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Unification of dynamical decoupling and the quantum Zeno effect
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We unify the quantum Zeno effe¢QZE) and the “bang-bang(BB) decoupling method for suppressing
decoherence in open quantum systems: in both cases strong coupling to an external system or apparatus
induces a dynamical superselection rule that partitions the open system’s Hilbert space into quantum Zeno
subspaces. Our unification makes use of von Neumann’ s ergodic theorem and avoids making any of the
symmetry assumptions usually made in discussions of BB. Thus we are able to generalize the BB to arbitrary
fast and strong pulse sequences, requiring no symmetry, and to show the existence of two alternatives to a
pulsed BB: continuous decoupling and pulsed measurements. Our unified treatment enables us to derive limits
on the efficacy of the BB method: we explicitly show that the inverse QZE implies that the BB can in some
cases accelerate, rather than inhibit, decoherence.
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I. INTRODUCTION system of interest is “strongly” coupled to an external system

Recent years have witnessed a surge of interest in ways {§at(loosely speakingplays the role of a measuring appara-
protect quantum coherence, driven mostly by development¥!S- o ) )
in the theory of quantum information processirig. A num- We use these insights t0) generalize the BB method to
ber of promising strategies for combating decoherence havieulse sequences with no symmet@) to point out that the
been conceived and in some cases experimentally tested, iBB pulses can have the opposite from the desired eftect
cluding quantum error correcting codes and topologicakituation well known from the QZE literature as the “in-
codes(for a review seg2]), decoherence free subspaces andverse” or “anti” Zeno effegt[14,15, and(iii) to show that
(noiseless subsystemgfor a review see[3]), and “bang- alternatives to the unitary pulse control scheme are available
bang” (BB) decoupling[4—6] (for an overview se¢7]). Two  to suppress the system-environment interaction: nani@ly,
recent papers have shown that these various methods can ¢@ntinuousunitary interaction angb) pulsedmeasurements
unified under a general algebraic framew@8k Here, using
a very different approach, we continue this development for

BB decoupling and the quantum Zeno efféQZE). Il. SIMPLEST BB CYCLE
The idea behind the BB is that application of sufficiently ) } .
strong and fast pulses, with appropriate symmétrgtions Consider the “BB evolution” induced by the two-element

we make precise latgrwhen applied to a system, can de- control set(not necessarily a groydl,U,}, wherel is the
couple it from its decohering environment. The notion of aidentity operator, in which the controlled syste@ alter-
strong and fast interaction with a quantum system is also thately undergoesl “kicks” U, (instantaneousinitary trans-
key idea behind the QZIP] (for reviews seq10,11). The formationg and free evolutions in a time interval
standard view of the QZE is that by performing frequent
projective measurements one can freeze the evolution of a
guantum statg“a watched pot cannot boil” However, re-
cently it has become clear that this view of the QZE is too

narrow, in two main respectgi) The projective measure- e take U=exg—iHt), with H the (time-independent
ments can be replaced by another quantum system interagirs miitonian of Q, its environment, and their interaction,
ing stron.gly. with the principal systefil,12. (|'|) The states and will sometimes abbreviatd(t/N) by U. We present a
of the principal system need not be frozen: instead, the Uehew derivation of this BB evolution that allows for a

eral situation is one of dynamically generated quantum Zeng,nqnarent connection to the formulation of the QZE.
subspaces, in which nontrivial coherent evolution can take In the largeN limit, the dominant contribution tJy(t) is

place[13_]. Itis therefqre not olnly physically reasonable, but UT. We therefore consider the sequence of unitary operators
also logically appealing to view the QZE as a dynamical
effect: in this broader context, both BB decoupling and the
QZE_can t_)e understood as arising _from the same physical V(1) = UINUN(t). (2)
considerations and hence can be unified under the same con-

ceptual and formal framework. Furthermore, they appear as

particular cases of a more general dynamics in which thé®©bserve tha¥/(0)=1 for any N and

Un(t) = [U;UUN)TY. 1)
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N-1

id%vmt) =Uis (U1U)k(u1i Z—?)(uluw‘k‘l
1 N-1
=UIS 2 (Ui UHUIUUMUU0)"
=HnOVND  [VN0) =1], 3
with
1 N-1
Hn(® = 5 2 UM U UUHUUO)MY. @)

The limiting evolution operator

Ut = lim Vy(t) (5)

N—oo

satisfies the equation

.d

Id—tu(t) =Hzut) [U0)=1], (6)
with the “Zeno” Hamiltonian

Hz = lim Hy(t). (7)

N—so0

Thereforeld(t)=exp—iHt). In order to study the behavior

of the limiting operator we first observe that fiir—  we
can neglect the free evolutidd(t/N) in Eq. (4) and so

1N—1 1N—1
Hy~ = >, UlNUkIqultg = = ulHuk.  (8)
Ni=o Ni=o

Next, we will show that for any bounded and anyU; with
a pure point spectrum—namely,

Up=> e™p, 9)
o

[A,#\,(mod 27) for w# v, P,P,=6,,P,]—o0ne gets

N-1
1
Hy= lim =X UHUY =X P HP, =TI, (H), (10)
N*)OON k=0 M 1

where the ma|cl'[U1 is the projection onto the centralizéor
commutank of Uy,

Z(Uy) = {X|[X,U1] = 0}. (11)

First, we show that théstrong limit H, in Eg. (10) is a

bounded operator which satisfies the intertwining property

H,P,=P,HP,=P,H; (12

for any eigenprojectiorP, of U, with eigenvaluee ™«

s

Equation(10) follows wheneverU; admits the spectral de-

composition(9). Here is the proof. For any vecta@r in the
Hilbert spaceH, we get, using Eq(9),
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N-1 N-1

1 1w ~
=D UTHUKP, = =2 Uk, (13)
Ni=o Ni<o

wherefJ:(Ule”w)T is a unitary operator whose eigenprojec-
tion P, has eigenvalue 1 an=HP s € H. Recall now an
ergodic theorem due to von Neumaffih6], p. 57) that states
thatif U is a unitary operator on the Hilbert spakeandP,,

its eigenprojection with eigenvalue(fJPM:PM), then, for
any ¢ e H,

N-1

i l 1K 4 =
AI[nMNKE:‘B Up =P, o. (14)

As a consequence, by taking the limit of Ef3), we get Eq.
(12).

Notice that the intertwining propertgl2) holds also for
an unboundedd whose domainD contains the range of
P,—namely,P,/H CD(H). For a generic unbounded Hamil-
tonian, we can still formally consider EQLO) as the limiting
evolution, but the meaning ¢f,HP,, and its domain of self-
adjointness should be properly analyzed.

In conclusion,

U(t) = exp(—iHt) = eXp[— i> P,H PMt] (15)

"

and, due to Eq92) and (5),

Un(t) ~ U
= Ulexp(— iHt)
= exp[— i> (N\,P,+P,H PMt)] . (16)

This proves that the BB evolutiofl) yields a Zeno effect
and a partitioning of the Hilbert space into “Zeno sub-
spaces,” in the sense [f3].

We emphasize that no cyclic group properties are required
for pulse sequences. This extends previous studies, in which
“symmetrization” was thought to play an important role in
order to obtain decoupling and suppression of decoherence.
Indeed the dynamicgl) is different from the dynamics
[UIU(t/ZN)Ulu(t/ZN)]N, originally proposed in[4], be-
cause it is only constructed with a single “baridy, without
the second “bangl’J’lr which would close the group. We will
further elaborate on this issue in Sec. IV.

By takingH to be a system-bath interaction Hamiltonian,
we see that the effect of thg; “kicks” is to project the
decohering evolution into disjoint subspaces defined by the
spectral resolution obJ;. A proper choice ofU, can either
eliminate this evolution or make it proceed in some desired
fashion. To give the simplest possible example, suppose

lThough apparently this point is well appreciated in the practice
of high-resolution NMR; i.e., there are many sequences—e.g.,
WAHUHA—achieving the intended averaging effect without aver-
aging over a subgroup. Nevertheless, averaging still results from
symmetry arguments in these cag4).
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H=0,®B, U;=0;,. (17

H generates “bit flips” and the projection operators are

1
P¢=§(| t0,), (18)
with eigenvalues\.=*1. Thus
H,=> P,HP,= > P,oP,®B=0, (19)

u=t p=x

so the decohering evolution is completely canceled.

PHYSICAL REVIEW A 69, 032314(2004)

W7 = Iimtfo dw K(w)Sincz( @ “’Ot)tar,z( W= on) '
t—oo - 2 4

(24)

where 7=t/N is the period between kicks and s{rg
=x"1sinx. By expanding for large values df one gets
[19]

8 (2

AT, N—K(—W), 7— 0. (25)
T T

The physical mechanism giving rise to the Zeno sub-Notice that, according to Ed25), for small values ofr the
spaces in thé&\— o limit can be understood by considering modified decay ratey(7) is proportional to the “tail” of the
the case of a finite dimensional Hilbert space. Then the limikpectral density(w). By defining a characteristizansition

(10) reads
1 N-1 1 N-1
NE UkHU =D PMHPVNE ghhuhy) (20)
k=0 wy k=0

time 7 as the solution of the equation

and one sees that the last sum is 1 forv and vanishes as ne obtains

O(1/N) otherwise[remember thah ,# \, (mod 27) for u

#vin Eq. (9)]. The appearance of the Zeno subspaces in
thus a direct consequence of the fast oscillating phases
between different eigenspaces of the kick. This is equiva-

2 T w
K( = ) =g7= ZK(wo), (26)
<y forr<r,
(27)

Y >y forr>r.

lent to a procedure of phase randomization, and is analo-

gous to the case of strong continuous couplitg].

IIl. IMPLICATIONS OF THE INVERSE ZENO EFFECT

The above conclusions are correct in {ineathematical
limit of large N. However, it is known that, ilN is not too

Decoherence is suppressed in the former case, buteihis
hancedn the latter situatiofwhich is analogous to what one
calls the I1ZE in the case of projective measuremerithis
shows that an “inverse Zeno regime” is a serious drawback
also in the case of dynamical decoupling. Since the limit
7<7 can be very difficult to attain, for hona fidedissipa-

large, the form factors of the interaction play a primary roletjye system, the efficacy of the BB as a method for decoher-

and can provoke aimverse Zeno effeqtZE), by which the

ence suppression must be carefully analyzed. For instance, in

decohering evolution is accelerated, rather than suppressgge Ohmic casg22) at low temperaturel < wo< ., one

[14,15. Reconsider the examp(&7), with B coupling Q to a
generic bath with a thermal spectral density

K(w):J dt exp(iwt)(B(1)B), (21)

easily gets, from Eq(25)

‘1< ™ o < 2nwt, (28)

*
T = 27w,

c _—

)l/(Zn—l)
4 w;

where B(t)=eHe'BeHet is the interaction-picture-evolved @ condition that may be difficult to achieve in practice. In

bath operatorHg the free bath Hamiltonian, and--) the

the linear coupling B=/dw f(w)[a(w)+a'(w)], where

[a(w),a(w')]=8(w-w') are boson operators anfiw) a

form factor, whileHg=fdwwa'(w)a(w). The form factor of
the interaction(together with the bath stgteletermines the
spectral density21). For instance, for an Ohmic bath,

K(w) —[1 N (w/wc)z]ncotl'<2—> , (22

where w,. is the frequency cutoffT the temperature of the

bath (Boltzmann’s constarit=1), andn an integem=2 (n
=2 is typical of quantum dotkl7]). The free decay rate is

v=2mk(wy), (23)

fact, we see here that the relevant time scale is not simply the

. . _1 . <
average over the bath state. For instance, one can considBYErse bandwidtho, ', but can be much shorter &< w

as is typically the case. It has already been observed that the
Ohmic bath is a particularly demanding setting for the BB
and that spin-boson baths with decaying spectral dehgity

[not to be confused with the thermal spectral density)],

such as 1f, are more amenable to successful BB decoupling
[18]. We will reconsider this issue from the point of view of
the IZE in[19].

IV. BB CYCLE OF SEVERAL PULSES

We now generalize the previous result to the situation
where each cycle consists gfkicks. This will allow us to
show how the procedure of “decoupling by symmetrization”
[6]—i.e., the standard view of the BB effect—arises as a

w, being the energy difference between the two qubit statespecial case of such cycles and is related to the QZE. We

(Fermi golden rulg The modified decay rate can be shown considerN cycles ofg instantaneous kick§,, - --

to read[4,18]

,Ug in a
time intervalt:
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t t t N It is clear that also in this case we get a QZE, with relevant
Un(t) = {UgU(g—N) Uzu(g_l\l)ulLJ(g_Nﬂ - (29 Zeno subspaceil3]. The only difference from the single-
kick case is that the Hamiltoniad [Eqg. (37)] and the prod-
We use the same notation as above, sometimes abbreviatingt of the cycleUy --U,U; [Eq. (36)] take the place ofH
U(t/gN) by U, unless confusion may arise. Similarly to the andU,, respectively.
single-kick case, in th&l— o limit, the dominant contribu- It is important to observe again thad symmetrpr group
tion is (ug---uzul)N and it is convenient to consider the structure is required from the “kick” sequenc29): the
sequence of unitary operators above formulas are of general validity, as they rely on the
von Neumann ergodic theorem. They reduce to the usual
expression in the case of a finite closed group of unita¥ies
with elementsv,, r=1,... g andV;=I. Indeed, decoupling
by symmetrization[6] is recovered as a particular case by
considering the unitary operators

V(D) = (Ug - Uy MUG(1). (30

The differential equation is again

. d
IS VN = HNOVA(®) - [V =1], (31) ! t
t U =ViaV, (r=1,...9-1), Ug:Vg' (39
where A single cycle yields
1 N-1
H == U"'U TNUU...UUk t t
(D) szg D)M(UU Uy wmﬁhv;(aﬁw~*@%@ﬁvn (40)
XH(UgU U0 ™ Uy U, (32) e
with

Ug Uy = ViVViy - VIV, = 1. (41)
o1 + t
HN‘B[UgHugJ’(UgUUQ—l)H(UgUUg—l) toe We therefore reobtain, as a special case of the QZE, the
well-known BB resuli6]

+ (UgUUg—l e U2UU1)H(UgUUg_1 e U2UU1)T].

(33

N—oe
Un(t) = V(1) ~ exp(—iHeqt), (42)
We can now follow through the same calculations as in the hereH..=H q
single-kick case, substituting;HU] everywhere byt and " C o et~z 8N

U, by Uy --U;. Itis then straightforward to verify that in the
N— oo limit we get

Ut) = lim V(t), (34

N—so0

which again satisfies Ed6), with the Zeno Hamiltonian

H,= Hug...ul(ﬁ) =X P,HP,, (35)
y23
where
Ug---UgUy = X P e, (36)
Y23
J— 1 T
H=lH+ o+ Ugg U TH(Ug -+ U
+(Ugg- Ul)TH(Ug—l"' Up]. (37)
In conclusion,

Un(t) ~ (Ug- - UpNuA(t)
=(Ug- -~ UpNexp(= iHt)

= exp(— i (AP, + PMﬁPMt)). (39)

o

— — 1 9
H,=TI,(H) =H = 52 VIHV, = TI4(H). (43)
r=1

V. ORIGIN OF THE EQUIVALENCE BETWEEN
CONTINUOUS AND PULSED FORMULATIONS

The equivalence between the ways in which the QZE can
be generated via observation and via Hamiltonian interaction
have been discussed|ih3]. We now explain the equivalence
between the continuous and pulsed Hamiltonian interaction
pictures in generating the Zeno subspaces. In fact, the two
procedures differ only in the order in which two limits are
computed. We recall that the continuous case deals with the
strong-coupling limit[13]

Higt=H+KH;, K—oo, (44)
and the Zeno subspaces are the eigenspacef.obn the
other hand, the kicked dynamics entails the lifit>c0 in
Eqg. (1) and the Zeno subspaces are the eigenspacék.of
This evolution is generated by the Hamiltonian

Hit=H+ 7H. >, 8t-nm), 7,—0, (45)
n
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where 7, is the period between two kicks and the unitary VI. CONCLUSIONS

evolution during a kick isU;=exp(—i7H;). The limit N

—o0 in Eg. (1) corresponds ta,—0. The two dynamics In this work we have shown the formal equivalence of the

(44) and (45) are both limiting cases of quantum Zeno effect, which has been known since von Neu-
mann laid down the mathematical foundations of quantum

t- n(7'2+ T]_/K)

K (46) investigations since the seminal pagét, to the recently
1

introduced[4—6] “bang-bang” decoupling method for reduc-
ing decoherence in quantum information proceséiﬁ'@e
] . QZE is traditionally derived by considering a series of rapid,
where the functiorg has the properties pulsed observation§9]. This became almost a dogma and
motivated interesting seminal experimefit§,21]. Later for-
mulations emphasized that the QZE can also be generated by
2 gx-n=1, (47)  continuous Hamiltonian interactior{12,13,23. The BB
" method, on the other hand, employs a series of rppided
interactions Here we have shown that both the Q4R its
continuous-interaction formulatigrand the BB method can

lim Kg(Kx) = 8(x). (48 be understood as limits of a single Hamiltonian, E46),

Ko giving rise to either pulsed or continuous dynamics, with a
resulting partitioning of the controlled system’s Hilbert space
into quantum Zeno subspaces, defined by E@sand(10).
This unified view not only offers the advantage of conceptual
simplicity, but also has significant practical consequences: it
shows that the scope of all methods analyzed W&ZE,

mechanicg[20], p. 366 and has been the subject of intense
Hiot=H + KH; X g( ) :
n

For example, we can considefx) = x(-1/2,1/2(X), wherey; is
the characteristic function of the setin Eg. (46) the period
between two kicks is;1/K+ 7, while the kick lasts for a time
7,/ K. By taking the limitm,— 0 in Eq.(46)—i.e., a sequence i ) _ ; ;
of pulses of finite duratior,/K without any idle time among BB: @nd continuous interactigrare wider than previously
them—and using properti#7), one recovers the continuous ;uspected, Igadlng tp greater ﬂeX|b|I|t.y in their implementa-
case(44). Then, by taking the strong-coupling limig—c  tion. In particular, since all formulations of the QZE are
one gets the Zeno subspaces. On the other hand, by takimysically equivalent and the BB is equivalent to the kicked
the K — = limit—i.e., the limit of shorter pulsefbut with the ~ unitary formulation of the QZE, it is clear that the BB can
same globalintegra) effecf—and using property48) and  also be formulated in terms of @ntinuous interactiorand
the identity 5(t/ ;) = 7, 8(t), one obtains the kicked ca¢45).  pulsed measurementShe continuous-interaction version of
Then, by taking the vanishing idle time limi;— 0 one gets the BB avoids the frequently criticized off-resonant transi-
again the Zeno subspaces. In short, the mathematical equiviiens associated with the large bandwidth pulses required in
lence between the two approaches is expressed by the relde pulsed BB implementatigi23]. We have not studied the
tion practical advantages or drawbacks of the pulsed measure-
ment formulation of the BB.
o o We emphasize that our conclusions about greater flexibil-
i'mw “mOHtot: “mo }ymocHtot (490 ity in the practical implementation of the BB method are
R R supported by the fact that experiments with lafgehave
been performed, proving both the quantum Zéh®,21 and

(for almost all ), with the left (right) side expressing the the inverse quantum Zer{d5] effects and showing that the
continuous(pulsed case. Note that this formal equivalence Strong-coupling regime is attainable in real physical systems.
must physically be checked on a case-by-case basis and it is Another consequence of our work is that the Zeno-
legitimate only if the inverse Zeno regime is avoided and thesubspace dynamics, in its pulsed formulation, can be gener-
role of the form factors clearly spelled out. That is, physi-ated by a sequence @frbitrary (fast and stronp pulses,
cally the relevant time scales play a crucial role, and in pracwithout any(symmetry assumptions about the relation be-
tice there certainly can be a difference between kicked dytween pulses. This generalizes all previously published for-
namics and continuous coupling, in spite of their equivalencenulations of the BB method, which assumed such relations.
in the above mathematical limit. Finally, owing perhaps to its longer history, the QZE has
Another key issue of physical relevance, in particular ifbeen more thoroughly studied than the BB method, and it has
one is interested in possible applications, is played by the
physical meaning of “strong” when one talks of the strong-
coupling regime. We showed that strong coupling is equiva- 2| fact the original BB papef4] recognized the mathematical
lent to largeN (number of interruptionsand, since experi- connection to the QZE, in particular the features of Cook’s method
ments with largeN have been performed, proving both the for the inhibition of a stimulated two-level transition by pulsed
quantum Zeno and inverse quantum Zeno efféteg, the  measurementi21], but stated that “the analogy stops from a more
strong-coupling regime is attainable in real physical systemshysical point of view.”
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