but turn out to be a mere consequence
of the Zeno dynamics. For a related discussion, but in a different context, see 4°.

7.3 Proof of the theorem

We will now use perturbation theory and prove 33 that the limiting evolution op-
erator has the form (59). Property (58) will then automatically follow. In the next
subsection we will give a more direct proof of (58), which relies on the adiabatic
theorem.

Rewrite the time evolution operator in the form

Uk (t) = exp(—iHgt) = exp(—iHx7) = Uy (1) (70)
where
A=1/K, T=Kt=1t/A, Hy, = AHyg = Hyeas + AH, (71)

and apply perturbation theory to the Hamiltonian Hxfor small A. To this end,
choose the unperturbed degenerate projections Py,

Hieas Pra = TlnPncn P, = Z F,,, (72)
o

whose degeneration a is resolved at some order in the coupling constant A. This
means that by denoting 7, and P, the eigenvalues and the orthogonal projections
of the total Hamiltonian H,,

HAﬁna = ﬁnaﬁnay (73)
they reduce to the unperturbed ones when the perturbation vanishes
ot A—0 ~ A—0
P,— Pra, Mnae — M- (74)

Therefore, by applying standard perturbation theory %, we get the eigenprojections
Pra = Paa + AP} + O(X)

= Pna+ A (%HPM + PnaH—f—") +0()?), (75)
n n
where
Qn Qn P,
=1-P,= P, —_——— = —_— 76
Q" " mz;én m Qn nn"‘Hmea.s Z’I —Tm ( )
The perturbative expansion of the eigenvalues reads
Tna = 1 + A8 + A0 4+ O(A3) (77)
where
1 Pra = PaaHPra,  182Pae = PraH 2 HP,,
(13

PraHPng = PMH%HPnﬁ =0, oa#pB (78)
n
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Write now the spectral decomposition of the evolution operator (70) in terms of
the projections Prq

Ux(7) = exp(—iH\T) Z Poo = Z exp(—iﬁm‘r)lsm (79)

n,a

and plug in the perturbation expansions (75), to obtain
Ur(r) = Y e =" Pra
n,o

A O 1 qe™iaT e=iTnarp, "
an a

(3

) +0(2%).  (80)

n,o

Let us define the operator
ﬁ)\ = Z ﬁnaPna
n,x
_Hmeas+,\ZP HP, +X"ZP HQ"HP +0(23), (81)

where Eqs. (77)-(78) were used. By plugging Eq. (81) into Eq. (80) and making
use of the property

ZP,,H? = Z-—HP,,, (82)

we finally obtain
Un(r) = exp(—iHAT) + A | Y %HP,,, exp(—iHaT) | + O(A2). (83)

Now, by recalling the definition (71), we can write the time evolution operator
Uk (t) as the sum of two terms

1
Uk(t) = Uad,K(t) + 'I?Una,K(t), (84)
where
Uud k() = e~ i(KHmeas+ 5, PaHPat e 5o, PaH 32 HP+O(K ™))t (85)

is a diagonal, adiabatic evolution and
Una k() = Z%HP,,, Uaa,x(t)| + O (K1) (86)

is the off-diagonal, nonadiabatic correction. In the K — oo limit only the adiabatic
term survives and one obtains

Uit) = Jim Uk(t) = Jim Usa x (t) = ¢~ (K Hmeast T PaHPa )t (87)

which is formula (59) [and implies also (58)]. The proof is complete. As a byproduct
we get the corrections to the exact limit, valid for large, but finite, values of K.
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Notice that in our derivation we assumed that the eigenprojections and the
eigenvalues of the perturbed Hamiltonian H) admit the asymptotic expansions
(75) and (77) up to order O(A?) and O(A3), respectively. With these assumptions
we have been able to exhibit also the first corrections to the limit. However, it is
apparent that in order to prove the limit (87), it is sufficient to assume that the
eigenprojections and the eigenvalues admit the expansions

Pna = Pna + 0(1)5 ;]'na =N+ ’\7]1(1102 + 0(’\)7 for A— 07 (88)
whence
Uk(t) = e i(EHment Do PaHPato]t 4 (1) for K — 0. (89)

Notice however that in such a case, unlike in (84), we have no information on the
approaching rate and the first-order corrections.

7.4 Zeno evolution from an adiabatic theorem

We now give an alternative proof [and a generalization to time-dependent Hamil-
tonians H(t)] of Eq. (58). We follow again 33. The adiabatic theorem deals with
the time evolution operator U(t) when the Hamiltonian H(t) slowly depends on
time. The traditional formulation 5 replaces the physical time ¢ by the scaled time
s =t/T and considers the solution of the scaled Schrodinger equation

2 Ur(s) = TH(s)Uz(s) (90)

in the T — oo limit.
Given a family P(s) of smooth spectral projections of H(s)

H(s)P(s) = E(s)P(s), (91)

the adiabatic time evolution Ua(s) = limp_ o Ur(s) has the intertwining property
51,50

Ua(s)P(0) = P(s)Ua(s), (92)
that is, Ua (s) maps Hp(g) onto Hp(,).
Theorem (58) and its generalization,
U(t)P.(0) = P.(HU(L), (93)
valid for generic time dependent Hamiltonians,
Hg(t) = H(t) + K Hmeas (1), (94)

are easily proven by recasting them in the form of an adiabatic theorem 32. In the
H interaction picture, given by

i%Us(t) = HUs(t),  Hbens(t) = Ud(£) HimeasUs (2), (95)

the Schrédinger equation reads

d

‘a

Uk (£) = K Hpeao (t) Uk (t)- (96)
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The Zeno evolution pertains to the K — oo limit: in such a limit Eq. (96) has
exactly the same form of the adiabatic evolution (90): the large coupling K limit
corresponds to the large time T limit and the physical time ¢ to the scaled time
s = t/T. Therefore, let us consider a spectral projection of H 1 eas(t)

Pi(t) = US(&)Pa()Us(t), (97)
such that
HY o PLE) = a(®)Pa(t),  Hmeas(t)Pa(t) =ma(t)Palt).  (98)
The limiting operator
Ui(e) = Jim_Uk(®) 9)
has the intertwining property (92)
U ()P, (0) = Pa(O)U'(2), (100)
i.e. maps Hp1 gy onto Hpr:
¥y € Hpi oy = ¥ (t) € Hpr(o)- (101)
In the Schrédinger picture the limiting operator
Ut) = lim Ug(t) = Jim Us(t)Uk (1) = Us(tlU'(¢) (102)

satisfies the intertwining property (93) [see (97)]
U(t)Pa(0) = Us()U' () Pa(0) = Us(t)U' (£) Pa (0)
= Us(t)PL YU (t) = Pa(t)Us(t)U'(t) = Pa()U(E), (103)
and maps Hp, (o) onto Hp, (1):
Yo € Hp, ) — ¥(t) € Hp, ) (104)
The probability to find the system in Hp_ (),

Pa(t) = Tr [Pa(®)U(t)pold (8)] = Tr [U(t) Pa(0)pold* (t)]
=Tr [Pﬂ(o)pO] = pn(0)7 (105)

is constant: if the initial state of the system belongs to a given sector, it will be
forced to remain there forever (QZE).

For a time-independent Hamiltonian Hpeas(t) = Hmeas, the projections are
constant, P, (t) = Py, hence Eq. (93) reduces to (58) and the above property holds
a fortiori and reduces to (65).

Let us add a few comments. It is worth noticing that the limiting evolutions
(57), (99) and (102) are understood in the sense of the intertwining relations (58),
(100) and (103), that is

Jim (UkPa- P,,UK) =0, (106)

while, strictly speaking, each single addend has no limit, due to a fast oscillating
phase. In other words, one would read Eq. (103) as

Uk (t)Pn(0) — P, (t)Uk (t) = o(1), for K — . (107)
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As a matter of fact, there is no single adiabatic theorem 2. Different adiabatic
theorems follow from different assumptions about the properties of HL . (¢) and
Pl(t), the notion of smoothness, what are the optimal error estimates, and so on.
But all these theorems have the structure of Eq. (107) and only differ in their
respective approaching rates [for example, for noncrossing energy levels, o(1) is in
fact O(1/K), while for crossing levels the rate is O(1/vK)]. The theorem we have
shown must therefore be understood in this variegated framework.

The formulation of a Zeno dynamics in terms of an adiabatic theorem is power-
ful. Indeed one can use all the machinery of adiabatic theorems in order to get re-
sults in this context. An interesting extension would be to consider time-dependent
measurements

Hieas = Hineas (t)7 (108)

whose spectral projections P,= P,(t) have a nontrivial time evolution. In this
case, instead of confining the quantum state to a fixed sector, one can transport
it along a given path (subspace) Hp, (), according to Egs. (104)-(105). One then
obtains a dynamical generalization of the process pioneered by Von Neumann in
terms of projection operators 153,

8 Example: three-level system

In the present and in the following sections we will elaborate on some examples
considered in 202725, QOur attention will be focused on possible applications in
quantum computation.

Reconsider (and rewrite) Peres’ Hamiltonian (44)

0 Q 0
H3eo =1 Q2 0 K | =H+ KHpeas, (109)
0 K O
where
010
H=o(ue+a)=a(1 o o}, (110)
0 0 0
0 00
Hupeas = 12)3]+13)2]= [0 0 1]}. (111)
010

Let us reinterpret the results of Sec. 5.2 in the light of the theorem proved in
Sec. 7. As K is increased, the Hilbert space is split into three invariant subspaces
(eigenspaces of Huyeas) H = D Hp,

He,={I)}, He, ={(12)+3)/v2}, He, ={(2)-[3))/v2}, (112)
corresponding to the projections

1 00 1
Po=000,P1=§

0 0 L [0 00
L1}, Pa=gfo0 1-1], By
000 11 0 1
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with eigenvalues 79 = 0 and ny; = +1. The diagonal part of the system Hamil-
tonian H vanishes, Hyiag =  P.HP,= 0, and the Zeno evolution is governed
by

00 0
HZ,, = Huing + KHmeas = KHmeas = [ 0 0 K |. (114)
0 K 0

Any transition between |1) and |2) is inhibited: a watched pot never boils. This
simple model has a lot of nice features and will enable us to focus on several
interesting issues. We will therefore look in detail at its properties and generalize
them in the following sections.

9 Zeno dynamics in a tensor-product space

In the preceding example the initial state of the apparatus (namely the initial
population of level |3)) has a strong influence on the free evolution of the system
(levels |1) and |2)). Such an influence entails also unwanted spurious effects: the
apparatus is, in some sense, “entangled” with the system, even if K = 0. In other
words, the evolution of the system has an unpleasant dependence on the state of
the apparatus: the system can make Rabi transitions (between states |1) and |2))
only if the “detector” is not excited (i.e. state |3) is not populated). If, on the other
hand, state |3) is initially considerably populated, the dynamics of the system is
almost completely frozen. This is not a pleasant feature (although one should not
be too demanding for such a simple toy model).

In a certain sense the QZE is counterintuitive in this case just because, if the
initial state is ~ |1}, although the interaction strongly tends to drive the system into
state |3), the system remains in state |1). On the other hand, one wonders whether
such an effect would take place if the initial state of the apparatus would have
little or no influence on the system evolution. This would give a better picture
of the QZE: the interaction Hamiltonian should be chosen in such a way that
the measured system modifies the state of the apparatus without significant back
reaction. In other words, the dynamics of the system should not depend on the
state of the apparatus: the apparatus should simply “register” the system evolution
(performing a spectral decomposition 41'1%) without “affecting” it.

The most convenient scheme for describing such a better notion of measurement
is to consider the system and the detector as two different degrees of freedom living
in different Hilbert spaces Hs and Haq, respectively. The combined total system
evolves therefore in the tensor-product space

H=Hs®Hq (115)
according to the generic Hamiltonian
Hprod = H; ® 1a + 15, ® Hy + K Hieas- (116)

The theorem of Sec. 7.1 is naturally formulated in the total Hilbert space H,
without taking into account its possible tensor-product decomposition. On the
other hand, one would like to shed more light on the Zeno evolution of the system
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and the apparatus in their respective spaces, Hs; and Hq, in order to understand
whether there is such a simple prescription as (61) and (62) in each component
space.

9.1 Three-level system revisited

Let us first reconsider the example of Sec. 8. The (3-dimensional) Hamiltonian (109)
is expressed in terms of a direct-sum Hilbert space H = H;@®Hq, but can be readily
reformulated in terms of the tensor-product Hilbert space of two 2-dimensional
Hilbert spaces, i.e. in terms of two coupled qubits |i)s and |i)q (i = 0,1), as

Hjley = Q015 ® Pog + K Pis ® 014, (117)

where o, = |0)(1] + |1)(0] and P; = [4)(i|. Indeed, it is easy to show that, by
identifying

[1) =100), [2) =10}, [3)=]11), (118)

where |ij) = |i)s®|j)q, the Hamiltonian (117) becomes the Hamiltonian (109). The
fourth available state |[4) = |01) of the tensor-product space is idle and decouples
from the others.

The unwanted features of the apparatus discussed at the beginning of this sec-
tion are apparent in Eq. (117): the system-Hamiltonian Qo is effective only if the
detector is in state |0)q. It is also apparent that the minimal modification that fits
the general form (116) is simply

Hiye, =Q01:® 14 + K Py ® 014. (119)

Note that Hyeas = Pis ® 014 = |2)(3] + |3)(2] is not changed, whence its three
eigenspaces are still

He, = {I1), 14} = {]10),[11)},
Hp, = {(12) +13))/V2} = {|1)s ® | + 2)a},
He_, = {(12) ~ 13))/v2} = {|1)s ® | - z)a} (120)

[remember that the enlarged product space contains also a fourth idle state |4) =
[01)], with eigenprojections

Py = Pos ® 14, Py = Py ® Pygq, P, =P;®P_;q, (121)

where | + z) = [|0) £|1)]/v?2 and Py, = |+ z)(+z|. As a consequence, the Zeno
evolution is the same as before
+1 :
Hélzv = Z PnHBIEVPn =K Ps®014= K Hpeas = H32|ev7 (122)

n=-—1

see (114). This proves that the answer to the implicit question at the beginning of
this section is affirmative: it is indeed possible to design the apparatus in such a
way that its initial state has little or no influence on the system evolution (so that
the apparatus can be properly regarded as a sort of “pointer”); nevertheless, the
measurement is as effective as before and yields QZE.
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9.2 Two coupled qubits

In order to understand better the role of Hpeas in a product space, we study two
coupled qubits (system and detector), living in the product space

H=C2®C? (123)

whose evolution is engendered by the Hamiltonian (116), with an interaction of the
same type as (119)

Hmea.s = Pls ® Vd- (124)

This describes an ideal detector, with no “false” events: the detector never clicks
when the system is in its initial “undecayed” state |0)s.
The spectral resolution of the interaction reads

VdP nd = nnPnnCh (n = 17 2) ) (125)
that is,
Hmeas = Pls & (umd + 7]2Pnzd)7 (126)

where the two eigenvalues 7; and 7, are not necessarily different and nonvanishing.
Therefore, the Hilbert space is at most split into three Zeno subspaces: a two-
dimensional one, corresponding to 7y = 0,

HmeﬁPO_—-O’ PD=POS®1da (127)
and two one-dimensional ones
HmeasPn =7lnP ’ P, =P15®Pnd7 (n= 112) (128)

corresponding to 7 and 7;. There are three different cases.

9.2.1 Nondegenerate case 0 =no #m # N2 # Mo

In the nondegenerate case 0 = 19 # m1 # 12 # 7 the apparatus is able to
distinguish the three subspaces and the total Hilbert space is split into

H=Ho®H1 & H2
Ho = {[00),[01)}, Hi={l1)s®|m)a}, H2={l1)s®m2)a}.  (129)
Therefore (116) yields (for large K) the Zeno Hamiltonian

2
ngod = Z PanrodPn

n=0
= (POSHSPOS + PlsHsPIS) & 1d
+Ps @ Hy+ Pis ® (Pdeded + PndedPﬂzd) 4+ K Hpeas- (130)

One should notice that the resulting effect on the system Hamiltonian Hy ® 14is
simply the replacement

H,— HsZ = Pos H;Pos + PisH P, (131)

satisfying our expectations (QZE). On the other hand, for the detector Hamilto-
nian 1; ® Hy such a simple replacement is not possible, for the resulting dynamics
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is entangled. This is a consequence of the fact that the interaction is able to distin-
guish between different detector states [P, in (128)] in the subspace of the decay
products P;s®14. If the interaction Hamiltonian (124) commutes with the detector
Hamiltonian,

[Va, Ha] = 0, (132)

then the above-mentioned entanglement does not occur, for the detector Hamilto-
nian 1; ® Hy remains unchanged. In such a case, if Hy is nondegenerate, i.e. if
it is not proportional to the identity operator 14, then Vgis not a good measure-
ment Hamiltonian. Indeed, for any value of the coupling constant K, the detector
qubit does not move and remains in its initial pointer eigenstate (eigenstate of Hy).
Nevertheless, the QZE is still effective. See also the next case.

On the other hand, a good detector has an interaction Hamiltonian V; which
is a complementary observable 1'3® of its free Hamiltonian Hy. For example, if we
set, without loss of generality, Hy = boaq, the interaction should be Vy = 014 (or
Va = 024). In such a case, the diagonal part of an observable with respect to the
other vanishes, i.e. Py aHaPy,a+ Pyp,aHaPy,a = 0, and the Zeno Hamiltonian (130)
reads

HZ (POSHSPOS + PlsHspls) ® 1d + POS ® Hd + KHmea.s- (133)

prod =

It is therefore apparent that, in the case of a good detector, not only the system
evolution, but also the detector evolution is hindered (QZE). Indeed, in the large-
K limit, if the system qubit starts (and remains) in |0),, then the pointer qubit is
frozen as well in one of its eigenstates (the eigenstates of Hy).

9.2.2 Degenerate interaction 0 =ng # 1, = 12

In this case there are only two projections

Po=Pus®la, PP=Pi+P=P,0®14 (134)
and two 2-dimensional Zeno subspaces
H=Ho®H
Mo = {|00),101)}, Hi = {]10) + [11)}. (135)

The Zeno Hamiltonian reads

Hfmd = PyHproa Po + PiHproa Py
= (POSHSPOS + PlsHsPIS) L+1;® Hd + KHmeas (136)
and the QZE occurs again according to (131), leaving the detector Hamiltonian un-

altered and without creating entanglement. Notice that in this case the interaction
(124) reduces to

Hypeas = mPis ® 14 (137)

and does not yield an evolution of the detector qubit. In spite of this, the Hilbert
space is split into two Zeno subspaces and a QZE takes place. This happens because
some information is stored in the phase of the detector qubit.
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9.2.3 Imperfect measurement 0 =19 = n1 # N2

In this last situation, there are again two projections,

Po=Po+ P =Py ®la+Pis® Ppa, P =Pis® Py, (138)
and two Zeno subspaces,
H =Ho® H,
Ho = {]00),101),[1)s ® Im)a}, Ha = {|1)s ® I2)a} : (139)

a 3-dimensional one, corresponding to the eigenvalue ng = 0 and a 1-dimensional
one, corresponding to 12 # 0. However, in this case the measuring interaction is not
able to perform a clear-cut distinction between the initial state |0), of the system
and its decay product |1)s, i.e. it yields an imperfect measurement.

The Zeno Hamiltonian reads

ngod = POHprod}-)O + P2HprodP2

= Hs ® P"lld + (POSHSPOS + PlsHspls) ® PT]zd
+Pos ® Hy + Pis ® (Pp,aHaPyia + PrpaaHaPod) + KHieas.  (140)

Notice that Hfmd displays an interesting symmetry between the system and the
apparatus. The origin of this symmetry is apparent by looking at the interaction

Hamiltonian He,:
Hyeas = mPis ® Pn2d~ (141)

A partial QZE is still present. In fact, the evolution of the system is frozen only if
the detector is in state |72)4, while it is not hindered if the latter is in state |n;)q
(and a similar situation holds for the detector evolution).

The three cases analyzed in this subsection are paradigms for examining the
rich behavior of the Zeno dynamics engendered by Hamiltonian (116) in a generic
tensor-product space (115). In particular, one can show that, by considering a good
detector (whose free and interaction Hamiltonians, Hyq and Vy, are two generic com-
plementary observables %), the Zeno Hamiltonian (133) admits a straightforward
natural generalization to the N-dimensional case. We shall elaborate further on
this issue in a future paper.

10 A watched cook can freely watch a boiling pot

Let us look at another interesting model. Consider

02 0 0
2 0 K 0
H4lev = QU] + KTI + K/Tll = 0 K 0 K’ 3 (142)
0 0 K 0
where states |1) and |2) make Rabi oscillations,

0100
_ _ 1 000
0000
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while state |3) “observes” them,

0 00 O

I |00 10
Kn=KR)Q@+126) =K, | o o (144)

0 0 0 O

and state |4) “observes” whether level |3) is populated,

/O 0 0 0

't A0 000
K'r| = K'(4)(3] + ) 4)) = K (000 (143)

0 0 10

If K> Q and K’, then (142) must be read
Hylev =H+KHmeas, with H=QO’1+K’T{, Hmea.s=7'17 (146)

and the total Hilbert space splits into the three eigenspaces of Hpeas [compare with
(112) and (120)):

Hro = {11, 19}, He ={(2)+13)/v2}, He, = {(12)-18)/v2}. (147)

Moreover, Hgiag = 3, PnHP, = 0 and the Zeno evolution is governed by

H:i =Kn = (148)

cooC

0
K
0
0

oXRoOo
cooco

The Rabi oscillations between states |1) and |2} are hindered.
On the other hand, if K’ >> K and Q (and even if K > Q), then (142) must be

read

Hyey = H + K'Hppeas, with H=Q0,+ K7, Hmes =71, (149)

the total Hilbert space splits into the three eigenspaces of Hpeas [notice the differ-
ences with (147)]:

Heg ={11),12)}, Hep ={(3)+14)/v2}, Hp, ={(13)-14))/v2} (150)

and the Zeno Hamiltonian reads

0 Q 0 0
HZ!, = Qo + K't] = g 8 8 18' (151)
0 0 K' 0

The Rabi oscillations between states |1) and |2) are fully restored (even if and in
spite of K > Q) %. A watched cook can freely watch a boiling pot.
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12)

10) 1)
(2)

Figure 5. Schematic view of the system described by the Hamiltonian (152).

11 Quantum computation and decoherence-free subspaces

We now look at a more realistic example, analyzing the possibility of devising
decoherence-free subspaces 38, that are relevant for quantum computation. The
Hamiltonian 37
2
Hueas =g 3 (b 12)(1] — b' [1)::(2]) — inb'd (152)
i=1
describes a system of two (i = 1,2) three-level atoms in a cavity. The atoms are
in a A configuration with split ground states |0); and |1); and excited state |2);, as
shown in Fig. 5(a), while the cavity has a single resonator mode b in resonance with
the atomic transition 1-2. See Fig. 5(b). Spontaneous emission inside the cavity is
neglected, but photons leak out through the nonideal mirrors with a rate k.
The excitation number

N =" [2)u(2] +blb, (153)

1=1,2
commutes with the Hamiltonian,
[Hmeas, N]=10. (154)

Therefore we can solve the eigenvalue equation inside each eigenspace of N (Tamm-
Duncoff sectors).

A comment is now in order. Strictly speaking, the Hamiltonian (152) is non-
Hermitian and we cannot directly apply the theorem of Sec. 7.1. (Notice that the
proof of the theorem heavily hinges upon the hermiticity of the Hamiltonians and
the unitarity of the evolutions.) However, we can apply the technique outlined at
the end of Sec. 5.1 and enlarge our Hilbert space H, by including the photon modes
outside the cavity a. and their coupling with the cavity mode b. The enlarged
dynamics is then generated by the Hermitian Hamiltonian

2
ﬁmeas = lgz (b |2)ii(1l - bf !1>n(2|)

i=1
+/dw wala, + \/E/dw [aI,b + a,b') (155)
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and it is easy to show that the evolution engendered by I}meas, when projected
back to H, is given by the effective non-Hermitian Hamiltonian (152), provided the
field outside the cavity is initially in the vacuum state. Notice that any complex
eigenvalue of Hyes engenders a dissipation (decay) of H into the enlarged Hilbert
space embedding it. On the other hand, any real eigenvalue of Hp,eas generates
a unitary dynamics which preserves the probability within . Hence it is also
an eigenvalue of Hpeas and its eigenvectors are the eigenvectors of the restriction
Hoeas|1- Therefore, as a general rule, the theorem of Sec. 7.1 can be applied also
to non-Hermitian measurement Hamiltonians Hpeas, provided one restricts one’s
attention only to their real eigenvalues.
The eigenspace Sy corresponding to A/ = 0 is spanned by four vectors

So = {/000), j001), |010), [011)}, (156)

where |0j1j2) denotes a state with no photons in the cavity and the atoms in state
[7101172)2. The restriction of Hmeas to Spis the null operator

Hpneasls, =0, (157)

hence Sy is a subspace of the eigenspace H p, of Hyyeas belonging to the eigenvalue
n =20

SO C HPm HmeasPO =0. (158)
The eigenspace S; corresponding to A = 1 is spanned by eight vectors
S1 = {]020),002), |100), 110}, |101), [021),]012), [111)}, (159)
and the restriction of H,..s to S1is represented by the 8-dimensional matrix
0 0 0 i@ 0 0 O O
0 0 0 0 4 0 0 O
0 0 —ik O 0 O O O
|- 0 0 -k 0 0 0 O
Hmeaslsi = | 0" _i0 0 0 —ik 0 0 0 (160)
0 0 0 O 0 0 0 g
0 0 0 0 0 0 0 149

0 0 0 0 0 —ig-—ig—ix

It is easy to prove that the eigenvector (|021) —]012))/+/2 has eigenvalue 7o = 0 and
all the other eigenvectors have eigenvalues with negative imaginary parts. Moreover,
all restrictions Hoyeas|s, with n > 1 have eigenvalues with negative imaginary parts.
Indeed they are spanned by states containing at least one photon, which dissipates
through the nonideal mirrors, according to —ixbfd in (152). The only exception
is state |0,2,2)of Sz, but also in this case it easy to prove that all eigenstates of
Hipeas|s, dissipate. In conclusion, blending these results with (156), one infers that
the eigenspace Hp, of Hpeas belonging to the eigenvalue 7y = 0 is 5-dimensional
and is spanned by

Hp, = {|000),]001),010),011), (021} — |012))/v2}, (161)

If the coupling g and the cavity loss x are sufficiently strong, any other weak
Hamiltonian H added to (152) reduces to PoHP, and changes the state of the
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system only within the decoherence-free subspace (161). This corroborates the
conclusions of ¥ and completely characterizes the decoherence-free subspaces in
this example. This could be relevant for practical applications.

12 Spontaneous decay in vacuum

Our last example deals with spontaneous decay in vacuum. Let

0 w0
Hiecay = H+ KHpeas = | 771 —i2/737 K |. (162)
0 K 0

This describes the spontaneous emission |1) — |2) of a system into a (structured)
continuum, while level |2) is resonantly coupled to a third level |3) 2°. The quantity
~ represents the decay rate to the continuum and 7z is the Zeno time (convexity of
the initial quadratic region). This case is also relevant for quantum computation,
if one is interested in protecting a given subspace (level {1)) from decoherence by
inhibiting spontaneous emission. A somewhat related example is considered in 5.
Model (162) is also relevant for some examples analyzed in ¢ and ®7, but we will
not elaborate on this point here.

Notice that, in a certain sense, this situation is complementary to that in (152);
here the measurement Hamiltonian Hyeas is Hermitian, while the system Hamil-
tonian H is not. Again, one has to enlarge the Hilbert space, as in Secs. 5.1 and
11, apply the theorem to the dilation and project back the Zeno evolution. As a
result one can simply apply the theorem to the original Hamiltonian (162), for in
this case Hpeas has a complete set of orthogonal projections that univocally defines
a partition of H into Zeno subspaces. We shall elaborate further on this interesting
aspect in a future paper.

As the Rabi frequency K is increased, one is able to hinder spontaneous emission
from level |1) (to be “protected” from decay/decoherence) to level |2). However,
in order to get an effective “protection” of level |1), one needs K > 1/7z. More to
this, if the initial state |1} has energy w; # 0, an inverse Zeno effect takes place 3
and the requirement for obtaining QZE becomes even more stringent 24, yielding
K > 1/72v. Both these conditions can be very demanding for a real system subject
to dissipation 2%24:27, For instance, typical values for spontaneous decay in vacuum
are v ~ 10971, 72 ~ 107292 and 1/72y ~ 100571 34,

We emphasize that the example considered in this subsection is not to be re-
garded as a toy model. The numerical figures we have given are realistic and the
Hamiltonian (162) is a good approximation at short (for the physical meaning of
“short”, see 20-24:27) and intermediate times.

13 Conclusions

The usual formulation of the QZE (and IZE) hinges upon the notion of pulsed
measurements, according to von Neumann’s projection postulate. However, as
we pointed out, a “measurement” is nothing but an interaction with an external
system (another quantum object, or a field, or simply another degree of freedom of
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the very system investigated), playing the role of apparatus. This remark enables
one to reformulate the Zeno effects in terms of a (possibly strong or finely-tuned)
coupling to an external agent and to cast the quantum Zeno evolution in terms
of an adiabatic theorem. We have analyzed several examples, which might lead
to interesting applications. Among these, we have considered in some detail the
possibility of tailoring the interaction so as to obtain decoherence-free subspaces,
useful also for quantum computation.
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DISCUSSION
Chairman: T. Petrosky

T. Petrosky: The mechanism seems to be very simple, but the result is sur-
prising.

G. Leuchs: My comment is about the use of the decoherence-free subspaces in
quantum computing. Back in 1994, among the works on quantum error correction,
the first proposal for protecting quantum information was to use the Zeno effect to
consequently project to a symmetric subspace and thereby preventing the quantum
qubit from getting out of that.

S. Pascazio: Yes. Thank you. Since I am not very familiar with these old
ideas in quantum computing, I am not sure that what I am going to say makes
sense in that context. Assume that you are interested in the evolution in a given
subspace and want to perform quantum computing in that subspace, but that
subspace is leaking out, namely is decohering towards something else. This is a
kind of exponential decay towards the environment. I can describe this situation
by the Hamiltonian H in (162), which is not a bad approximation. I perform the
evolution with the Hamiltonian H in its own subspace and find that this subspace
leaks out with a certain decay rate. How could I perform a measurement in the
Zeno sense? I simply take H, couple it t0 Hpyeas and look at the evolution. The
idea is that due to the strong coupling K between levels #2 and #3, the decay is
suppressed. Even the experiment performed by Mark Raizen fits into this scheme.
In the large coupling limit you get a superselection rule. The decaying subspace is
isolated and the other subspace is also isolated (they’re both “Zeno” subspaces),
but the time scales involved turn out to be extremely short. You need an extremely
strong coupling of order 1/7*, where 7% = ’T%’)’ is the transition time introduced in
Ref. [24], in order to freeze your quantum state. The real problem is therefore the
following. When the coupling is very strong I don’t trust my Hamiltonian anymore.
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In the strong coupling regime you should go back to your theory and look at the
Hamiltonian you started with. If you can trust your Hamiltonian, you can be sure
that you obtain Zeno at those timescales. If you don’t trust it anymore, you'd
better look at your theory again and find a better Hamiltonian. As a general rule
you have to be careful, because your mathematics might not describe well your
physics. For example, counter-rotating effects might become important and could
not be neglected. I hope I have answered your question.

1. Antoniou: I would like to understand the superselection rule, which ap-
pears when you change the coupling parameter. In order to have these quantum
transitions you must have a continuous spectrum and resonances. If you have a
continuous spectrum and resonances, you have spectral instabilities. How does this
superselection rule appear?

S. Pascazio: You are right. I did not give enough details. The theorem is
proved by transforming the evolution in the interaction picture and rephrasing the
theory in terms of an adiabatic evolution. In the limit of large coupling K the total
space adiabatically splits into the Zeno subspaces and a superselection rule appears.
Of course one is assuming a discrete spectrum for the “measurement” Hamiltonian
Hpeas- When K is not too large, transitions between the different sectors are still
allowed. So the point is to evaluate the mistakes you make, which are the same as
in adiabatic theory. You are often able to evaluate the non-adiabatic transitions
between subspaces and you can also look at the problems arising from crossings
and from other details of your Hamiltonian. I completely agree that in general the
problem of the appearance of superselection rules can be a very serious one, but in
this case many factors can be efficiently controlled.

L. Stodolsky: I would like to comment on the argument about 1 — ¢? at short
times. This is a perfectly fine argument, of course. We never find the finite number
of levels, but there is a problem when you go to the continuum with a singular
limit. As we all know, when you do scattering theory there are infinities that you
have to deal with. It is not obvious whether you can take off your arguments,
which you have for the two level system and apply them to the continuum. It is a
mathematical problem. The argument of Michael Berry shows that this is different.

E. C. G. Sudarshan: I completely disagree with what he said because we
have exact solutions without any approximations.

S. Pascazio: This question is a delicate one. Michael Berry’s argument is of
general validity, when the coupling to the continuum is flat. However, when you
study physical systems in greater details, you have to look at the exact coupling
and form factors, yielding the ezact survival amplitude. We looked in particular (in
Ref. [34]) at the hydrogen atom with the exact relativistic QED matrix elements,
without any assumptions and free parameters (the only constants are the electron
charge and mass). How do you compute the evolution? The survival amplitude
is expressed as an inverse Fourier-Laplace transform in the complex energy plane.
You cut the plane, you go to the second Riemann sheet and uncover the pole.
The pole gives you the Weisskopf-Wigner term, while the contribution of the cut,
which is of second order in the coupling constant, yields all deviations from the
exponential law. The self-energy function in this case can be computed ezactly.
For the 2P — 18§ transition in the hydrogen atom this is a ratio of two known
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polynomials plus a logarithmic term.

A. Bohm: What is the pole? What is the vector that corresponds to the pole?

S. Pascazio: If you take the contribution of the pole plus the contribution
of the cut, the exact evolution exhibits deviation from the exponential law and in
particular a short-time quadratic region (see Ref. [34]). When you take only the
pole contribution into account, the evolution is given by a pure exponential. Notice
that this exponential is renormalized. The renormalization of the wave function
yields Z, which is 1-O(g?), where g is the coupling constant. By looking carefully
at the renormalization procedure you get a Zeno region also for a decaying atom.
I should also say (I agreed with Leo Stodolsky on this point) that the duration
of the short-time Zeno region for the hydrogen atom is very short, about 10718
seconds. This is too short to be directly observed, but has important observable
consequences at the level of the inverse Zeno effect, see P. Facchi and S. Pascazio,
Phys. Rev. A 62, 023804 (2000).

W. Schleich: I want to stimulate the discussion during the coffee break by the
following comment. As you have said already, this effect exists in many other fields
of physics. In classical Newtonian statistical physics for short times if you take a
larger number of particles you consider the Liouville equation. If you propagate it
a little bit in time, you see that the average position always changes quadratically
while the first moment changes linearly. This is the same effect.

S. Pascazio: I agree that there is also a classical Zeno effect.



