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We unify the quantum Zeno effect(QZE) and the “bang-bang”(BB) decoupling method for suppressing
decoherence in open quantum systems: in both cases strong coupling to an external system or apparatus
induces a dynamical superselection rule that partitions the open system’s Hilbert space into quantum Zeno
subspaces. Our unification makes use of von Neumann’ s ergodic theorem and avoids making any of the
symmetry assumptions usually made in discussions of BB. Thus we are able to generalize the BB to arbitrary
fast and strong pulse sequences, requiring no symmetry, and to show the existence of two alternatives to a
pulsed BB: continuous decoupling and pulsed measurements. Our unified treatment enables us to derive limits
on the efficacy of the BB method: we explicitly show that the inverse QZE implies that the BB can in some
cases accelerate, rather than inhibit, decoherence.
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I. INTRODUCTION

Recent years have witnessed a surge of interest in ways to
protect quantum coherence, driven mostly by developments
in the theory of quantum information processing[1]. A num-
ber of promising strategies for combating decoherence have
been conceived and in some cases experimentally tested, in-
cluding quantum error correcting codes and topological
codes(for a review see[2]), decoherence free subspaces and
(noiseless) subsystems(for a review see[3]), and “bang-
bang” (BB) decoupling[4–6] (for an overview see[7]). Two
recent papers have shown that these various methods can be
unified under a general algebraic framework[8]. Here, using
a very different approach, we continue this development for
BB decoupling and the quantum Zeno effect(QZE).

The idea behind the BB is that application of sufficiently
strong and fast pulses, with appropriate symmetry(notions
we make precise later), when applied to a system, can de-
couple it from its decohering environment. The notion of a
strong and fast interaction with a quantum system is also the
key idea behind the QZE[9] (for reviews see[10,11]). The
standard view of the QZE is that by performing frequent
projective measurements one can freeze the evolution of a
quantum state(“a watched pot cannot boil”). However, re-
cently it has become clear that this view of the QZE is too
narrow, in two main respects:(i) The projective measure-
ments can be replaced by another quantum system interact-
ing strongly with the principal system[11,12]. (ii ) The states
of the principal system need not be frozen: instead, the gen-
eral situation is one of dynamically generated quantum Zeno
subspaces, in which nontrivial coherent evolution can take
place[13]. It is therefore not only physically reasonable, but
also logically appealing to view the QZE as a dynamical
effect: in this broader context, both BB decoupling and the
QZE can be understood as arising from the same physical
considerations and hence can be unified under the same con-
ceptual and formal framework. Furthermore, they appear as
particular cases of a more general dynamics in which the

system of interest is “strongly” coupled to an external system
that (loosely speaking) plays the role of a measuring appara-
tus.

We use these insights to(i) generalize the BB method to
pulse sequences with no symmetry,(ii ) to point out that the
BB pulses can have the opposite from the desired effect(a
situation well known from the QZE literature as the “in-
verse” or “anti” Zeno effect) [14,15], and (iii ) to show that
alternatives to the unitary pulse control scheme are available
to suppress the system-environment interaction: namely,(a)
continuousunitary interaction and(b) pulsedmeasurements.

II. SIMPLEST BB CYCLE

Consider the “BB evolution” induced by the two-element
control set(not necessarily a group) hI ,U1j, where I is the
identity operator, in which the controlled systemQ alter-
nately undergoesN “kicks” U1 (instantaneousunitary trans-
formations) and free evolutions in a time intervalt:

UNstd = fU1Ust/NdgN. s1d

We take U=exps−iHtd, with H the stime-independentd
Hamiltonian of Q, its environment, and their interaction,
and will sometimes abbreviateUst /Nd by U. We present a
new derivation of this BB evolution that allows for a
transparent connection to the formulation of the QZE.

In the large-N limit, the dominant contribution toUNstd is
U1

N. We therefore consider the sequence of unitary operators

VNstd = U1
†NUNstd. s2d

Observe thatVNs0d= I for any N and
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i
d

dt
VNstd = U1

†No
k=0

N−1

sU1UdkSU1i
dU

dt
DsU1UdN−k−1

= U1
†N 1

No
k=0

N−1

sU1UdkU1HU1
†sU1Ud†ksU1UdN

= HNstdVNstd fVNs0d = Ig, s3d

with

HNstd =
1

N
o
k=0

N−1

U1
†NsU1UdkU1HU1

†sU1Ud†kU1
N. s4d

The limiting evolution operator

Ustd ; lim
N→`

VNstd s5d

satisfies the equation

i
d

dt
Ustd = HZ Ustd fUs0d = 1g, s6d

with the “Zeno” Hamiltonian

HZ ; lim
N→`

HNstd. s7d

ThereforeUstd=exps−iHZtd. In order to study the behavior
of the limiting operator we first observe that forN→` we
can neglect the free evolutionUst /Nd in Eq. s4d and so

HN ,
1

N
o
k=0

N−1

U1
†NU1

k+1HU1
†k+1U1

N =
1

N
o
k=0

N−1

U1
†kHU1

k. s8d

Next, we will show that for any boundedH and anyU1 with
a pure point spectrum—namely,

U1 = o
m

e−ilmPm s9d

flmÞlnsmod 2pd for mÞn, PmPn=dmnPmg—one gets

HZ ; lim
N→`

1

No
k=0

N−1

U1
†kHU1

k = o
m

PmHPm ; PU1
sHd, s10d

where the mapPU1
is the projection onto the centralizersor

commutantd of U1,

ZsU1d = hXufX,U1g = 0j. s11d

First, we show that thesstrongd limit HZ in Eq. s10d is a
bounded operator which satisfies the intertwining property

HZPm = PmHPm = PmHZ s12d

for any eigenprojectionPm of U1, with eigenvaluee−ilm.
Equations10d follows wheneverU1 admits the spectral de-
compositions9d. Here is the proof. For any vectorc in the
Hilbert spaceH, we get, using Eq.s9d,

1

N
o
k=0

N−1

U1
†kHU1

kPmc =
1

N
o
k=0

N−1

Ũkf, s13d

whereŨ=sU1e
ilmd† is a unitary operator whose eigenprojec-

tion Pm has eigenvalue 1 andf=HPmcPH. Recall now an
ergodic theorem due to von Neumannsf16g, p. 57d that states

that if Ũ is a unitary operator on the Hilbert spaceH andPm

its eigenprojection with eigenvalue 1sŨPm=Pmd, then, for
any fPH,

lim
N→`

1

No
k=0

N−1

Ũkf = Pmf. s14d

As a consequence, by taking the limit of Eq.s13d, we get Eq.
s12d.

Notice that the intertwining property(12) holds also for
an unboundedH whose domainD contains the range of
Pm—namely,PmH,DsHd. For a generic unbounded Hamil-
tonian, we can still formally consider Eq.(10) as the limiting
evolution, but the meaning ofPmHPm and its domain of self-
adjointness should be properly analyzed.

In conclusion,

Ustd = exps− iHZtd = expF− io
m

PmHPmtG s15d

and, due to Eqs.s2d and s5d,

UNstd , U1
NU

= U1
Nexps− iHZtd

= expF− io
m

sNlmPm + PmHPmtdG . s16d

This proves that the BB evolutions1d yields a Zeno effect
and a partitioning of the Hilbert space into “Zeno sub-
spaces,” in the sense off13g.

We emphasize that no cyclic group properties are required
for pulse sequences. This extends previous studies, in which
“symmetrization” was thought to play an important role in
order to obtain decoupling and suppression of decoherence.1

Indeed the dynamics(1) is different from the dynamics
fU1

†Ust /2NdU1Ust /2NdgN, originally proposed in[4], be-
cause it is only constructed with a single “bang”U1, without
the second “bang”U1

† which would close the group. We will
further elaborate on this issue in Sec. IV.

By taking H to be a system-bath interaction Hamiltonian,
we see that the effect of theU1 “kicks” is to project the
decohering evolution into disjoint subspaces defined by the
spectral resolution ofU1. A proper choice ofU1 can either
eliminate this evolution or make it proceed in some desired
fashion. To give the simplest possible example, suppose

1Though apparently this point is well appreciated in the practice
of high-resolution NMR; i.e., there are many sequences—e.g.,
WAHUHA—achieving the intended averaging effect without aver-
aging over a subgroup. Nevertheless, averaging still results from
symmetry arguments in these cases[24].
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H = sx ^ B, U1 = sz. s17d

H generates “bit flips” and the projection operators are

P± =
1

2
sI ± szd, s18d

with eigenvaluesl±= ±1. Thus

HZ = o
m=±

PmHPm = o
m=±

PmsxPm ^ B = 0, s19d

so the decohering evolution is completely canceled.
The physical mechanism giving rise to the Zeno sub-

spaces in theN→` limit can be understood by considering
the case of a finite dimensional Hilbert space. Then the limit
(10) reads

1

N
o
k=0

N−1

U1
†kHU1

k = o
m,n

PmHPn

1

No
k=0

N−1

eikslm−lnd s20d

and one sees that the last sum is 1 form=n and vanishes as
Os1/Nd otherwisefremember thatlmÞln smod 2pd for m
Þn in Eq. s9dg. The appearance of the Zeno subspaces in
thus a direct consequence of the fast oscillating phases
between different eigenspaces of the kick. This is equiva-
lent to a procedure of phase randomization, and is analo-
gous to the case of strong continuous couplingf13g.

III. IMPLICATIONS OF THE INVERSE ZENO EFFECT

The above conclusions are correct in the(mathematical)
limit of large N. However, it is known that, ifN is not too
large, the form factors of the interaction play a primary role
and can provoke aninverse Zeno effect(IZE), by which the
decohering evolution is accelerated, rather than suppressed
[14,15]. Reconsider the example(17), with B coupling Q to a
generic bath with a thermal spectral density

ksvd =E dt expsivtdkBstdBl, s21d

where Bstd=eiHBtBe−iHBt is the interaction-picture-evolved
bath operator,HB the free bath Hamiltonian, andk¯l the
average over the bath state. For instance, one can consider
the linear coupling B=edv fsvdfasvd+a†svdg, where
fasvd ,a†sv8dg=dsv−v8d are boson operators andfsvd a
form factor, whileHB=edvva†svdasvd. The form factor of
the interactionstogether with the bath stated determines the
spectral densitys21d. For instance, for an Ohmic bath,

ksvd ~
v

f1 + sv/vcd2gncothS v

2T
D , s22d

wherevc is the frequency cutoff,T the temperature of the
bath sBoltzmann’s constantk=1d, andn an integernù2 sn
=2 is typical of quantum dotsf17gd. The free decay rate is

g = 2pksv0d, s23d

v0 being the energy difference between the two qubit states
sFermi golden ruled. The modified decay rate can be shown
to readf4,18g

gstd = lim
t→`

tE
−`

`

dv ksvdsinc2Sv − v0

2
tDtan2Sv − v0

4
tD ,

s24d

where t= t /N is the period between kicks and sincsxd
;x−1sin x. By expanding for large values ofN one gets
f19g

gstd ,
8

p
kS2p

t
D, t → 0. s25d

Notice that, according to Eq.s25d, for small values oft the
modified decay rategstd is proportional to the “tail” of the
spectral densityksvd. By defining a characteristictransition
time t* as the solution of the equation

kS2p

t* D .
p

8
g =

p2

4
ksv0d, s26d

one obtains

gstd , g for t , t* ,
s27d

gstd . g for t . t* .

Decoherence is suppressed in the former case, but it isen-
hancedin the latter situation(which is analogous to what one
calls the IZE in the case of projective measurements). This
shows that an “inverse Zeno regime” is a serious drawback
also in the case of dynamical decoupling. Since the limit
t,t* can be very difficult to attain, for abona fidedissipa-
tive system, the efficacy of the BB as a method for decoher-
ence suppression must be carefully analyzed. For instance, in
the Ohmic case(22) at low temperatureT!v0!vc, one
easily gets, from Eq.(25)

t* . 2pvc
−1Sp2

4

v0

vc
D1/s2n−1d

! 2pvc
−1, s28d

a condition that may be difficult to achieve in practice. In
fact, we see here that the relevant time scale is not simply the
inverse bandwidthvc

−1, but can be much shorter ifv0!vc,
as is typically the case. It has already been observed that the
Ohmic bath is a particularly demanding setting for the BB
and that spin-boson baths with decaying spectral densityIsvd
fnot to be confused with the thermal spectral densityksvdg,
such as 1/f, are more amenable to successful BB decoupling
f18g. We will reconsider this issue from the point of view of
the IZE in f19g.

IV. BB CYCLE OF SEVERAL PULSES

We now generalize the previous result to the situation
where each cycle consists ofg kicks. This will allow us to
show how the procedure of “decoupling by symmetrization”
[6]—i.e., the standard view of the BB effect—arises as a
special case of such cycles and is related to the QZE. We
considerN cycles ofg instantaneous kicksU1,¯ ,Ug in a
time intervalt:
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UNstd = FUgUS t

gN
D¯ U2US t

gN
DU1US t

gN
DGN

. s29d

We use the same notation as above, sometimes abbreviating
Ust /gNd by U, unless confusion may arise. Similarly to the
single-kick case, in theN→` limit, the dominant contribu-
tion is sUg¯U2U1dN and it is convenient to consider the
sequence of unitary operators

VNstd = sUg ¯ U1d†NUNstd. s30d

The differential equation is again

i
d

dt
VNstd = HNstdVNstd fVNs0d = Ig, s31d

where

HNstd =
1

N
o
k=0

N−1

sUg ¯ U1d†NsUgU ¯ U1Udk

3H̄NsUgU ¯ U1Ud†ksUg ¯ U1dN, s32d

with

H̄N =
1

g
fUgHUg

† + sUgUUg−1dHsUgUUg−1d† + ¯

+ sUgUUg−1¯ U2UU1dHsUgUUg−1¯ U2UU1d†g.

s33d

We can now follow through the same calculations as in the

single-kick case, substitutingU1HU1
† everywhere byH̄N and

U1 by Ug¯U1. It is then straightforward to verify that in the
N→` limit we get

Ustd ; lim
N→`

VNstd, s34d

which again satisfies Eq.s6d, with the Zeno Hamiltonian

HZ = PUg¯U1
sH̄d = o

m

PmH̄Pm, s35d

where

Ug ¯ U2U1 = o
m

Pme−ilm, s36d

H̄ =
1

g
fH + ¯ + sUg−2¯ U1d†HsUg−2¯ U1d

+ sUg−1¯ U1d†HsUg−1¯ U1dg. s37d

In conclusion,

UNstd , sUg ¯ U1dNUstd

= sUg ¯ U1dNexps− iHZtd

= expS− io
m

sNlmPm + PmH̄PmtdD . s38d

It is clear that also in this case we get a QZE, with relevant
Zeno subspacesf13g. The only difference from the single-

kick case is that the HamiltonianH̄ fEq. s37dg and the prod-
uct of the cycleUg¯U2U1 fEq. s36dg take the place ofH
andU1, respectively.

It is important to observe again thatno symmetryor group
structure is required from the “kick” sequence(29): the
above formulas are of general validity, as they rely on the
von Neumann ergodic theorem. They reduce to the usual
expression in the case of a finite closed group of unitariesG
with elementsVr, r =1, . . . ,g and V1= I. Indeed, decoupling
by symmetrization[6] is recovered as a particular case by
considering the unitary operators

Ur = Vr+1Vr
† sr = 1, . . . ,g − 1d, Ug = Vg

†. s39d

A single cycle yields

Ucyclestd = Vg
†US t

gN
DVg ¯ V1

†US t

gN
DV1, s40d

while

Ug ¯ U1 = Vg
†VgVg−1

†
¯ V2

†V2 = I . s41d

We therefore reobtain, as a special case of the QZE, the
well-known BB resultf6g

UNstd = VNstd ,
N→`

exps− iHefftd, s42d

whereHeff=HZ and

HZ = PIsH̄d = H̄ =
1

g
o
r=1

g

Vr
†HVr = PGsHd. s43d

V. ORIGIN OF THE EQUIVALENCE BETWEEN
CONTINUOUS AND PULSED FORMULATIONS

The equivalence between the ways in which the QZE can
be generated via observation and via Hamiltonian interaction
have been discussed in[13]. We now explain the equivalence
between the continuous and pulsed Hamiltonian interaction
pictures in generating the Zeno subspaces. In fact, the two
procedures differ only in the order in which two limits are
computed. We recall that the continuous case deals with the
strong-coupling limit[13]

Htot = H + KH1, K → `, s44d

and the Zeno subspaces are the eigenspaces ofH1. On the
other hand, the kicked dynamics entails the limitN→` in
Eq. s1d and the Zeno subspaces are the eigenspaces ofU1.
This evolution is generated by the Hamiltonian

Htot = H + t1H1o
n

dst − nt2d, t2 → 0, s45d
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where t2 is the period between two kicks and the unitary
evolution during a kick isU1=exps−it1H1d. The limit N
→` in Eq. s1d corresponds tot2→0. The two dynamics
s44d and s45d are both limiting cases of

Htot = H + KH1o
n

gS t − nst2 + t1/Kd
t1/K

D , s46d

where the functiong has the properties

o
n

gsx − nd = 1, s47d

lim
K→`

KgsKxd = dsxd. s48d

For example, we can considergsxd=xf−1/2,1/2gsxd, wherexI is
the characteristic function of the setI. In Eq. s46d the period
between two kicks ist1/K+t2, while the kick lasts for a time
t1/K. By taking the limitt2→0 in Eq.s46d—i.e., a sequence
of pulses of finite durationt1/K without any idle time among
them—and using propertys47d, one recovers the continuous
cases44d. Then, by taking the strong-coupling limitK→`
one gets the Zeno subspaces. On the other hand, by taking
theK→` limit—i.e., the limit of shorter pulsesfbut with the
same globalsintegrald effectg—and using propertys48d and
the identitydst /t1d=t1dstd, one obtains the kicked cases45d.
Then, by taking the vanishing idle time limitt2→0 one gets
again the Zeno subspaces. In short, the mathematical equiva-
lence between the two approaches is expressed by the rela-
tion

lim
K→`

lim
t2→0

Htot = lim
t2→0

lim
K→`

Htot s49d

sfor almost allt1d, with the left srightd side expressing the
continuousspulsedd case. Note that this formal equivalence
must physically be checked on a case-by-case basis and it is
legitimate only if the inverse Zeno regime is avoided and the
role of the form factors clearly spelled out. That is, physi-
cally the relevant time scales play a crucial role, and in prac-
tice there certainly can be a difference between kicked dy-
namics and continuous coupling, in spite of their equivalence
in the above mathematical limit.

Another key issue of physical relevance, in particular if
one is interested in possible applications, is played by the
physical meaning of “strong” when one talks of the strong-
coupling regime. We showed that strong coupling is equiva-
lent to largeN (number of interruptions) and, since experi-
ments with largeN have been performed, proving both the
quantum Zeno and inverse quantum Zeno effects[15], the
strong-coupling regime is attainable in real physical systems.

VI. CONCLUSIONS

In this work we have shown the formal equivalence of the
quantum Zeno effect, which has been known since von Neu-
mann laid down the mathematical foundations of quantum
mechanics([20], p. 366) and has been the subject of intense
investigations since the seminal paper[9], to the recently
introduced[4–6] “bang-bang” decoupling method for reduc-
ing decoherence in quantum information processing.2 The
QZE is traditionally derived by considering a series of rapid,
pulsed observations[9]. This became almost a dogma and
motivated interesting seminal experiments[15,21]. Later for-
mulations emphasized that the QZE can also be generated by
continuous Hamiltonian interaction[12,13,22]. The BB
method, on the other hand, employs a series of rapidpulsed
interactions. Here we have shown that both the QZE(in its
continuous-interaction formulation) and the BB method can
be understood as limits of a single Hamiltonian, Eq.(46),
giving rise to either pulsed or continuous dynamics, with a
resulting partitioning of the controlled system’s Hilbert space
into quantum Zeno subspaces, defined by Eqs.(9) and (10).
This unified view not only offers the advantage of conceptual
simplicity, but also has significant practical consequences: it
shows that the scope of all methods analyzed here(QZE,
BB, and continuous interaction) are wider than previously
suspected, leading to greater flexibility in their implementa-
tion. In particular, since all formulations of the QZE are
physically equivalent and the BB is equivalent to the kicked
unitary formulation of the QZE, it is clear that the BB can
also be formulated in terms of acontinuous interactionand
pulsed measurements. The continuous-interaction version of
the BB avoids the frequently criticized off-resonant transi-
tions associated with the large bandwidth pulses required in
the pulsed BB implementation[23]. We have not studied the
practical advantages or drawbacks of the pulsed measure-
ment formulation of the BB.

We emphasize that our conclusions about greater flexibil-
ity in the practical implementation of the BB method are
supported by the fact that experiments with largeN have
been performed, proving both the quantum Zeno[15,21] and
the inverse quantum Zeno[15] effects and showing that the
strong-coupling regime is attainable in real physical systems.

Another consequence of our work is that the Zeno-
subspace dynamics, in its pulsed formulation, can be gener-
ated by a sequence ofarbitrary (fast and strong) pulses,
without any (symmetry) assumptions about the relation be-
tween pulses. This generalizes all previously published for-
mulations of the BB method, which assumed such relations.

Finally, owing perhaps to its longer history, the QZE has
been more thoroughly studied than the BB method, and it has

2In fact the original BB paper[4] recognized the mathematical
connection to the QZE, in particular the features of Cook’s method
for the inhibition of a stimulated two-level transition by pulsed
measurements[21], but stated that “the analogy stops from a more
physical point of view.”
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been recognized that in physically relevant limits an inverse
QZE can arise. We have shown that the same conclusion
applies to the BB method, with the important implication
that in some cases the BB can actually enhance, rather than
reduce, decoherence. This issue will be the subject of further
investigations[19].
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